[机械电子]金属的应力腐蚀和氢脆断裂
- 格式:ppt
- 大小:1.43 MB
- 文档页数:30
第六章金属的应力腐蚀与氢脆断裂Chapter 6 Stress Corrosion and Hydrogen Embrittlement ofMetals第一节概述(Brief introduction)1、定义(Definition)在应力和环境介质的共同作用下,金属构件产生破坏行为按其受力情况与破坏方式的不同可分为以下三种基本类型。
应力腐蚀——金属构件在静态或准静态拉应力和环境介质的共同作用下,经过一定的时间后而产生的低应力脆断称为应力腐蚀(SCC);(包括低碳钢的碱脆、低碳钢的硝脆、奥氏体不锈钢的氯脆和低合金高强度钢的氢脆等)腐蚀疲劳——金属构件在交变应力和环境介质的共同作用下,经过一定的时间后而产生的断裂称为腐蚀疲劳;腐蚀磨损——金属构件在环境介质作用下还受机械摩擦,或者由于腐蚀介质的直接冲刷等引起表面磨损的现象腐蚀磨损。
由于金属的应力腐蚀现象更为普遍,并且其破坏原理更为复杂,氢脆也是极为重要的一种破坏方式,因此本章重点以应力腐蚀和氢脆为主。
同时由于这类腐蚀大多为低应力脆断,因此具有很多的危险性,同时随着航空、原子能、石油化工等工业的迅速发展,这类腐蚀越来越多,因此有必要进行研究。
第二节应力腐蚀(Stress corrosion)(一)应力腐蚀现象及其产生条件(Stress corrosion phenomenon and engendering condition)应力和环境综合作用的结果,其效果不是两者的简单迭加。
绝大多数金属材料在一定介质下都有应力腐蚀倾向。
如:1)低碳及低合金钢的碱脆与硝脆;2)奥氏体不绣钢的氯脆;3)铜合金的氨脆;4)高强度铝合金在空气、蒸馏水中的脆断;5)低合金高强度钢及不锈钢的氢脆等。
可见产生应力腐蚀的条件是:应力、介质及合金的材料(纯金属不会产生应力腐蚀)。
(二)应力腐蚀断裂机理及断口形貌特征(Fracture mechanism and morphology of stress corrosion)1、断裂机理(Fracture mechanism)目前断裂机理有多种理论,至今尚未得到统一,但主要以阳极溶解为基础的钝化膜破坏理论为主。
海川流浪人应力腐蚀断裂和氢脆金属材料的两种经常有关而又有别的被破坏(或断裂)的现象。
应力腐蚀断裂(SCC) 是应力与腐蚀介质协同作用下引起的金属断裂现象(见金属腐蚀)。
它有三个主要特征:①应力腐蚀断裂是时间的函数。
拉伸应力越大,则断裂所需时间越短;断裂所需应力一般都低于材料的屈服强度。
这种应力包括外加载荷产生的应力、残余应力、腐蚀产物的楔形应力等。
②腐蚀介质是特定的,只有某些金属-介质的组合(见表发生应力腐蚀断裂的典型体系──金属与腐蚀介质的组合)情况下,才会发生应力腐蚀断裂。
若无应力,金属在其特定腐蚀介质中的腐蚀速度是微小的。
③断裂速度在纯腐蚀及纯力学破坏之间,断口一般为脆断型。
氢脆(HE) 又称氢致开裂或氢损伤,是一种由于金属材料中氢引起的材料塑性下降、开裂或损伤的现象。
所谓“损伤”,是指材料的力学性能下降。
在氢脆情况下会发生“滞后破坏”,因为这种破坏需要经历一定时间才发生。
氢的来源有“内含”的及“外来”的两种:前者指材料在冶炼及随后的机械制造(如焊接、酸洗、电镀等)过程中所吸收的氢;而后者是指材料在致氢环境的使用过程中所吸收的氢(见金属中氢)。
致氢环境既包括含有氢的气体,如H□、H□S;也包括金属在水溶液中腐蚀时阴极过程所放出的氢。
金属的应力腐蚀断裂和氢脆是两种既经常相关而又不同的现象。
在高温高压氢气中结构件的开裂,既是HE,又是SCC;水溶液中应力腐蚀时,若阴极过程析出的氢对断裂起了决定性作用,则这种破坏既是SCC,也是HE;这两个实例便位于图1应力腐蚀断裂(SCC)和氢脆(HE)关系的示意所示的重叠区内。
试验方法和工程参量应力腐蚀试验一般采用光滑或缺口试样,固定环境条件(即腐蚀介质和温度),采用断裂为临界点、测定固定应力下的断裂时间(□□)或固定□□下的断裂应力(□□),用□□的长短或□□的高低,来衡量材料抗应力腐蚀断裂能力的大小。
70年代以来,人们广泛地运用了断裂力学研究应力腐蚀断裂;用预制裂纹的试样进行应力腐蚀试验,如图2断裂时间□□与应力场强度因子(□□)之间的关系所示。