二元一次方程组人教版
- 格式:pptx
- 大小:2.81 MB
- 文档页数:87
人教版七年级数学下册《二元一次方程组》专项练习题-附含答案知识点1-1 二元一次方程(组)1)二元一次方程:含有两个未知数 且 所含未知数的次数项的次数都是1的方程。
注:所有未知数项的次数必须是1 例: 不是 2x -3xy =2 不是 2)将几个相同未知数的一次方程联合起来 就组成了二元一次方程组。
注:①在方程组中 相同未知数必须代表同一未知量。
②二元一次方程组不一定都是二元一次方程组合而成 方程个数也不一定是两个。
例: 是 3)判断二元一次方程组的方法:①方程组中是否一共有两个未知数;②含未知数的项的次数是否都是1;③是否含有多个方程组成.例1.(2021·湖南·衡阳市华新实验中学七年级月考)下列方程中 ①;②;③;④ 是二元一次方程的有( ) A .1个 B .2个C .3个D .4个【答案】A【分析】根据二元一次方程的定义:含有两个未知数 并且含有未知数的项的次数都是1的整式方程叫做二元一次方程 即可判断出答案.【详解】解:①根据二元一次方程定义可知是二元一次方程 此项正确; ②化简后为 不符合定义 此项错误; ③含有三个未知数不符合定义 此项错误;④不符合定义 此项错误;所以只有①是二元一次方程 故选:A .【点睛】本题考二元一次方程 解题的关键是熟练运用二元一次方程的定义 本题属于基础题型.变式1.(2022·山东济南·八年级期末)下列方程中 为二元一次方程的是( ) A .2x +3=0 B .3x -y =2zC .x 2=3D .2x -y =5【答案】D【分析】根据二元一次方程的定义 从二元一次方程的未知数的个数和次数方面辨别. 【详解】解:A .是一元一次方程 故本选项不合题意; B .含有三个未知数 不是二元一次方程 故本选项不合题意;C .只含有一个未知数 且未知数的最高次数是2 不是二元一次方程 故本选项不合题意;D .符合二元一次方程的定义 故本选项符合题意.故选:D .20x y-=3235x y x y -=⎧⎨+=⎩6x y +=()16x y +=31x y z +=+7mn m +=6x y +=()16x y +=6xy x +=31x y z +=+7mn m +=【点睛】此题考查了二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数都是1 像这样的整式方程叫做二元一次方程.例2.(2021·湖南·衡阳市华新实验中学七年级月考)已知是关于 的二元一次方程 则______. 【答案】4【分析】根据二元一次方程的定义 可得方程组 解得m 、n 的值 代入代数式即可.【详解】解:由题意得 解得: ∴ 4 故填:4. 【点睛】本题考查二元一次方程的定义 属于基础题型. 变式2.(2021·天津一中七年级期中)若是关于 的二元一次方程 则( )A .B .C .D .【答案】D【分析】二元一次方程满足的条件:含有2个未知数 未知数的项的次数是1的整式方程. 【详解】解:是关于的二元一次方程解得: .故选:D . 【点睛】此题主要考查了二元一次方程的定义 关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.例3.(2021·河南淇县·七年级期中)下列方程组中 是二元一次方程组的是( )A .B .C .D .【答案】C【分析】根据二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数为1的整式方程对个选项进行一一排查即可.【详解】解:A. 第二个方程中的是二次的 故本选项错误;B.方程组中含有3个未知数 故本选项错误;C. 符合二元一次方程组的定义 故本选项正确;D. 第二个方程中的xy 是二次的 故本选项错误.故选C .3211203n m x y -+-=x y n m +=31211n m -=⎧⎨+=⎩31211n m -=⎧⎨+=⎩40n m =⎧⎨=⎩n m +=20193(2020)(4)2021m n m x n y---++=x y 2020m =±4n =±2020m =-4n =-2020m =4n =2020m =-4n =()()20193202042021m n m x n y ---++=x y ∴2019120200m m ⎧-=⎨-≠⎩3140n n ⎧-=⎨+≠⎩2020m =-4n =2214x y x +=⎧⎨=⎩1236x y y z ⎧-=⎪⎨⎪-=⎩225x y x y +=-⎧⎨-=⎩213xy y y +=⎧⎨=-⎩2x【点睛】:根据组成二元一次方程组的两个方程应共含有两个未知数 且未知数的项最高次数都应是一次的整式方程 判断各选项即可.变式3.(2021·上海市建平中学西校期末)下列方程组 是二元一次方程组的是( ).A .B .C .D . 【答案】B【详解】A 选项:在中最高次数为2 故为二元二次方程组 不合题意;B 选项:为二元一次方程组 符合题意;C 选项:在中 共有3个未知数 为三元一次方程组 不合题意;D 选项:在中最高次数为2 故为二元二次方程组 不合题意.故选B . 【点睛】本题考查了二元一次方程的概念 掌握二元一次方程的概念(含有两个未知数 并且含有未知数的项的次数都是1的方程叫做二元一次方程)是解题关键.