应力腐蚀和氢脆
- 格式:ppt
- 大小:4.39 MB
- 文档页数:78
第六章金属的应力腐蚀与氢脆断裂Chapter 6 Stress Corrosion and Hydrogen Embrittlement ofMetals第一节概述(Brief introduction)1、定义(Definition)在应力和环境介质的共同作用下,金属构件产生破坏行为按其受力情况与破坏方式的不同可分为以下三种基本类型。
应力腐蚀——金属构件在静态或准静态拉应力和环境介质的共同作用下,经过一定的时间后而产生的低应力脆断称为应力腐蚀(SCC);(包括低碳钢的碱脆、低碳钢的硝脆、奥氏体不锈钢的氯脆和低合金高强度钢的氢脆等)腐蚀疲劳——金属构件在交变应力和环境介质的共同作用下,经过一定的时间后而产生的断裂称为腐蚀疲劳;腐蚀磨损——金属构件在环境介质作用下还受机械摩擦,或者由于腐蚀介质的直接冲刷等引起表面磨损的现象腐蚀磨损。
由于金属的应力腐蚀现象更为普遍,并且其破坏原理更为复杂,氢脆也是极为重要的一种破坏方式,因此本章重点以应力腐蚀和氢脆为主。
同时由于这类腐蚀大多为低应力脆断,因此具有很多的危险性,同时随着航空、原子能、石油化工等工业的迅速发展,这类腐蚀越来越多,因此有必要进行研究。
第二节应力腐蚀(Stress corrosion)(一)应力腐蚀现象及其产生条件(Stress corrosion phenomenon and engendering condition)应力和环境综合作用的结果,其效果不是两者的简单迭加。
绝大多数金属材料在一定介质下都有应力腐蚀倾向。
如:1)低碳及低合金钢的碱脆与硝脆;2)奥氏体不绣钢的氯脆;3)铜合金的氨脆;4)高强度铝合金在空气、蒸馏水中的脆断;5)低合金高强度钢及不锈钢的氢脆等。
可见产生应力腐蚀的条件是:应力、介质及合金的材料(纯金属不会产生应力腐蚀)。
(二)应力腐蚀断裂机理及断口形貌特征(Fracture mechanism and morphology of stress corrosion)1、断裂机理(Fracture mechanism)目前断裂机理有多种理论,至今尚未得到统一,但主要以阳极溶解为基础的钝化膜破坏理论为主。
螺栓腐蚀分类
螺栓的腐蚀主要可以分为以下几种类型:
1. 应力腐蚀:在应力的作用下,螺栓容易形成缝隙,进而形成缝隙腐蚀。
此外,在持续的应力作用下,锈点可能会逐步形成裂纹,最终导致螺栓断裂失效或脱牙失效。
2. 电化学腐蚀:在潮湿的环境下,螺栓表面会形成水薄膜,水膜可以溶解来自大气中的气体,使薄膜含有一定量的氢离子。
这会在金属表面形成一层电解质溶液的薄膜,与金属中的铁和少量的碳构成原电池,进而导致锈蚀。
3. 氢脆:在金属凝固的过程中,如果溶入其中的氢没能及时释放出来,它会向金属中的缺陷附近扩散。
到室温时,原子氢会在缺陷处结合成分子氢并不断聚集,从而产生巨大的内压力,可能导致金属发生裂纹。
4. 断裂失效:零件完全断裂并在工作中丧失或达不到预期功能的现象称为断裂失效。
其断裂方式包括塑性断裂、疲劳断裂、蠕变断裂等。
以上信息仅供参考,如果您还想了解更多信息,建议咨询专业人士。
海川流浪人应力腐蚀断裂和氢脆金属材料的两种经常有关而又有别的被破坏(或断裂)的现象。
应力腐蚀断裂(SCC) 是应力与腐蚀介质协同作用下引起的金属断裂现象(见金属腐蚀)。
它有三个主要特征:①应力腐蚀断裂是时间的函数。
拉伸应力越大,则断裂所需时间越短;断裂所需应力一般都低于材料的屈服强度。
这种应力包括外加载荷产生的应力、残余应力、腐蚀产物的楔形应力等。
