单项式和多项式练习题(含答案)
- 格式:doc
- 大小:121.00 KB
- 文档页数:2
单项式与多项式例题及练习例: 试用尽可能多的方法对下列单项式进行分类: 3a3x, bxy, 5x2, -4b2y, a3, -b2x2, axy2解: (1)按单项式的次数分: 二次式有5x;三次式有bxy, -4b2y, a3;四次式有3a3x, •-b2x2, axy2。
(2)按字母x的次数分: x的零次式有-4b2y, a3;x的一次式有3a3x, bxy, axy2;x的二次式有5x2, -b2x2。
(3)按系数的符号分:系数为正的有3a3x, bxy, 5x2, a3, axy2;系数为负的有-4b2y, -b2x2。
(4)按含有字母的个数分: 只含有一个字母的有5x2, a3;•含有两个字母的有3a3x, •-4b2y, -b2x2;含有三个字母的有bxy, axy2。
评析: 对单项式进行分类的关键在于选择一个恰当的分类角度。
如按单项式的次数、按式中某个字母的次数、按系数的符号、按含有字母的个数等等。
1、把代数式和的共同点填在下列横线上, 例如:都是代数式。
①都是式;②都是。
2.写出一个系数为-1, 含字母、的五次单项式。
3、如果是关于x的五次四项式, 那么p+q= 。
4、若(4 -4)x2yb+1是关于x, y的七次单项式, 则方程ax-b=x-1的解为。
5.下列说法中正确的是()A. 的次数为0 B、的系数为C.-5是一次单项式D. 的次数是3次6.若是关于x, y的一个单项式, 且系数是, 次数是5, 则和b的值是多少7、已知:是关于a、b的五次单项式, 求下列代数式的值, 并比较(1)、(2)两题结果:(1), (2)●体验中考1.(2008年湖北仙桃中考题改编)在代数式, , , , , 中单项式有个。
2、(2009年江西南昌中考题改编)单项式xy2z 的系数是__________, 次数是__________。
3.(2008年四川达州中考题改编)代数式和的共同点是。
4、(2009年山东烟台中考题改编)如果是六次单项式, 则的值是( )A.1B.2C.3D.5参考答案:◆随堂检测1. , 32.—63.C4.D5.①×;②√;③×;④×◆课下作业●拓展提高1.①单项式;②5次2.3.94.x=5.D6. 7、由题意可知: , 解得 。
单项式、多项式习题精选单项式一、选择题(共12小题)1.据有关资料显示,2011年遵义市全年财政总收入202亿元,将202亿用科学记数法可表示()。
A.2.02×109 B.2.02×1010 C.2.02×102 D.202×108答案:B2.单项式7ab2c3的次数是()。
A.3 B.5 C.6 D.7答案:63.下列算式是一次式的是()。
A.8 B.4s+3t C. D.答案:A4.下列各式中单项式的个数有()。
A.4个 B.3个 C.2个 D.1个答案:D5.下列关于单项式的说法中,正确的是()。
A.系数是3,次数是2 B.系数是-25,次数是3 C.系数是,次数是3 D.系数是,次数是2答案:D6.单项式-3πxy2z3的系数和次数分别是()。
A.-π,5 B.-1,6 C.-3π,6 D.-3,7答案:-3π,67.下面的说法正确的是()。
A.-2是单项式 B.-a表示负数 C.的系数是3 D.x++1是多项式答案:A8.单项式-2πab2的系数和次数分别是()。
A.-2π、3 B.-2、2 C. D.-2π、2答案:-2π、39.下列代数式中属于单项式的是()。
A.8xy+5 B. C. D.-3x2y答案:D10.单项式-xy2z的()。
A.系数是,次数是2 B.系数是-1,次数是3 C.系数是,次数是4 D.-3,7答案:系数是-1,次数是311.对单项式-ab3c,下列说法中正确的是()。
A.系数是,次数是3 B.系数是-1,次数是5 C.系数是-1,次数是4 D.系数是-1,次数是-5答案:系数是-1,次数是312.在代数式。
m-3,-22.2πb2中,单项式的个数为()。