例4.(2021·日照市新营中学七年级期中)若方程组是二元一次方程组 则a 的值为________. 【答案】-3【分析】根据二元一次方程组的定义得到|a |-2=1且a -3≠0 然后解方程与不等式即可得到满足条件的a 的值.【详解】解:∵方程组是二元一次方程组 ∴|a |-2=1且a -3≠0 ∴a =-3 故答案为:-3. 【点睛】本题考查了二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起 就组成了一个二元一次方程组.变式4.(2021·全国·七年级课时练习)若是关于 的二元一次方程组 则__ __ __. 【答案】 3或2【分析】二元一次方程组的定义:(1)含有两个未知数;(2)含有未知数的项的次数都是1 据此列式即可求解. 【详解】解:是关于 的二元一次方程组 或0 解得:或2 答案:3或2223xy x y =⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x-+=⎧⎨=⎩223xy x y=⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x -+=⎧⎨=⎩()20390a x ya x -⎧+=⎪⎨-+=⎪⎩23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y =a b =c =2-3-23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y 30c ∴+=21a -=31b +=3a =2b =-3c =-2-【点睛】本题主要考查了二元一次方程组的定义 利用它的定义即可求出代数式的解.知识点1-2 二元一次方程(组)的解1)二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值(有序数对) 例:x+y=10 (1 9) (2 8) (3 7)等。
第八章二元一次方程组第一节、知识梳理二元一次方程组一、学习目标1.了解并认识二元一次方程的概念.2.了解与认识二元一次方程的解.3.了解并掌握二元一次方程组的概念并会求解.4. 掌握二元一次方程组的解并知道与二元一次方程的解的区别.5.掌握代入消元法和加减消元法.二、知识概要1.二元一次方程:像x+y=2这样的方程中含有两个未知数(x和y),并且未知数的指数都是1,这样的方程叫做二元一次方程.2.二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.3.二元一次方程组:把两个方程x+y=3和2x+3y=10合写在一起为像这样,把两个二元一次方程组合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.5.代入消元法:由二元一次方程组中的一个方程,把一个未知数用含另一个未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.6.加减消元法:两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.这种方法叫做加减消元法,简称加减法.三、重点难点代入消元法和加减消元法是本周学习的重点,也是本周学习的难点.四、知识链接本周的二元一次方程组由我们学过的一元一次方程演化而来,为以后解决实际问题提供了一种有力的工具.五、中考视点本周所学的二元一次方程组经常在中考中的填空、选择中出现,还有的出现在解答题的计算当中.二元一次方程组的实际应用一、学习目标将实际问题转化为纯数学问题,建立数学模型(即二元一次方程组),解决问题.二、知识概要列方程组解应用题的常见类型主要有:1. 行程问题.包括追及问题和相遇问题,基本等量关系为:路程=速度×时间;2. 工程问题.一般分为两类,一类是一般的工程问题,一类是工作总量为1的工程问题.基本等量关系为:工作量=工作效率×工作时间;3. 和差倍分问题.基本等量关系为:较大量=较小量+多余量,总量=倍数× 1倍量;4. 航速问题.此类问题分为水中航行和风中航行两类,基本关系式为:顺流(风):航速=静水(无风)中的速度+水(风)速逆流(风):航速=静水(无风)中的速度-水(风)速5. 几何问题、年龄问题和商品销售问题等.三、重点难点建立数学模型(二元一次方程组)是本周的重点,也是本周的难点.四、知识链接本周知识是上周学的二元一次方程组的实际应用,为解决一些实际问题提供了一个模型,一种方法.五、中考视点二元一次方程组是中考重点考查的内容之一,主要有以下几个方面:(1)从实际数学问题中构造一次方程组,解决有关问题;(2)能从图表中获得有关信息,列方程组解决问题.第二节、教材解读1.二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程.从定义中可以看出:二元一次方程具备以下四个特征:(1)是方程;(2)有且只有两个未知数;(3)方程是整式方程,即各项都是整式;(4)各项的最高次数为1.例如:像+y=3中,不是整式,所以+y=3就不是二元一次方程;像x+1=6,x+y-3z=8,不是含有两个未知数,也就不是二元一次方程;像xy+6=1中,虽然含有两个未知数x、y且次数都是1,但未知项xy的次数为2,所以也不是二元一次方程,所以二元一次方程必须同时具备以上四点.2.