第7章_金属的应力腐蚀和氢脆断裂
- 格式:ppt
- 大小:919.01 KB
- 文档页数:28
第一章金属在单向静拉伸载荷下的力学性能—1、名词解释强度、塑性、韧性、包申格效应2、说明下列力学性能指标的意义E、σ0.2、σs、n、δ、ψ3、今有45、40Cr、35CrMo钢和灰铸铁几种材料,你选择哪些材料作机床床身?为什么?4、试述并画出退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸-伸长曲线图上的区别。
*5、试述韧性断裂和脆性断裂的区别?(P21-22)6、剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?7、何谓拉伸断口三要素?8、试述弥散强化与沉淀强化的异同?9、格雷菲斯判据是断裂的充分条件、必要条件还是充分必要条件?*10、试述构件的刚度与材料的刚度的异同。
(P4)第二章金属在其它静载荷下的力学性能—1、名词解释缺口效应、缺口敏感度、应力状态软性系数2、说明下列力学性能指标及表达的意义σbc、NSR、600HBW1/30/203、缺口试样拉伸时应力分布有何特点?4、根据扭转试样的宏观断口特征,可以了解金属材料的最终断裂方式,比如切断、正断和木纹状断口。
试画出这三种断口特征的宏观特征。
第三章金属在冲击载荷下的力学性能—1、名词解释低温脆性、韧脆转变温度2、说明下列力学性能指标的意义A K、FATT503、现需检验以下材料的冲击韧性,问哪种材料要开缺口?哪些材料不要开缺口?为什么?W18Cr4V、Cr12MoV、3Cr2W8V、40CrNiMo、30CrMnSi、20CrMnTi、铸铁第四章金属的断裂韧度—1、名词解释应力场强度因子K I、小范围屈服2、说明断裂韧度指标K IC和K C的意义及其相互关系。
3、试述K I与K IC的相同点和不同点。
4、试述K IC和A KV的异同及其相互关系。
*5、合金钢调质后的性能σ0.2=1400MPa, K IC=110MPa▪m1/2,设此种材料厚板中存在垂直于外界应力的裂纹,所受应力σ=900MPa,问此时的临界裂纹长度是多少?*6、有一大型薄板构件,承受工作应力为400MN/m2,板的中心有一长为3mm的裂纹,裂纹面垂直于工作应力,钢材的σs=500 MN/m2,试确定:裂纹尖端的应力场强度因子K I及裂纹尖端的塑性区尺寸R 。
海川流浪人应力腐蚀断裂和氢脆金属材料的两种经常有关而又有别的被破坏(或断裂)的现象。
应力腐蚀断裂(SCC) 是应力与腐蚀介质协同作用下引起的金属断裂现象(见金属腐蚀)。
它有三个主要特征:①应力腐蚀断裂是时间的函数。
拉伸应力越大,则断裂所需时间越短;断裂所需应力一般都低于材料的屈服强度。
这种应力包括外加载荷产生的应力、残余应力、腐蚀产物的楔形应力等。
②腐蚀介质是特定的,只有某些金属-介质的组合(见表发生应力腐蚀断裂的典型体系──金属与腐蚀介质的组合)情况下,才会发生应力腐蚀断裂。
若无应力,金属在其特定腐蚀介质中的腐蚀速度是微小的。
③断裂速度在纯腐蚀及纯力学破坏之间,断口一般为脆断型。
氢脆(HE) 又称氢致开裂或氢损伤,是一种由于金属材料中氢引起的材料塑性下降、开裂或损伤的现象。
所谓“损伤”,是指材料的力学性能下降。
在氢脆情况下会发生“滞后破坏”,因为这种破坏需要经历一定时间才发生。
氢的来源有“内含”的及“外来”的两种:前者指材料在冶炼及随后的机械制造(如焊接、酸洗、电镀等)过程中所吸收的氢;而后者是指材料在致氢环境的使用过程中所吸收的氢(见金属中氢)。
致氢环境既包括含有氢的气体,如H□、H□S;也包括金属在水溶液中腐蚀时阴极过程所放出的氢。
金属的应力腐蚀断裂和氢脆是两种既经常相关而又不同的现象。
在高温高压氢气中结构件的开裂,既是HE,又是SCC;水溶液中应力腐蚀时,若阴极过程析出的氢对断裂起了决定性作用,则这种破坏既是SCC,也是HE;这两个实例便位于图1应力腐蚀断裂(SCC)和氢脆(HE)关系的示意所示的重叠区内。