A.1个 B.2个 C.3个 D.4个答案:3个二、填空题(共8小题)13.单项式3x2y的系数为_________。
答案:314.单项式3x2y3的系数是_________。
单项式与多项式测试题一、选择题(每题3分,共30分)1、以下说法正确的选项是 ( )A . x 的指数是0 B. x 的系数是0C . -3 是一次单项式 D. -23ab 的系数是- 23 2、代数式a 2、-xyz 、24ab 、-x 、b a 、0、a 2+b 2、-中单项式的个数是( ) A. 4 D. 73、以下语句正确的选项是( )A .中一次项系数为-2 B .是二次二项式 C .是四次三项式 D .是五次三项式4、以下结论正确的选项是( )A.整式是多项式B. 不是多项式就不是整式C .多项式是整式 D. 整式是等式5、若是一个多项式的次数是4次,那么那个多项式的任何一项的次数( )A .都小于4B .都等于4 C. 都不大于4 D. 都不小于46、以下说法正确的选项是( )A .3 x 2―2x+5的项是3x 2,2x ,5B .3x -3y 与2 x 2―2xy -5都是多项式 C .多项式-2x 2+4xy 的次数是3D .一个多项式的次数是6,那么那个多项式中只有一项的次数是67、x 减去y 的平方的差,用代数式表示正确的选项是( )A 、2)(y x -B 、22y x -C 、y x -2D 、2y x -8、某同窗爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长S 米,同窗上楼速度是a 米/分,下楼速度是b 米/分,那么他的平均速度是( )米/分。
A 、2b a +B 、b a s +C 、b s a s +D 、bs a s s +2 9、假设3b ma n 是关于a 、b 的五次单项式,且系数是3-,那么=mn ( )。
A 10B -10C 15D -1510、25ab π-的系数是( )A -5B π5-C 3D 4二、填空题(每题4分,共40分)11、单项式23-xy 2z 的系数是__________,次数是__________。
18、单项式2237xy π-的系数是 ,次数是 。
一.选择题(共10小题)1.(2015•厦门)已知一个单项式的系数是2,次数是3,则这个单项式可所以()A.﹣2xy2B.3x2C.2xy3D.2x32.(2015•台州)单项式2a的系数是()A.2B.2aC.1D.a3.(2015•通辽)下列说法中,准确的是()A.﹣x2的系数是B.πa2的系数是C.3ab2的系数是3aD.xy2的系数是4.(2015•杭州模仿)整式﹣0.3x2y,0,,,,﹣2a2b3c中是单项式的个数有(A.2个B.3个C.4个D.5个5.(2015•浦东新区二模)下列各整式中,次数为5次的单项式是()A.xy4B.xy5C.x+y4D.x+y56.(2015•金山区二模)下列代数式中是二次二项式的是()A.xy﹣1B.C.x2+xy2D.7.(2015春•青羊区校级月考)在代数式a+bac,,π,3x2﹣4x ﹣2,,πab,0,中,下列结论准确的是(A.有4个单项式,2个多项式B.有4个单项式,3个多项式C.有7个整式D.有3个单项式,2个多项式8.(2015•佛山)多项式2a2b﹣ab2﹣ab的项数及次数分离是()A.3,3B.3,2C.2,3D.2,29.(2014•甘肃模仿)下列说法准确的是()A.﹣3x3y2z的系数是3B.x2+x3是5次多项式C.不是整式D.πr2是3次单项式10.(2015•临沂)不雅察下列关于x的单项式,探讨其纪律:x,3x2,5x3,7x4,9x5,11x6,…按照上述纪律,第2015个单项式是()A.2015x2015B.4029x2014C.4029x2015D.4031x2015二.填空题(共10小题)11.(2015•岳阳)单项式﹣x2y3的次数是.12.(2015•牡丹江)一列单项式:﹣x2,3x3,﹣5x4,7x5,…,按此纪律分列,则第7个单项式为13.(2015•长沙校级二模)单项式的系数与次数之积为.14.