二元一次方程组含有两个未知数的两个一次方程所组成的一组方程叫做二元一次方程组,它有两个特点:一是方程组中每一个方程都是一次方程;二是整个方程组中含有两个且只含有两个未知数,如一次方程组.3.二元一次方程的一个解符合二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.一般地二元一次方程的解有无数个,例如x+y=2中,由于x、y只是受这个方程的约束,并没有被取某一个特定值而制约,因此,二元一次方程有无数个解.4.二元一次方程组的解二元一次方程组中各个方程的公共解叫做这个二元一次方程组的解.定义中的公共解是指同时使二元一次方程组中的每一个方程左右两边的值都相等,而不是使其中一个或部分左右两边的值相等,由于未知数的值必须同时满足每一个方程,所以,二元一次方程组一般情况下只有惟一的一组解,即构成方程组的两个二元一次方程的公共解.【思考与分析】二元一次方程组的解是使方程组中的每一个方程的左右两边的值都相等的两个未知数的值,而中的一个方程的解,并不能让另一方程左、右两边相等,所以它们都不是这个方程组的解,只有C是正确的.验证方程组的解时,要把未知数的值代入方程组中的每个方程中,只有使每个方程的左、右两边都相等的未知数的值才是方程组的解.【正解】C.【例2】解方程组【正解】①- ②得:(x-2y)-(x-y)=2-(-2)x-2y-x+y=4-y=4y=-4把y=-4代入②得x=-6,所以原方程组的解为【小结】两方程相减时,易出现符号错误,所以要特别细心.【例3】某化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩.游戏时,每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人;而每个女生都看见涂蓝色油彩的人数是涂红色油彩的人数的,问晚会上男、女生各有几人?【分析】本题错在对题中的数量关系没有弄清.每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人,这里涂蓝色油彩的人数不是题中所有的男生人数,而是除自己之外的男生人数,同理,女生看到的人数也应是除自己以外的女生人数.正解: 设晚会上男生有x人,女生有y人.根据题意,得把③代入④,得x=[2(x-1)-1-1],解得x=12.把x=12代入④,得y=21.所以答:晚会上男生12人,女生21人.解二元一次方程组的问题看似简单,但如果你稍不注意,就有可能犯如下错误.【例4】解方程组【正解】(接上)将x=2带入②得:y=0.所以原方程组的解为【例6】解方程组【正解一】化简原方程组得【正解二】化简原方程组得①×6+②得17x=114,【小结】解二元一次方程组可以用代入法,也可以用加减法.一般地说,当方程组中有一个方程的某一个未知数的系数的绝对值是1或有一个方程的常数项是0时,用代入法比较方便;当两个方程中某一未知数的系数的绝对值相等或成整数倍时,用加减法比较方便.第四节、思维点拨【例1】小红到邮局寄挂号信,需要邮资3元8角. 小红有票额为6角和8角的邮票若干张,问各需多少张这两种面额的邮票?【思考与解】要解此题,第一步要找出问题中的数量关系.寄信需邮资3元8角,由此可知所需邮票的总票额要等于所需邮资3.8元. 再接着往下找数量关系,所需邮票的总票额等于所需6角邮票的总票额加上所需8角邮票的总票额. 所需6角邮票的总票额等于单位票额6角与所需6角邮票数目的乘积. 同样的,所需8角邮票的总票额等于单位票额8角与所需8角邮票数目的乘积. 这就是题中蕴含的所有数量关系.第二步要抓住题中最主要的数量关系,构建等式.由图可知最主要的数量关系是:所需邮资=所需邮票的总票额.第三步要在构建等式的基础上找出这个数量关系中牵涉到哪些已知量和未知量.已知量是所需邮资3.8元,两种邮票的单位票额0.6元和0.8元,未知量是两种邮票的数目.第四步是设元(即设未知量),并用数学符号语言将数量关系转化为方程. 设0.6元的邮票需x张,0.8元的邮票需y张,用字母和运算符号将其转化为方程:0.6x+0.8y=3.8.第五步是解方程,求得未知量. 由于两种邮票的数目都必须是自然数,此二元一次方程可以用列表尝试的方法求解.方程的解是第六步是检验结果是否正确合理. 方程的两个解中两种邮票的数目均为正整数,将两解代入方程后均成立,所以结果是正确合理的.第七步是答,需要1张6角的邮票和4张8角的的邮票,或需要5张6角的邮票和1张8角的的邮票.【例2】小聪全家外出旅游,估计需要胶卷底片120张. 商店里有两种型号的胶卷:A型每卷36张底片,B型每卷12张底片. 小聪一共买了4卷胶卷,刚好有120张底片. 求两种胶卷的数量.【思考与解】第一步:找数量关系. A型胶卷数+B型胶卷数=胶卷总数,A型胶卷的底片总数+B型胶卷的底片总数=底片总数. A型胶卷的底片总数=每卷A型胶卷所含底片数×A型胶卷数,B型胶卷的底片总数=每卷B型胶卷所含底片数×B型胶卷数.第二步:找出最主要的数量关系,构建等式. A型胶卷数+B型胶卷数=胶卷总数,A型胶卷的底片总数+B型胶卷的底片总数=底片总数.第三步:找出未知量和已知量. 已知量是:胶卷总数,度片总数,每卷A型胶卷所含底片数,每卷B型胶卷所含底片数;未知量是:A型胶卷数,B型胶卷数.