试验方法和工程参量应力腐蚀试验一般采用光滑或缺口试样,固定环境条件(即腐蚀介质和温度),采用断裂为临界点、测定固定应力下的断裂时间(□□)或固定□□下的断裂应力(□□),用□□的长短或□□的高低,来衡量材料抗应力腐蚀断裂能力的大小。
70年代以来,人们广泛地运用了断裂力学研究应力腐蚀断裂;用预制裂纹的试样进行应力腐蚀试验,如图2断裂时间□□与应力场强度因子(□□)之间的关系所示。
三、氢脆与应力腐蚀断裂的比较应力腐蚀与氢脆往往同时发生。
因此,要从机理上把应力腐蚀与氢脆清晰区分开来是困难的。
但是从预防的角度来看,区分他们又十分必要,因此,可以作如下的分析(表5-2)。
表5-2 氢脆与应力腐蚀断裂异同应力腐蚀开裂氢脆产生条件1临界值以上的拉应力或低速度应力临界值以上的拉应力(三轴应力)2合金发生。
而纯金属不发生合金与某些纯金属都能发生3一种合金只对少数特定化学介质是敏感的。
其数量和浓度不一定大只要含氢或能产生氢(酸洗、电镀)的情况都能发生4发生温度从室温到300℃从-100~100℃5无应力时合金对环境是惰性的无应力时合金对环境是惰性的6阳极反应阴极反应7采用阴极防护能明显改善阴极极化反而促进氢脆8受应力作用时间支配不明显9对金属组织敏感对金属组织敏感10不同的σs有不同的门槛值不同的σs有不同的含氢量外观形貌特征1裂纹从表面开始。
断口不平整裂纹从次表面或内部开始。
断口较平整2裂纹分叉,有二次裂纹几乎不分叉,有二次裂纹3裂纹张开度小裂纹不张开4裂纹萌生处可能有腐蚀产物,但不一定有点蚀裂纹萌生点在内部与点蚀无关5裂纹萌生点可能是一个或多个裂纹萌生点可能是一个或多个6裂纹不一定在应力集中处萌生裂纹多在三轴应力区萌生7多数为沿晶、奥氏体不锈钢为穿晶断口多数为沿晶8沿晶断口上有腐蚀产物断口上没有腐蚀9与轧制方向无关对轧制方向敏感(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
可复制、编制,期待你的好评与关注)。
零件的脆性断裂(含疲劳、应力腐蚀、氢脆断裂等)失效分析本文旨在介绍零件的脆性断裂失效分析的重要性和目的。
脆性断裂是指在零件受到一定载荷作用下,没有发生明显的塑性变形,而导致突然断裂的现象。
这种失效模式对于工程结构的安全性和可靠性具有重要的影响。
脆性断裂的失效分析是一项关键的任务,旨在确定零件破坏的原因和机制,以及采取相应的措施来预防和控制脆性断裂的发生。
在分析中,我们还会涉及到与脆性断裂相关的其他失效现象,如疲劳断裂、应力腐蚀断裂和氢脆断裂等。
通过对零件脆性断裂失效的深入分析,我们可以更好地了解材料的性能和强度,确定适当的设计和加工参数,以及制定合理的维护和检修计划。
这对于提高工程结构的可靠性,延长零件的使用寿命以及降低维护成本具有重要意义。
本文将通过对脆性断裂失效分析的相关知识进行详细解释和说明,为读者提供系统的理论基础和实践指导,以便能够有效地进行脆性断裂的失效分析工作。
解释脆性断裂是指在应力作用下,当零件发生断裂时没有明显的塑性变形。
详细讨论导致脆性断裂的各种原因,包括疲劳、应力腐蚀、氢脆断裂等。
脆性断裂是指材料在受力作用下发生的突然断裂,常常发生在零件长时间受重复负载或特定环境下受力情况下。
脆性断裂的原因多种多样,下面将对其中的疲劳、应力腐蚀和氢脆断裂进行详细讨论。
疲劳断裂:疲劳断裂是由于零件在长时间受到变化的载荷作用下产生的。
当重复载荷作用于零件时,如果应力超过了材料的疲劳极限,就会发生疲劳断裂。
疲劳断裂是零件的高频失效模式,常见于机械装置和结构中。
应力腐蚀断裂:应力腐蚀断裂是指在特定环境中,材料受到应力和腐蚀介质共同作用时突然断裂。
应力腐蚀断裂的发生是由于腐蚀介质在零件表面引起局部腐蚀,而应力则产生了裂纹的扩展。
应力腐蚀断裂是一个复杂的断裂形式,常见于化工设备和海洋装备等领域。
氢脆断裂:氢脆断裂是由于材料在存在氢的环境中发生的断裂。
氢脆断裂的主要机制是氢的扩散和积聚在材料中,导致材料的力学性能降低,从而引起断裂。