(2015春•乐平市期中)在代数式3xy2,m,6a2﹣a+3,12,,中,单项式有个,多项式有个.15.(2015春•濮阳校级期中)的系数是,次数是.16.(2014秋•根河市校级期中)在代数式,+3,﹣2,,,,单项式有个多项式有个,整式有个,代数式有个.17.(2015•咸阳模仿)是次项式.18.(2015春•芦溪县期末)有一个多项式为a8﹣a7b+a6b2﹣a5b3+…,按照此纪律写下来,这个多项式的第六项是19.(2014•咸阳模仿)﹣x4y﹣4a2b+是由..三项构成,它们的系数分离是,,.20.(2014秋•西城区校级期末)若3a2bcm为七次单项式,则m 的值为.三.解答题(共5小题)21.指出下列各式中哪些是单项式?哪些是多项式?哪些是整式?.22.(2014秋•曹县期末)不雅察下列各式:﹣a,a2,﹣a3,a4,﹣a5,a6,…(1)写出第2014个和2015个单项式;(2)写出第n个单项式.23.(2014秋•忠县校级期末)不雅察下列一串单项式的特色:xy,﹣2x2y,4x3y,﹣8x4y,16x5y,…(1)按此纪律写出第9个单项式;(2)试猜测第N个单项式为若干?它的系数和次数分离是若干?24.(2014秋•寿县校级期中)写出一个三次四项式,知足前提:①含有两个字母,②每个字母的指数都不大于2,③含有常数项.然后选出你所爱好的一正一负两个有理数作为字母的值代入求这个多项式的值25.(2012春•梅江区校级月考)已知多项式:x10﹣x9y+x8y2…﹣xy9+y10(1)该多项式有什么特色和纪律;(2)按纪律写出多项式的第六项,并指出它的次数和系数;(3)这个多项式是几回几项式?一.选择题(共10小题)1.D2.A3.D4.C5.A6.A7.A8.A9.C10.C二.填空题(共10小题)11.512.-13x813.-214.3215.-516.224617.三三18.-a3b519.-x4y-4a2b-1-420.4三.解答题(共5小题)21.解:的分母中含有字母,既不是单项式,也不是多项式,更不是整式.单项式有:;多项式有:;整式有:.22.解:(1)由﹣a,a2,﹣a3,a4,﹣a5,a6,…可得第n项的表达式为(﹣1)n,所以第2014个单项式为,第2015个单项式为﹣.(2)由单项式的特色可得第n个单项式为(﹣1)n.23.解:(1)∵当n=1时,xy,当n=2时,﹣2x2y,当n=3时,4x3y,当n=4时,﹣8x4y,当n=5时,16x5y,∴第9个单项式是29﹣1x9y,即256x9y.(2)∴n为偶数时,单项式为负数.x的指数为n时,2的指数为n ﹣1,∴当n为奇数时的单项式为2n﹣1xny,它的系数是2n﹣1,次数是n+1.24.解:此题答案不独一,知足前提的可为:a2b﹣a2+b﹣1.令a=1,b=﹣1,则a2b﹣a2+b﹣1=12×(﹣1)+(﹣1)﹣1=﹣1﹣1﹣1=﹣3.即该多项式的值是﹣3.25.解:(1)该多项式的特色是:x的次数在减小,y的次数在增长,纪律是:x的次数减小量等于y的次数增长量;(2)依据纪律可得第六项为:﹣x5y5,它的系数是﹣1,次数是10;(3)这个多项式是10次11项式.。
初中数学单项式多项式整式加减综合练习题一、单选题1.若长方形的周长为4m ,一边长为m n -,则另一边长为( )A.3m n +B.22m n +C.m n +D.2m n + 2.若5x y -=-,则()315y x --的值为( ). A.3- B.3 C.2- D.23.下列各组中是同类项的是( )A.23x y 与22xyB.413x y 与412yxC.2a -与0D.231π2a bc 与233a cb - 4.若单项式33m n x y -与单项式23n n x y 的和是6m n n x y -,则( )A.9m ≠B.3n ≠C.9m =,3n ≠D.9m =,3n = 5.如果整式252n x x --+是关于x 的三次三项式,那么n 等于( )A.3B.4C.5D.66.