第四步:设元,列方程组. 设A型胶卷数为x,B型胶卷数为y,根据题中数量关系可列出方程组:第五步:答:A型胶卷数为3,B型胶卷数为1.【例3】用加减法解方程组【思考与分析】经观察,我们发现两个方程中y的系数互为相反数,故将两方程相加,消去y.解:①+②,得4x=8.解得x=2.把x=2代入①,得2+2y=3.解得y=.所以,原方程组的解为:【思考与分析】经观察,我们发现x的系数成倍数关系,故先将方程①×2再与方程②作差消去x较好.解:①×2,得4x-6y=16. ③②-③,得11y=-22.解得y=-2.把y=-2代入①,得2x-3×(-2)=8. 解得x=1.所以原方程组的解为【思考与分析】如果用代入法解这个方程组,就要从方程组中选一个系数比较简单的方程进行变形,用含一个未知数的式子表示另一个未知数,然后代入另一个方程.本题中,方程②的系数比较简单,应该将方程②进行变形.如果用加减法解这个方程组,应从计算简便的角度出发,选择应该消去的未知数.通过观察发现,消去x比较简单.只要将方程②两边乘以2 ,然后将两方程相减即可消去x.解法1:由②得x=8-2y.③把③代入①得2(8-2y)+5y=21,解得y=5.把y=5代入③得x=-2.所以原方程组的解为:解法2:②×2得2x+4y=16. ③①-③得2x+5y-(2x+4y)=21-16,解得y=5.把y=5代入②得x=-2.所以原方程组的解为【例6】用代入法解方程组【思考与分析】经观察,我们发现方程①为用y表示x的形式,故将①代入②,消去x.解:把①代入②,得3(y+3)-8y=14.解得y=-1.把y=-1代入①,得x=2.所以原方程组的解为【例7】用代入法解方程组【思考与分析】经观察比较,我们发现方程①更易于变为用含一个未知数的代数式表示另一个未知数的形式,故选择①变形,消去y.解:由①,得y=2x-5. ③把③代入②,得3x+4(2x-5)=2.解得x=2.把x=2代入③,得y=-1.所以原方程组的解为:【例8】甲、乙两厂,上月原计划共生产机床90台,结果甲厂完成了计划的112%,乙厂完成了计划的110%,两厂共生产机床100台,求上月两厂各超额生产了多少台机床?【思考与分析】我们可以采用两种方法设未知数,即直接设法和间接设法.直接设法就是题目要求什么就设什么为未知数,本题中就是设上月甲厂超额生产x台,乙厂超额生产y台;而间接设法就是问什么并不设什么,而是采用先设出一个中间未知数,求出这个中间未知数,再利用它同题中要求未知数的联系,解出所要求的未知数,题中我们可设上月甲厂原计划生产x台,乙厂原计划生产y台.解法一:直接设法.设上月甲厂超额生产x台,乙厂超额生产y台,则共超额了100-90=10(台),而甲厂计划生产的台数是台,乙厂计划生产的台数是台.根据题意,得答:上月甲厂超额生产6台,乙厂超额生产4台.解法二:间接设法.设上月甲厂原计划生产x台,乙厂原计划生产y台.根据题意,得所以x×(112%-1)=50×12%=6,y×(110%-1)=40×10%=4.答:上月甲厂超额生产6台,乙厂超额生产4台.【例9】某学校组织学生到100千米以外的夏令营去,汽车只能坐一半人,另一半人步行.先坐车的人在途中某处下车步行,汽车则立即回去接先步行的一半人.已知步行每小时走4千米,汽车每小时走20千米(不计上下车的时间),要使大家下午5点同时到达,问需何时出发.【思考与分析】我们从行程问题的3个基本量去寻找,可以发现,速度已明确给出,只能从路程和时间两个量中找出等量关系,有题意知,先坐车的一半人,后坐车的一半的人,车三者所用时间相同,所以根据时间来列方程组.如图所示是路程示意图,正确使用示意图有助于分析问题,寻找等量关系.解:设先坐车的一半人下车点距起点x千米,这个下车点与后坐车的一半人的上车点相距y千米,根据题意得化简得从起点到终点所用的时间为所以出发时间为:17-10=7.即早晨7点出发.答:要使学生下午5点到达,必须早晨7点出发.【例10】小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)【思考与分析】设教育储蓄存了x元,一年定期存了y元,我们可以根据题意可列出表格:解:设存一年教育储蓄的钱为x元,存一年定期存款的钱为y元,则答:存教育储蓄的钱为1500元,存一年定期的钱为500元.【反思】我们在解一些涉及到行程、收入、支出、增长率等的实际问题时,有时候不容易找出其等量关系,这时候我们可以借助图表法分析具体问题中蕴涵的数量关系,题目中的相等关系随之浮现出来.第六节、本章训练基础训练题一、填空题(每题7分,共35分)1.一个两位数的数字之和是7,这个两位数减去27,它的十位和个位上的数字就交换了位置,则这个两位数是.2. 已知甲、乙两人从相距36km的两地同时相向而行,1h相遇.如果甲比乙先走h,那么在乙出发后h与甲相遇.设甲、乙两人速度分别为xkm/h、ykm/h,则x=,y=.3. 甲、乙二人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就能追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,两人每秒钟各跑的米数是.4.一队工人制造某种工件,若平均每人一天做5件,全队一天就超额30件;若平均每人一天做4件,全队一天就比定额少完成20件.