传热学实验报告
- 格式:doc
- 大小:3.47 MB
- 文档页数:18
传热学实验报告传热学实验报告摘要:本实验通过研究传热学的基本原理和实验方法,探究了不同材料的导热性能和热传导规律。
通过实验数据的分析和处理,得出了一系列结论,对于进一步研究传热学提供了重要的参考。
引言:传热学作为热力学的一个重要分支,研究了热能在物质之间传递的规律和过程。
在工程领域中,传热学的应用非常广泛,例如热交换器、散热器等设备的设计和优化都需要依靠传热学的理论和实验研究。
本实验旨在通过实验手段,深入了解传热学的基本原理和实验方法,并通过实验数据的分析和处理,得出一些有价值的结论。
实验方法:1. 实验仪器和材料的准备本实验所需的仪器包括导热仪、温度计等,实验材料包括不同导热性能的物体,如金属、塑料等。
2. 实验步骤(1) 将不同材料的样品放置在导热仪的传热面上,并确保与传热面接触良好。
(2) 打开导热仪,记录下初始温度。
(3) 记录下不同时间间隔内的温度变化,并计算出相应的传热速率。
(4) 将实验数据整理并进行分析。
实验结果与讨论:通过实验数据的分析,我们得出了以下几个结论:1. 不同材料的导热性能存在明显差异。
在实验中,我们发现金属材料的导热性能要远远高于塑料等非金属材料。
这是因为金属材料中的自由电子能够在材料内部快速传递热能,而非金属材料中的分子结构则限制了热能的传导速度。
2. 传热速率与温度差成正比。
根据实验数据的分析,我们发现传热速率与传热面和环境之间的温度差成正比。
这是因为温度差越大,热能的传递速度越快。
3. 传热速率与传热面积成正比。
我们还观察到传热速率与传热面积成正比的规律。
这是因为传热面积越大,热能的传递面积也就越大,传热速率也就越快。
结论:通过本次实验,我们深入了解了传热学的基本原理和实验方法。
通过实验数据的分析和处理,我们得出了一系列结论,对于进一步研究传热学提供了重要的参考。
在实际应用中,我们应根据不同的工程需求,选择合适的材料和设计合理的传热面积,以提高传热效率和节约能源。
一、实验目的1. 了解传热的基本原理和传热过程。
2. 熟悉传热实验装置的结构和操作方法。
3. 通过实验,测定传热系数,分析影响传热效果的因素。
4. 培养实验操作技能和数据分析能力。
二、实验原理传热是指热量从高温物体传递到低温物体的过程。
传热方式主要有三种:导热、对流和辐射。
本实验主要研究导热和对流传热。
1. 导热:热量通过固体物质从高温部分传递到低温部分的过程。
其基本原理为热传导定律,即热量在单位时间内通过单位面积,沿着温度梯度方向传递的速率与温度梯度的乘积成正比。
2. 对流:热量通过流体(气体或液体)的流动而传递的过程。
其基本原理为牛顿冷却定律,即流体与固体表面之间的热交换速率与流体与固体表面的温度差成正比。
三、实验装置与仪器1. 实验装置:传热实验装置包括加热器、温度计、流量计、实验管等。
2. 实验仪器:温度计、流量计、秒表、游标卡尺、电子天平等。
四、实验步骤1. 准备工作:检查实验装置是否完好,调节加热器功率,预热实验管。
2. 实验数据记录:1. 测量实验管的长度、直径和厚度。
2. 测量实验管两端的温度,计算温度差。
3. 调节流量计,控制流体流量。
4. 记录实验数据,包括时间、温度、流量等。
3. 实验结束:关闭加热器,停止实验。
五、实验结果与分析1. 实验数据:| 时间(min) | 流体温度(℃) | 温度差(℃) | 流量(L/min) || :----------: | :------------: | :----------: | :------------: || 0 | 20.0 | 10.0 | 1.0 || 5 | 30.0 | 20.0 | 1.0 || 10 | 40.0 | 30.0 | 1.0 || 15 | 50.0 | 40.0 | 1.0 |2. 结果分析:根据实验数据,绘制温度-时间曲线。
可以看出,随着时间推移,流体温度逐渐升高,温度差也逐渐增大。
1. 影响传热效果的因素:1. 流体流量:流体流量越大,传热效果越好。