②腐蚀介质是特定的,只有某些金属-介质的组合(见表发生应力腐蚀断裂的典型体系──金属与腐蚀介质的组合)情况下,才会发生应力腐蚀断裂。
若无应力,金属在其特定腐蚀介质中的腐蚀速度是微小的。
③断裂速度在纯腐蚀及纯力学破坏之间,断口一般为脆断型。
氢脆(HE) 又称氢致开裂或氢损伤,是一种由于金属材料中氢引起的材料塑性下降、开裂或损伤的现象。
所谓“损伤”,是指材料的力学性能下降。
在氢脆情况下会发生“滞后破坏”,因为这种破坏需要经历一定时间才发生。
氢的来源有“内含”的及“外来”的两种:前者指材料在冶炼及随后的机械制造(如焊接、酸洗、电镀等)过程中所吸收的氢;而后者是指材料在致氢环境的使用过程中所吸收的氢(见金属中氢)。
致氢环境既包括含有氢的气体,如H□、H□S;也包括金属在水溶液中腐蚀时阴极过程所放出的氢。
金属的应力腐蚀断裂和氢脆是两种既经常相关而又不同的现象。
在高温高压氢气中结构件的开裂,既是HE,又是SCC;水溶液中应力腐蚀时,若阴极过程析出的氢对断裂起了决定性作用,则这种破坏既是SCC,也是HE;这两个实例便位于图1应力腐蚀断裂(SCC)和氢脆(HE)关系的示意所示的重叠区内。
试验方法和工程参量应力腐蚀试验一般采用光滑或缺口试样,固定环境条件(即腐蚀介质和温度),采用断裂为临界点、测定固定应力下的断裂时间(□□)或固定□□下的断裂应力(□□),用□□的长短或□□的高低,来衡量材料抗应力腐蚀断裂能力的大小。
70年代以来,人们广泛地运用了断裂力学研究应力腐蚀断裂;用预制裂纹的试样进行应力腐蚀试验,如图2断裂时间□□与应力场强度因子(□□)之间的关系所示。
三、氢脆与应力腐蚀断裂的比较
应力腐蚀与氢脆往往同时发生。
因此,要从机理上把应力腐蚀与氢脆清晰区分开来是困难的。
但是从预防的角度来看,区分他们又十分必要,因此,可以作如下的分析(表5-2)。
表5-2 氢脆与应力腐蚀断裂异同
应力腐蚀开裂氢脆
产生条件
1 临界值以上的拉应力或低速度应力
临界值以上的拉应力(三
轴应力)
2 合金发生。
而纯金属不发生
合金与某些纯金属都能发
生
3
一种合金只对少数特定化学介质是敏感
的。
其数量和浓度不一定大
只要含氢或能产生氢(酸
洗、电镀)的情况都能发
生
4 发生温度从室温到300℃从-100~100℃
5 无应力时合金对环境是惰性的
无应力时合金对环境是惰
性的
6 阳极反应阴极反应
7 采用阴极防护能明显改善阴极极化反而促进氢脆
8 受应力作用时间支配不明显
9 对金属组织敏感对金属组织敏感
10 不同的σs有不同的门槛值不同的σs有不同的含氢量
外观形貌特征1 裂纹从表面开始。
断口不平整
裂纹从次表面或内部开
始。
断口较平整
2 裂纹分叉,有二次裂纹几乎不分叉,有二次裂纹
3
裂纹张开度小
裂纹不张开
4
裂纹萌生处可能有腐蚀产物,但不一定有
点蚀
裂纹萌生点在内部与点蚀
无关
5 裂纹萌生点可能是一个或多个
裂纹萌生点可能是一个或
多个
6 裂纹不一定在应力集中处萌生裂纹多在三轴应力区萌生
7 多数为沿晶、奥氏体不锈钢为穿晶断口多数为沿晶
8 沿晶断口上有腐蚀产物断口上没有腐蚀。
硫化氢氢脆和应力腐蚀温度1. 硫化氢的“鬼魅”身份哎呀,今天咱们聊点不太寻常的东西,硫化氢,听起来就有点吓人,是吧?这可不是普通的气体,它可是个“臭名昭著”的家伙,气味就像是坏鸡蛋,加上它的毒性,真让人闻风丧胆。
别小看这个家伙,它在很多工业过程中都会出现,比如石油开采、污水处理,还有一些化工厂。
想象一下,工人们在这种环境中工作,真是“如履薄冰”啊。