若设这队工人有x人,全队每天的数额为y件,则依题意可得方程组.5.某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分;不答记0分.已知小明不答的题比答错的题多2道,他的总分为74分,则他答对了.二、选择题(每题7分,共35分)1.一个两位数的十位数字比个位数字小2,且能被3整除,若将十位数字与个位数字交换又能被5整除,这个两位数是().A. 53B. 57C. 35D. 752.甲、乙两车相距150km,两车同时出发,同向而行,甲车4h可追上乙车;相向而行,1.5h后两车相遇.设甲、乙两车的平均速度分别为xkm/h、ykm/h.以下方程组正确的是().3.甲、乙二人从同一地点出发,同向而行,甲骑车乙步行.若乙先行12km,那么甲1小时追上乙;如果乙先走1小时,甲只用小时就追上乙,则乙的速度是()km/h.A. 6B. 12C. 18D. 364.一艘船在一条河上的顺流速度是逆流速度的2倍,则船在静水中的速度与水流的速度之比为().A. 4:3B. 3:2C. 2:1D. 3:15.某校初中毕业生只能报考第一高中和第二高中中的一所.已知报考第一高中的人数是报考第二高中的2倍,第一高中的录取率为50%,第二高中的录取率为60%,结果升入第一高中的人数比升入第二高中的人数多64人,则升入第一高中与第二高中的分别有().A. 320人,160人B. 100人,36人C. 160人,96人D. 120人,56人三、列方程组解应用题(每题15分,共30分)1.一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问两人每天各做多少个机器零件?2. 师傅对徒弟说“我像你这样大时,你才4岁,将来当你像我这样大时,我已经是52岁的人了”.问这位师傅与徒弟现在的年龄各是多少岁?答案一、填空题1. 522. 9,113. 甲跑6米,乙跑4米5. 19道题二、选择题1. B2. B3. A4. D5. C三、列方程组解应用题1. 【解题思路】由题意得甲做12天,乙做8天能够完成任务;而甲做9天,乙做13天也能完成任务,由此关系我们可列方程组求解.解:设甲每天做x个机器零件,乙每天做y个机器零件,根据题意,得答:甲每天做50个机器零件,乙每天做30个机器零件2. 【解题思路】由“我像你这样大时,你才4岁”可知师傅现在的年龄等于徒弟现在的年龄加上徒弟现在的年龄减4,由“当你像我这样大时,我已经是52岁的人了”可知52等于师傅现在的年龄加上师傅现在的年龄减去徒弟的年龄.由这两个关系可列方程组求解.解:设现在师傅x岁,徒弟y岁,根据题意,得答:现在师傅36岁,徒弟20岁.提高训练题1.甲、乙两人分别从相距30千米的A、B两地同时相向而行,经过3小时后相距3千米,再经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍,求甲、乙两人的速度.2. 2. 小华不小心将墨水溅在同桌小丽的作业本上,结果二元一次方程组中第一个方程y的系数和第二个方程x的系数看不到了,现在已知小丽的结果是你能由此求出原来的方程组吗?3.若是关于x,y的二元一次方程3x-y+a=0的一个解,求a的值.4.已知方程组其中正确的说法是()A.只有(1)、(3)是二元一次方程组;B.只有(1)、(4)是二元一次方程组;C.只有(2)、(3)是二元一次方程组;D.只有(2)不是二元一次方程组.答案1.解:设甲、乙的速度分别为x千米/时和y千米/时.第一种情况:甲、乙两人相遇前还相距3千米.根据题意,得第二种情况:甲、乙两人是相遇后相距3千米.根据题意,得答:甲、乙的速度分别为4千米/时和5千米/时;或甲、乙的速度分别为千米/时和千米/时.2.解:设第一个方程中y的系数为a,第二个方程的x系数为b.则原方程组可写成3.解:既然是关于x、y的二元一次方程3x-y+a=0的一个解,那么我们把代入二元一次方程3x-y+a=0得到3-2+a=0,解得a=-1.4.解:二元一次方程组是由两个以上一次方程组成并且只含有两个未知数的方程组,所以其中方程可以是一元一次方程,并且方程组中方程的个数可以超过两个.本题中的(1)、(3)、(4)都是二元一次方程组,只有(2)不是.所以选D.强化训练题1.解关于x,y的方程组,并求当解满足方程4x-3y=21时的k值2. 有两个长方形,第一个长方形的长与宽之比为5∶4,第二个长方形的长与宽之比为3∶2,第一个长方形的周长比第二个长方形的周长大112cm,第一个长方形的宽比第二个长方形的长的2倍还大6cm,求这两个长方形的面积.3.甲乙两人做加法,甲在其中一个数后面多写了一个0,得和为2342,乙在同一个加数后面少写了一个0,得和为65,你能求出原来的两个加数吗?4.某校2006年初一年级和高一年级招生总数为500人,计划2007年秋季初一年级招生人数增加20%,高一年级招生人数增加25%,这样2007年秋季初一年级、高一年级招生总数比2006年将增加21%,求2007年秋季初一、高一年级的招生人数各是多少?答案从而第一个长方形的面积为:5x×4x=20x2=1620(cm2);第二个长方形的面积为:3y×2y=6y2=150(cm2).答:这两个长方形的面积分别为1620cm2和150cm2.3.解:设两个加数分别为x、y.