传热实验实验报告一、实验目的。
本实验旨在通过传热实验,探究不同材料的传热特性,加深对传热机理的理解,为工程实践提供理论支持。
二、实验原理。
传热是物体内部或不同物体之间热量传递的过程,包括传导、对流和辐射三种方式。
在本实验中,我们主要关注传导传热的特性。
传导是通过物质内部的分子振动传递热量,其速度取决于物质的导热系数和温度梯度。
传热实验通常通过测量材料的导热系数来研究传热性能。
三、实验仪器与材料。
1. 导热实验仪。
2. 不同材料的样品(如金属、塑料、绝缘材料等)。
3. 温度计。
4. 数据记录仪。
四、实验步骤。
1. 将实验仪器连接好并预热至稳定状态。
2. 准备不同材料的样品,并测量其初始温度。
3. 将样品放置在传热实验仪上,记录下不同时间间隔下的温度变化。
4. 根据实验数据,计算不同材料的导热系数。
五、实验数据与分析。
通过实验记录和数据处理,我们得到了不同材料的导热系数。
在实验过程中,我们发现金属类材料的导热系数较高,而绝缘材料的导热系数较低。
这与材料的分子结构和热传导机理密切相关。
通过对实验数据的分析,我们得出了不同材料传热特性的定性和定量结论。
六、实验结论。
通过本次传热实验,我们深入了解了不同材料的传热特性,掌握了传热实验的基本方法和数据处理技巧。
同时,我们也加深了对传热机理的理解,为今后的工程实践提供了有益的参考。
七、实验总结。
本次传热实验取得了良好的实验结果,但也存在一些不足之处,例如实验过程中的温度测量误差、样品准备不均匀等。
在今后的实验中,我们将进一步改进实验方法,提高实验数据的准确性和可靠性。
八、参考文献。
1. 李华,张三. 传热学[M]. 北京,高等教育出版社,2008.2. 王五,赵六. 传热实验指导[M]. 北京,科学出版社,2015.以上就是本次传热实验的实验报告内容,谢谢阅读。
传热实验实验报告一、实验目的通过本实验,掌握传热实验的基本原理、方法和技能,了解不同材质导热性能的差异,并能够计算不同材料的传热速率。
二、实验仪器和材料1.实验仪器:传热实验装置、温度计、定时器等。
2.实验材料:铁、铝、铜、纸、木材等不同材质的样品。
三、实验原理传热是热能从一个物体传递到另一个物体的过程。
主要有三种传热方式:热传导、热对流和热辐射。
本实验主要研究热传导方式。
热传导是物质中微观颗粒间能量传递的方式。
传导的速率与导热系数、温度差和导热面积有关,其数学表达式为:Q=K*A*(T1-T2)/l其中,Q为传热速率,K为导热系数,A为传热面积,T1和T2为物体的温度,l为传热距离。
四、实验步骤1.准备不同材质的样本,如铁、铝、铜、纸、木材等。
2.将样品按照一定的厚度和形状放置在传热实验装置上,并确保各个样品与装置接触良好。
3.启动传热实验装置,设定初始温度和结束温度,并开始计时。
4.在设定的时间间隔内,记录每个样品的温度变化。
5.根据记录的温度数据,计算不同材料的传热速率,并作出相应的图表和分析。
五、实验结果和分析根据实验测得的温度数据,根据热传导公式计算不同材料的传热速率,并绘制传热速率和时间的关系图表。
通过分析图表,可以看出不同材料的传热速率的差异。
铜的导热性能最好,导热速率最快,其次是铝,然后是铁。
纸和木材的导热性能较差,传热速率较慢。
六、实验误差和改进方法在实际实验中,可能存在的误差包括温度测量误差、传热面积测量误差等。
1.高精度的温度计和测量仪器,确保温度测量的准确性;2.使用适当的仪器和方法测量传热面积,减小测量误差;3.多次重复实验,取平均值,提高结果的可靠性;4.即时记录实验过程中的变化,减小人为因素对结果的影响。
七、实验结论通过本实验,我们掌握了传热实验的基本原理、方法和技能,了解和比较了不同材料的导热性能差异。
铜具有较好的导热性能,传热速率最快,纸和木材的导热性能较差,传热速率较慢。
第1篇一、实验目的1. 理解和掌握热传递的三种基本方式:热传导、热对流和热辐射。
2. 探究不同材料、不同条件下热传递的特点和规律。
3. 培养实验操作能力和数据分析能力。
二、实验原理热传递是指热量从高温物体传递到低温物体的过程。
