第7章 回复与再结晶
- 格式:ppt
- 大小:403.00 KB
- 文档页数:29
第7章金属及其合金的回复与再结晶塑性变形后的金属与合金加热时,其组织结构发生转变的过程,主要包括回复,再结晶和晶粒长大存储能的降低是这一转变过程的驱动力回复阶段;在这段时间从显微组织上看不出任何变化,晶粒仍保持纤维状再结晶阶段;在变形的晶粒部开场出现小晶粒,随着时间的延长,新晶粒不断出现并长大,这个过程一直进展到塑性变形后的纤维状晶粒完全改组为新的等轴晶粒为止晶粒长大阶段;新的晶粒相互吞并而长大,直到晶粒长大到一个较稳定的尺寸在回复阶段,大局部甚至全部的第一类应力得以消除,第二类或第三类应力只能消除一局部,经再结晶后,因塑性变形而造成的应力可以全部消除力学性能的变化在回复阶段,硬度值稍有下降,但数值变化很小,而塑性有所提高。
强度一般是和硬度呈正比例的一个性能指标。
在再结晶阶段,硬度和强度均显著下降,塑性大大提高,金属与合金因塑性变形而引起的强度和硬度的增加与位错密度的增加有关,在回复阶段,位错密度的减小有限,只有在再结晶阶段,位错密度才会显著下降工业上,常利用回复现象将冷变形金属低温加热,既稳定组织又保存加工硬化,这种热处理方法称去应力退火再结晶开场前发生的过程叫回复,回复是指冷塑性变形的金属在加热时,在再结晶晶粒形成前所产生的某些亚结构和性能的变化过程回复的程度是温度和时间的函数,温度越高,回复的程度越大,当温度一定时,回复的程度随着时间的延长而逐渐增加回复过程是原子的迁移扩散过程,原子迁移的结果,导致金属部的缺陷数量的减少,存储能下降杂质原子和合金元素能够显著推迟金属的再结晶过程回复过程具有热激活的特点,温度越高,过程进展的越快。
微观上看,回复阶段主要是空位的迁移和位错的重排,它们都是典型的热激活过程回复机制温度不同,回复过程中金属部结构变化也不同。
中、低温时主要是点缺陷的迁移和消失,点缺陷密度下降,导致电阻率下降。
位错密度变化不大。
力学性能对空位的变化不敏感,所以不出现变化高温时通过位错的攀移和反响〔异号位错相消〕,同号位错沿垂直于滑移面的方向排列成稳定的位错墙,将晶粒分割成一个个亚晶,这一过程称为多边化,这些位错墙就成为小角度的亚晶界多变化是冷变形金属加热时,原来处在滑移面上的位错,通过滑移和攀移,形成与滑移面垂直的亚晶界的过程。
金属学与热处理课后习题答案Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第七章金属及合金的回复和再结晶7-1 用冷拔铜丝线制作导线,冷拔之后应如何如理,为什么答:应采取回复退火(去应力退火)处理:即将冷变形金属加热到再结晶温度以下某一温度,并保温足够时间,然后缓慢冷却到室温的热处理工艺。
原因:铜丝冷拔属于再结晶温度以下的冷变形加工,冷塑性变形会使铜丝产生加工硬化和残留内应力,该残留内应力的存在容易导致铜丝在使用过程中断裂。
因此,应当采用去应力退火使冷拔铜丝在基本上保持加工硬化的条件下降低其内应力(主要是第一类内应力),改善其塑性和韧性,提高其在使用过程的安全性。
7-2 一块厚纯金属板经冷弯并再结晶退火后,试画出截面上的显微组织示意图。
答:解答此题就是画出金属冷变形后晶粒回复、再结晶和晶粒长大过程示意图(可参考教材P195,图7-1)7-3 已知W、Fe、Cu的熔点分别为3399℃、1538℃和1083℃,试估算其再结晶温度。
答:再结晶温度:通常把经过严重冷变形(变形度在70%以上)的金属,在约1h的保温时间内能够完成超过95%再结晶转变量的温度作为再结晶温度。
≈δTm,对于工业纯1、金属的最低再结晶温度与其熔点之间存在一经验关系式:T再金属来说:δ值为,取计算。
2、应当指出,为了消除冷塑性变形加工硬化现象,再结晶退火温度通常要比其最低再结晶温度高出100-200℃。
=,可得:如上所述取T再W=3399×=℃再=1538×=℃Fe再Cu=1083×=℃再7-4 说明以下概念的本质区别:1、一次再结晶和二次在结晶。
2、再结晶时晶核长大和再结晶后的晶粒长大。
答:1、一次再结晶和二次在结晶。
定义一次再结晶:冷变形后的金属加热到一定温度,保温足够时间后,在原来的变形组织中产生了无畸变的新的等轴晶粒,位错密度显着下降,性能发生显着变化恢复到冷变形前的水平,称为(一次)再结晶。
(4) 对组织和性能的影响
织构明显
各向异性
优化磁导率;
晶粒大小不均,导致性能不均;晶粒粗大
降低强度和塑性、韧性;
提高表面粗糙度。
大多数情况下应当避免。
7.2.2 回复机制
)
高温回复(>0.5T
m
位错攀移(+滑移)→位错垂直排列
→多边化(亚晶粒)→弹性畸变能降低。
:回复过程中由位错重新分布而形成确定的亚晶结构的过程。
7.3.2 再结晶晶核的形成与长大
再结晶晶核的形成(非均匀形核)
亚晶形核机制
一般发生在冷变形度较大的金属中。
亚晶合并机制
适于高层错能金属。
过程:位错多边化→回复亚晶→形核。
7.3.2 再结晶晶核的形成与长大
7.3.4 再结晶晶粒大小的控制
(2) 原始晶粒尺寸
当变形度一定时,材料的原始晶粒尺寸越细,则再结晶后的晶粒也越细。
(3) 合金元素及杂质
在其他条件相同的情况下,凡延缓再结晶及阻碍晶粒长大的合金元素或杂质均使金属再结晶后得到细晶粒组织。
金属的热加工
性能变化是双向的:
变形前变形后
再结晶
软软
加工硬化
2)组织结构的变化
特点:反复形核、有限长大。
晶粒是等轴的,大小不均匀,晶界呈锯齿状,等轴晶内存在被缠结位错所分割成的影响晶粒大小的因素:应变速率低、变形温度高时,晶粒尺寸大。
动态再结晶组织包含亚晶粒,并且位错密度较高,比静态再结晶组织强度、硬度高。