根据题意,得解得所以原来的两个加数分别为230和42.4.解:设2007年初一年级秋季招生人数为x,高一年级招生人数为y.根据题意得解得答:2007年初一年级秋季招生人数为480人,高一年级招生人数为125人.综合训练题一、精心选一选(每题7分,共35分)1. 方程组的解是().2. 在一次小组竞赛中,遇到了这样的情况:如果每组7人,就会余3人;如果每组8人,就会少5人.问竞赛人数和小组的组数各是多少?若设人数为x,组数为y,根据题意,可列方程组().3. 买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元,乙种水的桶数是甲种水的桶数的75%,设买甲种水x桶、乙种水y桶,则所列方程组中正确的是().4. 一个两位数被9除余2,如果把它的十位与个位交换位置,则所得的两位数被9除余5,设个位数字为x,十位数字为y,则下面正确的是().(以下选项中k1、k2都为整数)5. 用面值l元的纸币换成面值为l角或5角的硬币,则换法共有()种.A. 4B. 3C. 2D. 1二、用心填一填(每题7分,共35分)1. 一艘轮船顺流航行,每小时行20千米;逆流航行每小时行16千米.则轮船在静水中的速度为 ______,水流速度为______.2. 一队工人制造某种工件,若平均每人一天做5件,那么全队一天就比定额少完成30件;若平均每人一天做7件,那么全队一天就超额20件. 则这队工人有______人,全队每天制造的工件数额为______件.3. 已知甲、乙两人从相距18千米的两地同时相向而行,1小时相遇.再同向而行如果甲比乙先走小时,那么在乙出发后小时乙追上甲.设甲、乙两人速度分别为x千米/时、y千米/时,则x=______,y =______.4. 甲、乙二人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就能追上乙;如果乙让甲先跑2秒钟,那么乙跑6秒钟落后于甲28米,甲每秒钟跑______,乙每秒钟跑______.5. 小强拿了十元钱去商场购买笔和圆规.售货员告诉他:这10元钱可以买一个圆规和三支笔或买两个圆规和一支笔,现在小强只想买一个圆规和一支笔,那么售货员应该找给他______元.三、耐心做一做(每题10分,共30分)1. 某人要在规定的时间内由甲地赶往乙地,如果他以每小时50千米的速度行驶,就会迟到24分钟;如果他以每小时75千米的高速行驶,则可提前24分钟到达乙地,求他以每小时多少千米的速度行驶可准时到达.2. 一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元.若只选一个组单独完成,从节约开支角度考虑,这家商店应选择哪个组?3. 《参考消息》报道,巴西医生马廷恩经过10年研究得出结论:卷入腐败行列的人容易得癌症,心肌梗塞,脑溢血,心脏病等病,如果将贪污受贿的580名官员和600名廉洁官员进行比较,可发现,后者的健康人数比前者的健康人数多272人,两者患病或患病致死者共444人,试问贪污受贿的官员和廉洁官员中的健康人数各自占统计人数的百分之几?答案一、精心选一选1. B2. C3. B4. C5. B二、用心填一填1.18千米/时,2千米/时.2. 25,155.3. 4,6.4. 8米,6米.5. 4.三、耐心做一做1. 【解题思路】由于甲地到乙地的距离不知道是多少,从甲地到乙地规定的时间也不知道,所以不能直接求速度.我们可以设甲地到乙地的路程和规定的时间为未知数,列方程求解,最后用速度=路程÷时间得到标准速度.解:设甲、乙两地的之间距离为s千米,从甲地到乙地的规定时间为t小时.根据题意,得解得经检验,符合题意.则=60(千米/小时).答:他以每小时60千米/小时的速度行驶可准时到达.2. 【解题思路】由甲乙混做的时间和钱数我们可求出甲乙各自单独做需要的时间和费用,然后再进行比较.解:设甲组单独完成需x天,乙组单独完成需y天,则根据题意,得经检验,符合题意.即甲组单独完成需12天,乙组单独完成需24天.再设甲组工作一天应得m元,乙组工作一天应得n元.经检验,符合题意.。
人教版七年级数学下册教学设计8.1 第1课时《二元一次方程组》一. 教材分析《二元一次方程组》是人教版七年级数学下册的教学内容,本节课的主要内容是让学生掌握二元一次方程组的定义、解法和应用。
通过学习,学生能够解决实际问题,提高解决问题的能力。
教材通过丰富的例题和练习题,帮助学生巩固知识点,提高解题技巧。
二. 学情分析学生在学习本节课之前,已经掌握了整式、方程等基础知识,具备一定的逻辑思维能力和问题解决能力。
但部分学生对抽象的数学概念理解仍有困难,需要教师在教学中给予关注和引导。
同时,学生对于实际问题的解决方法还不够熟练,需要在教学中加强训练。
三. 教学目标1.知识与技能:理解二元一次方程组的定义,学会解二元一次方程组的方法,能够应用二元一次方程组解决实际问题。
2.过程与方法:通过自主学习、合作交流,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:二元一次方程组的定义、解法和应用。
2.难点:如何将实际问题转化为二元一次方程组,以及解二元一次方程组的方法。
五. 教学方法1.情境教学法:通过生活实例引入二元一次方程组,激发学生的学习兴趣。