根据热量传递的介质和方式,热传递可以分为三种基本方式:热传导、热对流和热辐射。
1. 热传导:热量通过物体内部的分子或原子振动传递。
在固体中,热传导是最主要的传热方式。
热传导速率与物体材料的导热系数、温度差和物体厚度有关。
2. 热对流:热量通过流体(液体或气体)的流动传递。
热对流速率与流体速度、流体密度、温度差和流体粘度有关。
3. 热辐射:热量通过电磁波传递。
热辐射速率与物体温度的四次方、辐射面积和辐射波长有关。
三、实验器材1. 热传导实验装置:两个不同材料的金属块、热电偶、温度计、计时器、支架等。
2. 热对流实验装置:两个不同材料的金属块、热电偶、温度计、计时器、支架、加热器、水等。
3. 热辐射实验装置:两个不同材料的金属块、热电偶、温度计、计时器、支架、加热器、电热丝、黑体辐射计等。
四、实验步骤1. 热传导实验:(1)将两个不同材料的金属块分别放置在支架上。
(2)将热电偶分别插入两个金属块的一端。
(3)用温度计测量两个金属块的初始温度。
(4)将一个金属块加热至一定温度,然后将其与另一个金属块接触。
(5)记录温度计示数随时间的变化,分析热传导速率。
2. 热对流实验:(1)将两个不同材料的金属块分别放置在支架上。
(2)将热电偶分别插入两个金属块的一端。
(3)将水倒入实验装置中,并加热至一定温度。
(4)将加热的金属块放入水中,记录温度计示数随时间的变化。
(5)分析热对流速率。
3. 热辐射实验:(1)将两个不同材料的金属块分别放置在支架上。
(2)将热电偶分别插入两个金属块的一端。
(3)将电热丝加热至一定温度,并放置在实验装置的一端。
(4)记录温度计示数随时间的变化。
(5)分析热辐射速率。
综合传热实验报告传热学实验报告一、实验目的1、通过实验熟悉热传导实验;2、实验运用载入形式的均匀热流,考察传热过程中的热传导系数的数值;3、掌握恒定温度差的传热过程,并分析热传导系数的影响。
二、实验原理当一块物体介质之间存在温度差的时候,它们之间会发生热传递,应用热传形式的方式研究它们之间的热传导系数。
热传导的形式有很多种,但是本实验中采用的是载入形式的均匀热流。
在此形式的热传方式中,介质之间的温度差也是恒定的,传热过程中的物体质量和热容量也被忽略,只考虑物体介质之间的热流,这样就可以简化传热过程的模型,从而得出它们之间的热传导系数。
三、实验设备实验中使用的设备主要是:加热片、铜片、温度计、加热源、电阻表等。
四、实验步骤1、将加热片和铜片装入实验装置中,并将它们的温度设置为相同的温度。
2、将加热源的电流调到一个基本值,并从电阻表中测量出来的电阻值。
3、记录下实验装置中两片间的温度差,然后增加加热源的电流,再次记录下实验装置中两片间的温度差,如此循环,直到记录下所有的温度差数据。
4、根据数据计算出两片间的热传导系数,并将计算结果与理论值进行比较,分析出热传导系数的变化过程。
五、实验数据加热电流:0.1A~3A温差(℃):0.15~3.45六、实验结果根据所得的实验数据计算,两片之间的热传导系数为:K=0.064 W/(m·K)七、实验讨论比较理论计算出来的热传导系数(K=0.066 W/(m·K)),可以看到实验得出的热传导系数与理论值有一定的差异,这可能因为实验时的不确定性所致。
八、结论根据本次实验,可以得出两片之间的热传导系数为K=0.064W/(m·K),与理论值有一定的差异,可能是实验不确定性所致,可以通过进一步的实验,对热传导系数进行准确的测定。
一、实习目的通过本次传热学实习,我深入了解了传热学的基本原理和方法,掌握了传热学实验的基本技能,提高了自己的动手能力和实验操作能力。
同时,通过实际操作,我对传热学理论有了更深刻的认识,为今后的学习和工作打下了坚实的基础。
二、实习内容1. 实验一:对流传热实验(1)实验目的掌握对流传热的实验方法,了解对流传热的基本规律。
(2)实验原理对流传热是指流体在流动过程中,由于流体与固体壁面之间的温度差,导致热量从高温区域传递到低温区域。
本实验采用水作为工作流体,通过测量流体在不同温度下的对流传热系数,来研究对流传热规律。
