第七章 金属及合金的回复与再结晶-3
- 格式:ppt
- 大小:2.96 MB
- 文档页数:38
七章-回复与再结晶习题答案(西北⼯业⼤学-刘智恩)1.设计⼀种实验⽅法,确定在⼀定温度( T )下再结晶形核率N和长⼤线速度G (若N和G都随时间⽽变)。
2.⾦属铸件能否通过再结晶退⽕来细化晶粒?3.固态下⽆相变的⾦属及合⾦,如不重熔,能否改变其晶粒⼤⼩?⽤什么⽅法可以改变?4.说明⾦属在冷变形、回复、再结晶及晶粒长⼤各阶段晶体缺陷的⾏为与表现,并说明各阶段促使这些晶体缺陷运动的驱动⼒是什么。
5.将⼀锲型铜⽚置于间距恒定的两轧辊间轧制,如图7—4所⽰。
(1) 画出此铜⽚经完全再结晶后晶粒⼤⼩沿⽚长⽅向变化的⽰意图;(2) 如果在较低温度退⽕,何处先发⽣再结晶?为什么?6.图7—5⽰出。
—黄铜在再结晶终了的晶粒尺⼨和再结晶前的冷加⼯量之间的关系。
图中曲线表明,三种不同的退⽕温度对晶粒⼤⼩影响不⼤。
这⼀现象与通常所说的“退⽕温度越⾼,退⽕后晶粒越⼤”是否有⽭盾?该如何解释?7.假定再结晶温度被定义为在1 h 内完成95%再结晶的温度,按阿累尼乌斯(Arrhenius)⽅程,N =N 0exp(RT Q n -),G =G 0exp(RT Q g -)可以知道,再结晶温度将是G 和向的函数。
(1) 确定再结晶温度与G 0,N 0,Q g ,Q n 的函数关系;(2) 说明N 0,G 0,Q g ,Q 0的意义及其影响因素。
8.为细化某纯铝件晶粒,将其冷变形5%后于650℃退⽕1 h ,组织反⽽粗化;增⼤冷变形量⾄80%,再于650℃退⽕1 h ,仍然得到粗⼤晶粒。
试分析其原因,指出上述⼯艺不合理处,并制定⼀种合理的晶粒细化⼯艺。
9.冷拉铜导线在⽤作架空导线时(要求⼀定的强度)和电灯花导线(要求韧性好)时,应分别采⽤什么样的最终热处理⼯艺才合适?10.试⽐较去应⼒退⽕过程与动态回复过程位错运动有何不同。
从显微组织上如何区分动、静态回复和动、静态再结晶? 11.某低碳钢零件要求各向同性,但在热加⼯后形成⽐较明显的带状组织。
金属学与热处理课后习题答案Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第七章金属及合金的回复和再结晶7-1 用冷拔铜丝线制作导线,冷拔之后应如何如理,为什么答:应采取回复退火(去应力退火)处理:即将冷变形金属加热到再结晶温度以下某一温度,并保温足够时间,然后缓慢冷却到室温的热处理工艺。
原因:铜丝冷拔属于再结晶温度以下的冷变形加工,冷塑性变形会使铜丝产生加工硬化和残留内应力,该残留内应力的存在容易导致铜丝在使用过程中断裂。
因此,应当采用去应力退火使冷拔铜丝在基本上保持加工硬化的条件下降低其内应力(主要是第一类内应力),改善其塑性和韧性,提高其在使用过程的安全性。
7-2 一块厚纯金属板经冷弯并再结晶退火后,试画出截面上的显微组织示意图。
答:解答此题就是画出金属冷变形后晶粒回复、再结晶和晶粒长大过程示意图(可参考教材P195,图7-1)7-3 已知W、Fe、Cu的熔点分别为3399℃、1538℃和1083℃,试估算其再结晶温度。
答:再结晶温度:通常把经过严重冷变形(变形度在70%以上)的金属,在约1h的保温时间内能够完成超过95%再结晶转变量的温度作为再结晶温度。
≈δTm,对于工业纯1、金属的最低再结晶温度与其熔点之间存在一经验关系式:T再金属来说:δ值为,取计算。
2、应当指出,为了消除冷塑性变形加工硬化现象,再结晶退火温度通常要比其最低再结晶温度高出100-200℃。
=,可得:如上所述取T再W=3399×=℃再=1538×=℃Fe再Cu=1083×=℃再7-4 说明以下概念的本质区别:1、一次再结晶和二次在结晶。