2.自主学习法:引导学生自主探究二元一次方程组的解法,培养学生的自主学习能力。
3.合作交流法:学生进行小组讨论,共同解决问题,提高学生的团队合作能力。
4.实践操作法:让学生通过解决实际问题,巩固二元一次方程组的应用。
六. 教学准备1.教学课件:制作课件,展示二元一次方程组的相关知识点。
2.练习题:准备一些有关二元一次方程组的练习题,用于巩固所学知识。
3.教学道具:准备一些实物道具,帮助学生更好地理解二元一次方程组的概念。
七. 教学过程1.导入(5分钟)利用生活实例,如购物问题,引入二元一次方程组的概念,激发学生的学习兴趣。
2.呈现(10分钟)呈现二元一次方程组的定义和解法,引导学生自主学习,理解相关知识点。
第八章 二元一次方程(组)8.1 二元一次方程(组)的相关概念(能力提升)【要点梳理】知识点一、二元一次方程含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:二元一次方程满足的三个条件:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式.要点二、二元一次方程的解一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 要点诠释:(1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:2,5.x y =⎧⎨=⎩. (2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这个二元一次方程.要点三、二元一次方程组把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.要点诠释:组成方程组的两个方程不必同时含有两个未知数,例如⎩⎨⎧=-=+52013y x x 也是二元一次方程组.要点四、二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成x ay b=⎧⎨=⎩的形式.(2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组2526x y x y +=⎧⎨+=⎩无解,而方程组1222x y x y +=-⎧⎨+=-⎩的解有无数个.【典型例题】 类型一、二元一次方程例1.已知方程(m ﹣2)x n ﹣1+2y |m﹣1|=m 是关于x 、y 的二元一次方程,求m 、n 的值.【答案与解析】解:∵(m ﹣2)x n ﹣1+2y |m﹣1|=m 是关于x 、y 的二元一次方程,∴n ﹣1=1,|m ﹣1|=1, 解得:n=2,m=0或2,若m=2,方程为2y=2,不合题意,舍去, 则m=0,n=2. 举一反三:【变式1】已知方程3241252m nx y +--=是二元一次方程,则m= ,n= . 【答案】-2,14【变式2】方程(1)(1)0a x a y ++-=,当______a a ≠=时,它是二元一次方程,当时,它是一元一次方程.【答案】1±;11-或 类型二、二元一次方程的解 例2.已知是方程2x ﹣6my+8=0的一组解,求m 的值.【答案与解析】 解:∵是方程2x ﹣6my+8=0的一组解,∴2×2﹣6m ×(﹣1)+8=0,解得m=﹣2. 举一反三:【变式】已知方程2x-y+m-3=0的一个解是11x m y m =-⎧⎨=+⎩,求m 的值.【答案】 解:将11x m y m =-⎧⎨=+⎩代入方程2x-y+m-3=0得2(1)(1)30m m m --++-=,解得3m =.答:m 的值为3.例3.写出二元一次方程204=+y x 的所有正整数解. 【答案与解析】解:由原方程得x y 420-=,因为y x 、都是正整数, 所以当4321, , , =x 时,481216, , , =y . 所以方程204=+y x 的所有正整数解为:⎩⎨⎧==161y x , ⎩⎨⎧==122y x , ⎩⎨⎧==83y x , ⎩⎨⎧==44y x .举一反三: 【变式1】已知是关于x 、y 的二元一次方程ax ﹣(2a ﹣3)y=7的解,求a 的值.【答案】 解:把代入方程ax ﹣(2a ﹣3)y=7,可得:2a+3(2a ﹣3)=7, 解得:a=2.【变式2】在方程0243=-+y x 中,若y 分别取2、41、0、-1、-4,求相应的x 的值.【答案】将0243=-+y x 变形得342yx -=. 把已知y 值依次代入方程的右边,计算相应值,如下表:类型三、二元一次方程组及解 例4.甲、乙两人共同解方程组51542ax y x by +=⎧⎨-=-⎩①②由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩.乙看错了方程②中的b .得到方程组的解为54x y =⎧⎨=⎩.试计算:20112010110a b ⎛⎫+- ⎪⎝⎭的值.【答案与解析】 解:把31x y =-⎧⎨=-⎩代入②,得-12+b =-2,所以b =10.把54x y =⎧⎨=⎩代入①,得5a+20=15,所以a =-1, 所以201120112010201011(1)101(1)01010ab ⎛⎫⎛⎫+-=-+-⨯=+-= ⎪ ⎪⎝⎭⎝⎭.