(3)实验步骤①搭建实验装置,包括水箱、管道、温度传感器等。
②设置实验参数,如水流量、温度差等。
③启动实验装置,记录温度传感器数据。
④计算对流传热系数。
(4)实验结果与分析通过实验,得到不同温度差下的对流传热系数,并与理论值进行比较。
分析实验结果,发现实验值与理论值基本吻合,验证了对流传热规律。
2. 热传导实验(1)实验目的掌握热传导实验方法,了解热传导的基本规律。
(2)实验原理热传导是指热量在固体、液体或气体中通过分子、原子的碰撞和振动传递的过程。
本实验采用铜棒作为热传导材料,通过测量铜棒两端的温度差,来研究热传导规律。
(3)实验步骤①搭建实验装置,包括加热器、温度传感器、数据采集器等。
②设置实验参数,如加热器功率、温度差等。
③启动实验装置,记录温度传感器数据。
④计算热传导系数。
(4)实验结果与分析通过实验,得到不同温度差下的热传导系数,并与理论值进行比较。
分析实验结果,发现实验值与理论值基本吻合,验证了热传导规律。
3. 热辐射实验(1)实验目的掌握热辐射实验方法,了解热辐射的基本规律。
(2)实验原理热辐射是指物体通过电磁波的形式将热量传递到另一物体的过程。
本实验采用黑体辐射计和红外热像仪,通过测量物体表面的温度分布,来研究热辐射规律。
(3)实验步骤①搭建实验装置,包括黑体辐射计、红外热像仪、加热器等。
传热综合实验报告传热综合实验报告引言:传热是物质内部或不同物质之间热能传递的过程。
在工程领域中,传热的研究对于提高能源利用效率、改善工艺流程等方面具有重要意义。
本实验旨在通过实际操作,探究传热的基本原理和实际应用。
实验目的:1. 了解传热的基本概念和原理;2. 掌握传热实验的基本操作方法;3. 分析传热实验结果,探讨传热机制。
实验步骤:1. 实验前准备:准备实验所需材料和仪器设备,包括热导率测量仪、传热模型等;2. 实验一:热导率测量。
通过热导率测量仪测量不同材料的热导率,包括金属、塑料等;3. 实验二:传热模型实验。
选择一个传热模型,如平板散热器,将其加热并记录温度变化;4. 实验三:传热管实验。
将传热管加热并测量不同位置的温度,分析传热过程。
实验结果与分析:1. 热导率测量结果表明,不同材料的热导率存在较大差异。
金属材料的热导率较高,而塑料等非金属材料的热导率较低。
这与金属的晶体结构和电子传导机制有关;2. 传热模型实验结果显示,随着加热时间的增加,模型表面的温度逐渐升高,表明传热过程中热能从高温区传递到低温区;3. 传热管实验结果表明,在传热管的两端,温度差异较大,而在中间位置,温度差异较小。
这说明传热管的传热效果在两端较好,而在中间位置传热效果较差。
实验讨论:1. 通过热导率测量实验,我们了解了不同材料的热导率特性。
这对于材料选择和工程设计中的热传导问题具有指导意义;2. 传热模型实验结果表明,传热是一个由高温区向低温区传递热能的过程。
这与热力学第二定律相符合;3. 传热管实验结果提示我们,在传热过程中,传热效果会受到材料、管道长度等因素的影响。
因此,在实际工程应用中,需要考虑传热效果的优化。
结论:通过本次传热综合实验,我们对传热的基本原理和实际应用有了更深入的了解。
热导率测量结果表明不同材料的热导率存在差异,传热模型实验结果显示了传热的基本过程,传热管实验结果提示了传热效果受到多种因素影响。
实验五 传热实验一、 实验目的1. 了解换热器的结构及用途。
2. 学习换热器的操作方法。
3. 了解传热系数的测定方法。
4. 测定所给换热器的传热系数K 。
5. 学习应用传热学的概念和原理去分析和强化传热过程,并实验之。
二、 实验原理根据传热方程m t KA Q ∆=,只要测得传热速度Q 、有关各温度和传热面积,即可算出传热系数K 。
在该实验中,利用加热空气和自来水通过列管式换热器来测定K ,只要测出空气的进出口温度、自来水的进出口温度以及水和空气的流量即可。
在工作过程中,如不考虑热量损失,则加热空气放出的热量Q 1与自来水得到热量Q 2应相等,但实际上因热量损失的存在,此两热量不等,实验中以Q 2为准。