2、再结晶时晶核长大和再结晶后的晶粒长大。
答:1、一次再结晶和二次在结晶。
定义一次再结晶:冷变形后的金属加热到一定温度,保温足够时间后,在原来的变形组织中产生了无畸变的新的等轴晶粒,位错密度显着下降,性能发生显着变化恢复到冷变形前的水平,称为(一次)再结晶。
(4) 对组织和性能的影响
织构明显
各向异性
优化磁导率;
晶粒大小不均,导致性能不均;晶粒粗大
降低强度和塑性、韧性;
提高表面粗糙度。
大多数情况下应当避免。
7.2.2 回复机制
)
高温回复(>0.5T
m
位错攀移(+滑移)→位错垂直排列
→多边化(亚晶粒)→弹性畸变能降低。
:回复过程中由位错重新分布而形成确定的亚晶结构的过程。
7.3.2 再结晶晶核的形成与长大
再结晶晶核的形成(非均匀形核)
亚晶形核机制
一般发生在冷变形度较大的金属中。
亚晶合并机制
适于高层错能金属。
过程:位错多边化→回复亚晶→形核。
7.3.2 再结晶晶核的形成与长大
7.3.4 再结晶晶粒大小的控制
(2) 原始晶粒尺寸
当变形度一定时,材料的原始晶粒尺寸越细,则再结晶后的晶粒也越细。
(3) 合金元素及杂质
在其他条件相同的情况下,凡延缓再结晶及阻碍晶粒长大的合金元素或杂质均使金属再结晶后得到细晶粒组织。
金属的热加工
性能变化是双向的:
变形前变形后
再结晶
软软
加工硬化
2)组织结构的变化
特点:反复形核、有限长大。
晶粒是等轴的,大小不均匀,晶界呈锯齿状,等轴晶内存在被缠结位错所分割成的影响晶粒大小的因素:应变速率低、变形温度高时,晶粒尺寸大。
动态再结晶组织包含亚晶粒,并且位错密度较高,比静态再结晶组织强度、硬度高。
第7章回复和再结晶第7章回复和再结晶⾦属发⽣冷塑性变形后,其组织和性能发⽣了变化,为了使冷变形⾦属恢复到冷变形前的状态,需要将其进⾏加热退⽕。
为什么将冷变形⾦属加热到适当的温度能使其恢复到冷变形前的状态呢?因为冷变形⾦属中储存了部分机械能,使能量升⾼,处于热⼒学不稳定的亚稳状态,它有⾃发向热⼒学更稳定的低能状态转变的趋势。
然⽽,在这两种状态之间有⼀个能量升⾼的中间状态,成为⾃发转变的障碍,称势垒。
如果升⾼温度,⾦属中的原⼦获得⾜够的能量(激活能),就可越过势垒,转变成低能状态。
研究冷变形⾦属在加热过程中的变化有两种⽅法。
1)以⼀定的速度连续加热时发⽣的变化;2)快速加热到某⼀温度,在保温过程中发⽣的变化。
通常采⽤。
P195图1为将冷变形⾦属快速加热到0.5T m附近保温时,⾦相组织随保温时间的变化⽰意图。
可以将保温过程分三个阶段:1)在光学显微组织发⽣改变前,称回复阶段;2)等轴晶粒开始产⽣到变形晶粒刚消失之间,称再结晶阶段;3)晶粒长⼤阶段。
7-1 回复⼀、回复的定义冷变形⾦属加热时,在光学显微组织发⽣改变前所产⽣的某些亚结构和性能的变化称回复。
⼆、回复对性能的影响内应⼒降低,电阻降低,硬度和强度下降不多(基本不变)。
三、回复的机制回复的机制根据温度的不同有三种:(⼀)低温回复机制冷变形⾦属在较低温度范围就开始回复,主要表现为电阻下降,但机械性能⽆变化。
由此认为低温回复的机制是:过量点缺陷减少或消失。
(⼆)中温回复机制温度范围⽐低温回复稍⾼。
中温回复的机制是:位错发⽣滑移,导致位错的重新组合,及异号位错相遇抵消。
发⽣中温回复时,在电镜组织中,位错组态有变化;但位错密度的下降不明显。
若两个异号位错不在同⼀滑移⾯上,在相遇抵消前,要通过攀移或交滑移,这需要更⼤的激活能,只能在较⾼的温度才能发⽣。
(三)⾼温回复机制发⽣⾼温回复时,电镜组织的特征是亚晶粒呈等轴状,即⽆变形的亚晶粒。
于是,提出了⾼温回复的多边化机制(P197图5)。