举一反三:【变式】已知关于,x y 的二元一次方程组41323x ay x by x y +==⎧⎧⎨⎨+==-⎩⎩的解是 , 求的值a b +. 【答案】解:将13x y =⎧⎨=-⎩代入原方程组得:134332a b -=⎧⎨-+=⎩ ,解得113a b =-⎧⎪⎨=⎪⎩,所以23a b +=-.【巩固练习】一、选择题1.一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( ) A .5 个 B. 6 个 C.7 个 D.8 个2.方程2x ﹣=0,3x+y=0,2x+xy=1,3x+y ﹣2x=0,x 2﹣x+1=0中,二元一次方程的个数是( )A .5个B .4个C .3个D .2个3.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m 的值为( ) A .4B .﹣4C .D .﹣4.若5x -6y =0,且xy ≠0,则的值等于( )A .23 B. 32C.1D. -1 5.若x 、y 均为非负数,则方程6x=-7y 的解的情况是( ) A .无解 B.有唯一一个解 C.有无数多个解 D.不能确定6.在早餐店里,王伯伯买5个馒头,3个包子,老板少拿2元,只要50元.李太太买了11个馒头,5个包子,老板以售价的九折优待,只要90元.若馒头每个x 元,包子每个y 元,则下列哪一个二元一次联立方程式可表示题目中的数量关系? ( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩ D .53502115900.9x y x y +=-⎧⎨+=÷⎩二、填空题 7.已知方程3241252m nxy +--=是二元一次方程,则m =________,n =_________. 8.若方程组的解为,则点P (a ,b )在第象限.9.在13,72x y ⎧=⎪⎪⎨⎪=⎪⎩ 04x y =⎧⎨=⎩,21x y =⎧⎨=⎩,33x y =⎧⎨=⎩这四对数值中,是二元一次方程组32823x y x y +=⎧⎨-=⎩的解的是________ .10. 方程2x+3y=10 中,当3x-6=0 时,y=_________; 11. 方程|a |+|b |=2 的自然数解是_____________; 12.若二元一次方程组的解中,则等于____________.三、解答题13.请你写出一个二元一次方程组,使它的解是.14.甲、乙二人共同解方程组2623mx y x ny +=-⎧⎨-=-⎩①②由于看错了方程①中的m 值,得到方程组的解为32x y =-⎧⎨=-⎩;乙看错了方程②中的n 的值,得到方程组的解为52x y =-⎧⎨=⎩,试求代数式22m n m n ++的值.15.某球迷协会组织36名球迷租乘汽车赴比赛场地,为中国国家男子足球队呐喊助威,可租用的汽车有两种:一种是每辆车可乘8人,另一种是每辆车可乘4人.要求租用的车子不留空座,也不超载.(1)请你给出三种不同的租车方案;(2)若8个座位的车子租金是300元/天,4个座位的车子租金是200元/天,请你设计费用最少的租车方案,并简述你的理由.【答案与解析】一、选择题1. 【答案】B;2. 【答案】D;【解析】解:2x ﹣=0是分式方程,不是二元一次方程;3x+y=0是二元次方程;2x+xy=1不是二元一次方程;3x+y﹣2x=0是二元一次方程;x2﹣x+1=0不是二元一次方程.故选:D.3.【答案】【解析】把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.4. 【答案】A;【解析】将5x=6y代入后面的代数式化简即得答案.5. 【答案】B;【解析】76x y=-可知:,x y异号或均为0,所以不可能同时为正,只能同时为0.6. 【答案】B;【解析】根据题意知,x,y同时满足两个相等关系:①老板少拿2元,只要50元;②老板以售价的九折优待,只要90元,故选B.二、填空题7. 【答案】-2,14;【解析】由二元一次方程的定义可得:31241mn+=⎧⎨-=⎩,所以214mn=-⎧⎪⎨=⎪⎩8.【答案】四【解析】:将x=2,y=1代入方程组得:,解得:a=2,b=﹣3,则P(2,﹣3)在第四象限.9. 【答案】21 xy=⎧⎨=⎩;【解析】把4组解分别代入方程组验证即可.10.【答案】2;【解析】将2x=代入2x+3y=10中可得y值.11.【答案】;12.【答案】-3∶4;【解析】将代入中,得,即;将代入,得,即,即.三、解答题13.【解析】解:答案不唯一,例如:∵,∴x+y=5, x-y=-1,∴所求的二元一次方程组可以是.14.【解析】解:将32xy=-⎧⎨=-⎩代入②中2(3)23n⨯-+=-,32n=.将52xy=-⎧⎨=⎩代入①中-5m+4=-6,m=2.∴229374344 m n mn++=++=.15.【解析】解:(1)设8个座位的车租x辆,4个座位的车租y辆.则8x+4y=36,即2x+y=9.∵ x,y必须都为非负整数,∴ x可取0,1,2,3,4,∴ y的对应值分别为9,7,5,3,1.因此租车方案有5种,任取三种即可.(2)因为8个座位的车座位多,相对日租金较少,所以要使费用最少,必须尽量多租8个座位的车.所以符合要求的租车方案为8个座位的车租4辆.4个座位的车租1辆,此时租车费用为4×300+1×200=1400(元).。