三、 实验流程及设备四、 实验步骤及操作要领1.开启冷水进口阀、气源开关,并将空气流量调至合适位置,然后开启空气加热电源开关2.当空气进口温度达到某值(加120℃)并稳定后,改变空气流量,测定不同换热条件下的传热系数;3.试验结束后,先关闭电加热器开关。
待空气进口温度接近室温后,关闭空气和冷水的流量阀,最后关闭气源开关;五、 实验数据1.有关常数换热面积:0.4m 22.实验数据记录表以序号1为例:查相关数据可知:18.8℃水的密度348.998m kg=ρ20℃水的比热容()C kg kJ C p 。
⋅=185.4空气流量:s m Q 3004.0360016==气 水流量:s kg Q W 022.03600/48.99810803-=⨯⨯=⋅=ρ水水 水的算数平均温度:C t t t 。
出入平均3.212246.182=+=+=传热速率:s J Q t t W C p 437.5016.18-24022.0418512=⨯⨯=-⋅=)()(水()()()()℃查图得:对数平均温度:逆△△。
△022.3699.0386.3699.09.146.18245.291.110-06.06.181.1106.1824386.366.185.29241.110ln 6.185.29241.110ln 122111122121=⨯====--=-==--=--==-----=∆∆∆-∆=∆∆t t t t T T tT t t t t t t m t m t m R P C t ϕϕ 传热系数:K m W t S Q K m 2801.34022.364.0437.501=⨯=∆⋅=六、 实验结果及讨论1.求出换热器在不同操作条件下的传热系数。
传热学实验报告班级:安全工程(单)0901班姓名:***学号:01第一节稳态平板法测定绝热材料导热系数实验一、实验目的1.巩固和深化稳定导热过程的基本理论,学习用平板法测定绝热材料导热系数的试验方法和技能。
2.测定试验材料的导热系数。
3.确定试验材料导热系数与温度的关系。
二、实验原理导热系数是表征材料导热能力的物理量。
对于不同的材料,导热系数是各不相同的,对同一材料,导热系数还会随着温度、压力、湿度、物质的结构和重度等因素而变异。
各种材料的导热系数都用试验方法来测定,如果要分别考虑不同因素的影响,就需要针对各种因素加以试验,往往不能只在一种实验设备上进行。
稳态平板法是一种应用一维稳态导热过程的基本原理来测定材料导热系数的方法,可以用来进行导热系数的测定试验,测定材料的导热系数及其和温度的关系。
实验设备是根据在一维稳态情况下通过平板的到热量Q 和平板两面的温差t ∆成正比,和平板的厚度h 成反比,以及和导热系数λ成反比的关系来设计的。
我们知道,通过薄壁平板(壁厚小于十分之一壁长和壁宽)的稳定导热量为:S t hQ *∆*=λ(1)其中:Q 为传到平板的热量,w ;λ为导热系数,w/m ℃;h 为平板厚度,m ; t ∆为平板两面温差,℃; S 为平板表面积;m 2;测试时,如果将平板两面温差t ∆、平板厚度h 、垂直热流力向的导热面积S 和通过平板的热流量Q 测定后,就可以根据下式得出导热系数:St hQ *∆*=λ (2) 其中:d u T -T t =∆,T u 为平板上测温度,T d 为平板下侧温度,℃;这里,公式2所得出的导热系数是在当时的平均温度下材料的导热系数值,此平均温度为:()d u T T 21t +=(3) 在不同的温度和温差条件下测出相应的λ值,然后按λ值标在λ-t 坐标图内,就可以得出()t f =λ的关系曲线。
三、实验装置及测试仪器稳态平板法测定绝热材料的导热系数的电器连接图和实验装置如图1和图2所示。
被试验材料做成两块方形薄壁平板试件,面积为300*300[mm 2],实际导热计算面积S 为200*200[mm 2],平板厚度h[mm]。
平板试件分别被夹紧在加热器的上下热面和上下水套冷面之间。
加热器的上下面、水套与试件的接触面都设有铜板,以使温度均匀。
利用薄膜式加热片实现对上、下试件热面的加热,而上下导热面积水套的冷却面是通过循环冷却水(或通以自来水)来实现。
在中间200*200mm 2部位上安设的加热器为主加热器。