1.1 硫化氢的化学属性硫化氢(H₂S)实际上是由两个氢原子和一个硫原子组成的简单分子,听上去好像很简单,但它可不简单!它不仅能跟金属反应,还会引起金属的氢脆现象。
这可真是让人头疼,金属在这种气体的“威逼”下,容易变得脆弱,就像泡过水的饼干,随便一碰就碎了。
可怕吧?1.2 氢脆现象的背后说到氢脆,这个词儿可能不太常听见,实际上,它指的就是金属材料在氢气环境中变脆的现象。
这可不是个小问题,特别是在高温高压的环境下,金属材料会变得脆弱得让人感到心痛。
想象一下,咱们在电影里看到的那些金属怪兽,结果被一阵“氢脆”给打败了,这可真让人捧腹。
氢脆的根源,实际上就是氢原子进入金属晶格中,破坏了金属的韧性,形成了裂缝,就像你不小心在心爱的手机屏幕上留下了一个小裂纹,真是令人心碎。
2. 应力腐蚀温度的重要性聊完硫化氢,咱们再来聊聊应力腐蚀温度。
这个温度啊,可谓是化学界的小明星,很多金属在特定的温度下,跟硫化氢一结合,就容易出问题。
你能想象吗?金属材料就像人在过热的环境中变得脆弱一样。
尤其是在高温条件下,金属的抵抗力下降得快得让人咋舌,根本经不起任何压力,瞬间就崩溃了。
2.1 如何避免应力腐蚀想要避免这种情况发生,首先得了解应力腐蚀温度。
通常来说,保持环境温度在一个合理的范围内,就像给金属穿上了“防护服”,让它不容易受到伤害。
此外,选用一些耐腐蚀的材料,也是个聪明的选择。
比如说,不锈钢、钛合金这些都是耐腐蚀的“老将”,不容易受硫化氢的“干扰”,就像是古代的武士,稳稳地站在风口浪尖上,丝毫不惧。
零件的脆性断裂(含疲劳、应力腐蚀、氢脆断裂等)失效分析本文旨在介绍零件的脆性断裂失效分析的重要性和目的。
脆性断裂是指在零件受到一定载荷作用下,没有发生明显的塑性变形,而导致突然断裂的现象。
这种失效模式对于工程结构的安全性和可靠性具有重要的影响。
脆性断裂的失效分析是一项关键的任务,旨在确定零件破坏的原因和机制,以及采取相应的措施来预防和控制脆性断裂的发生。
在分析中,我们还会涉及到与脆性断裂相关的其他失效现象,如疲劳断裂、应力腐蚀断裂和氢脆断裂等。
通过对零件脆性断裂失效的深入分析,我们可以更好地了解材料的性能和强度,确定适当的设计和加工参数,以及制定合理的维护和检修计划。
这对于提高工程结构的可靠性,延长零件的使用寿命以及降低维护成本具有重要意义。
本文将通过对脆性断裂失效分析的相关知识进行详细解释和说明,为读者提供系统的理论基础和实践指导,以便能够有效地进行脆性断裂的失效分析工作。
解释脆性断裂是指在应力作用下,当零件发生断裂时没有明显的塑性变形。
详细讨论导致脆性断裂的各种原因,包括疲劳、应力腐蚀、氢脆断裂等。
脆性断裂是指材料在受力作用下发生的突然断裂,常常发生在零件长时间受重复负载或特定环境下受力情况下。
脆性断裂的原因多种多样,下面将对其中的疲劳、应力腐蚀和氢脆断裂进行详细讨论。
疲劳断裂:疲劳断裂是由于零件在长时间受到变化的载荷作用下产生的。
当重复载荷作用于零件时,如果应力超过了材料的疲劳极限,就会发生疲劳断裂。
疲劳断裂是零件的高频失效模式,常见于机械装置和结构中。
应力腐蚀断裂:应力腐蚀断裂是指在特定环境中,材料受到应力和腐蚀介质共同作用时突然断裂。
应力腐蚀断裂的发生是由于腐蚀介质在零件表面引起局部腐蚀,而应力则产生了裂纹的扩展。
应力腐蚀断裂是一个复杂的断裂形式,常见于化工设备和海洋装备等领域。
氢脆断裂:氢脆断裂是由于材料在存在氢的环境中发生的断裂。
氢脆断裂的主要机制是氢的扩散和积聚在材料中,导致材料的力学性能降低,从而引起断裂。