为了使住加热器的热量能够全部单项通过上下两个试件,并通过水套的冷水带走,在主加热器四周(即200*200mm 2之外的四侧)设有四个辅助加热器(1、2、3、4),利用专用的温度跟踪控制器使主加热器以外的四周保持与中间主加热器的温度相一致,以免热流量向旁侧散失。
主加热器的中心温度t h 和水套冷面的中心温度t c 用四个热电偶来测量,辅助加热器1和辅助加热器1的热面也分别设置两个辅热电偶t 2和t 6(埋设在铜板相应位置上),其中一个辅热电偶t 2(或t 6)接到温度跟踪控制器上,与主加热器中心接来的主热电偶t :的温度信号相比较,通过跟踪器使全部辅加热器都跟踪到与主加热器的温度相一致。
而在试验进行时,可以通过热电偶t (或t :)和热电偶t 3(或t 4)测量出一个试件的两个表面的中心温度。
也可以再测量一个辅热电偶的温度,以便与主热电偶的温度相比较,从而了解主、辅加热器的控制和跟踪情况,温度是利用仪器直接读取数值。
主加热器的电功率可以用电功率表或电压表和电流表来测量。
[附]实验台主要参数 1.试验材料:2.试件外型尺寸:300*300mm 23.导热计算面积F :200*200mm 2(即主加热器的面积)4.试件厚度h:mm(实测)5.主加热器电阻值:Ω6.辅加热器(每个)电阻值:Ω7.加热偶材料:镍鉻—镍硅8.试件最高加热温度:80℃图1 试验台的电气连接图t5t2图2 试验台主题示意图(1)t5t2图2 试验台主题示意图(2)四、实验方法和步骤1. 将两个平板试件仔细地安装在主加热器的上下面,试件表面应与铜板严密接触,不应有空隙存在。
在试件、加热器和水套等安装入位后,应在上面加压一定的重物,以使它们都能紧密接触。
2. 联接和仔细检查各接线电路。
将主加热器的两个接线端用导线接至主加热器电源;而四个辅助加热器经两两并联后再串联成串联电路(实验台上已联接好),并按图3—2所示联接到辅助加热器电源和跟踪控制器上。
电压表和电流表(或电功率表)应按要求接入电路。
将主加热电偶之一t1(或t5)接到跟踪控制器面板上左侧的主热电偶接线柱上,而将辅助电偶之一t2(或t6)接到跟踪控制器上的相应接线柱上。
把主热电偶t5(或t1)和辅加热电偶t2(或t6)都接到稳态平板法测定绝热材料导热系数仪上。
3. 检查冷却水水泵及其通路能否正常工作,各热电偶是否正常完好,检查稳态平板法测定绝热材料导热系数仪是否连接好。
4. 接通加热器电源,并调节到合适的电压,开始加温,同时开启温度跟踪控制器。
在加热过程中,可通过各测温点的测量控制盒了解加热情况。
开始时,可先不启动冷水泵,待试件的热面温度达到一定水平后,再启动水泵(或接通自来水),向上下水套通入冷却水。
试验经过一段时间后,试件的热面温度和冷面温度开始趋于稳定。
在这过程中可以适当调节主加热器电源、辅加热器电源的电压,使其更快或更利于达到稳定状态。
待温度基本稳定后,就可以每隔一段时间进行一次电功率W (或电压V 和电流I )读书记录和温度测量,从而得到稳定的测试效果。
5. 各工况试验后,可以将设备调到另一工况,即调节主加热器功率后,再按上述方法进行测试,得到另一工况的稳定测试结果,调节的电功率不宜过大,一般在5~10W 为宜。
6.根据试验要求,进行多次工况的测试。
(工况以从低温到高温为宜)。
7.测试结束后,先切断加热器电源,并关闭跟踪器,经过10分钟左右后再关闭水泵(或停放自来水)。
五、实验结果处理实验数据取试验进入稳定状态后的连续三次稳定结果的平均值。
导热量(即主加热器的电功率):)*或(V I W Q = ][W(4)式中 W —主加热器电功率值,w ;I —主加热器的电流值,A ;V —主加热器的电压值,V 。
由于设备为双试件型,导热量向上下两个试件(试件1和试件2)传到,所以)·21(2221V I W Q Q Q 或=== []W试件两面的温差:L R t -t t =∆ []℃ (5)式中gt —试件的热面温度(即1t 或2t ),℃;gt —试件的冷面温度(即3t 或4t ),℃。
平均温度为()L R t t 21t +=[]℃ (6)平均温度为t 时的导热系数:F t t w L R )(2·-=δλ(或F t t V I R )(2··1-δ)[]℃·/m w (7)将不同平均温度下测定的材料导热系数绘成λ、 关系曲线,并求出()t f =λ的关系式。
导热系数测定记录表序号主加热器热面温度t R(℃) 冷面温度t L(℃) 备注 电流I (mA ) 电压V (V )功率N (W )1 21 192 21 41 325六:数据处理:序号主加热器热面温度t R(℃) 冷面温度t L(℃)平均温度(℃)导热系数(w/ 电流I (mA ) 电压V (V )功率N (W )1 21 192 21 41 325第二节空气沿横管表面自由运动放热实验一、实验目的和要求1.了解空气沿横管表面自由运动放热的实验方法,巩固课堂上学过的知识;2.测定单管的自由运动放热系数α;3.根据对自由运动放热相似分析,整理出准则方程式。
二、实验原理实验装置如图3—3所示。
主要由试验管、热电偶、电位差计、自耦变压器、瓦特表等组成,实验装置提供四根不同直径、不同长度的试验管,试验管的结构如图3—4所示。
四根不同直径的试验管分别水平地悬挂在两幅可升降的支架上,试验管中间装有电热加热,其电源线在管的两端引出,可以通过自耦变压器以给定电压使试验管加热,其加热功率W用瓦特表测定,每个试验管上有4个热电偶嵌入管壁,反映管壁温度的热电势,用电位差计来测定。
自耦变压器瓦特表稳态平板法测定绝热材料导热系数仪图1 实验装置示意图图2 试验管结构示意图1-电源引出线;2-电源引出孔;3-聚苯乙烯泡沫;4-绝热材料;5-电加热器 试验时,对试验管进行加热,热量是以对流和辐射两种方式散发的,对流换热量为总热量与辐射换热量之差,即即rQ Q Q -c = (1)而W Q =)(f w c t t F Q -=α (2)⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=4f 40r 100100T T F C Q w ε (3) 所以()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛---=4f 40w 100100T T t t C t t F Ww f w f εα (4)式中F —表面积,m 2;自由运动放热系数。
—室内空气温度,℃;—管壁平均温度,℃;—;黑体的辐射系数—试管表面黑度;—;对流换热量,—;辐射换热量,—;总热量,—αεf w t t k m w C Q Q Q )/669.5(w w w 20c r根据相似理论,对于自由对流放热,怒谢尔系数uN 格拉晓夫数r G 朗特数r P 的函数即:()nr u·P G f N r = (5)可表示成:nr r )·(G P C N u =,其中,C ,n 验确定的常数。
为了确定上述关系式的具体形式,根据所测数据计算结果求出准则数λadu =N 3r 2g t d v G β∆= (6) r P 、λ、β、v 等物性参数由定性温度从有关书中查出。
改变加热了,可求得一组准则数,把几组数据标在对数坐标得到以uN 为纵坐标、r G 、r P 为横坐标的一系列点,换一条直线,是大多数点落在这条线上或周围。
根据()r r u ·nlg lg lg P G C N +=,使这条曲线的斜率即为n ,截距为C 。
三、实验装置及测量仪表实验装置由四根不同直径、不同长度的试验管组成,测量仪表有稳态平板法测定绝热材料导热系数仪、TDGC 型接触式调压器、瓦特表、电流表、电压表。
试验管上有热电偶嵌入管壁,可反映管壁的热电势,电位差计用于测量室内和管壁热电势;稳压器可稳定输入电压,使加热管的热量保持一定;电压、电流表测定电加热器的电压与电流。
四、实验步骤1. 按电路图接好线路,经老师指导检查无误后接通电源;2. 调整调压器对试验管进行加热;3. 稳定六小时后开始测管壁温度,记录数据;4. 每隔30分钟记录一次,直到两组数据接近为止;5. 取两组接近的数据的平均值,作为计算数据;6. 记录温度计表示的空气温度值;7. 将调压器调整回零位,切断电源。