下列说法正确的是( ) A.17a+是多项式 B.22243562x x y y ---是四次四项式C.61x -的项数和次数都是6D.3a b +不是多项式 7.多项式221x x -+的各项分别是( )A. 2,2,1x x +B.2,2,1x x -+C. 2,2,1x x --D.2,2,1x x ---8.有理数a b ,在数轴上的位置如图,则2a b a b +--化简后为( )A.63a -B.2a b --C.2a b +D.a b --9.下列运算正确的是( )A.()23161x x --=--B.()23161x x --=-+C.()23162x x --=--D.()23162x x --=-+10.下列代数式中,既不是单项式,也不是多项式的是( )A.341553x y --B.2453m n - C.325118x y x D.2216a b +- 11.在多项式323238143x y x y xy --++中,最高次项为( )A.323x yB.323x y -C.328x yD.328x y -12.关于x 的多项式232x x -+的二次项系数、一次项系数和常数项分别为( )A.3,2,1B.3-,2,0C.3-,2,1D.3,2,0二、解答题13.指出下列多项式的项、项数、次数. (1)21212a ab -+. (2)22231122m m n mn ---. (3)2312xy x y --(4)223330.5x y xy x y --.14.已知549a x y ++和317b x y +-是同类项,求式子43433642b a b b ba --+的值.15.若代数式22269a kab b ab ++-+中不含ab 项,求k 的值.16.若代数式2231a a ++的值为5,求代数式2468a a ++的值.17.已知多项式212254531m x y x y x y +--.(1)求多项式中各项的系数和次数.(2)若该多项式是八次三项式,求m 的值.三、填空题18.若代数式13m n a b -与369a b -的和是单项式,则m n += 。
七年级数学整式加减单项式多项式练习题(附答案)七年级数学整式加减单项式多项式练题一、单选题1.多项式$x^2-2x+1$的各项分别是(。
)A.$x^2,2x,+1$B.$x^2,-2x,+1$C.$-x^2,2x,-1$D.$-x^2,-2x,-1$2.下列各式是四次单项式的是(。
)A.$-13b^2$B.$-8\pi pq^2$C.$mnkt\pi ab^2c^2$D.$6$3.下列单项式中,书写格式规范的是(。
)A.$-\frac{1}{\pi}kt$B.$\frac{2}{19}x$C.$a^3\timesc^6\times 8$ D.$\frac{x}{y^2}$4.下列说法正确的是(。
)A.$b$的指数是$0$B.$-3$是一次单项式C.$m$没有系数D.$8$是单项式5.有下列各式:$2+x^2,x+1,xy^2,3x^2+2x-1,abc,1-2y$,其中多项式有()A.2个B.3个C.4个D.5个6.下列选项中,去括号正确的是(。
)A.$a+(b-1)=a-b-1$B.$a+(b-1)=a+b+1$C.$a-(b-1)=a-b+1$ D.$a-(b-1)=a-b-1$7.其中多项式有()$2x(x-y)$8.计算$1\div\frac{-3}{5}$时,除法变为乘法正确的是(。
)A.$1\times\frac{-3}{5}$ B.$1\times\frac{19}{5}$ C.$1\times\frac{5}{19}$ D.$1\ti mes\frac{-5}{19}$9.有理数$m,n$在数轴上的位置如图,则下列结论正确的是()A.$m>0,n>0$ B.$m>0,n0$ D.$m<0,n<0$10.下列说法中正确的有()1)$2$是整数;2)$-2$是负分数;3)$8.96$不是正数;4)自然数一定是正数;5)负数一定是有理数A.1个B.2个C.3个D.4个11.若四个有理数相乘,积为负数,则负因数的个数是(。
沪科版七年级下册数学8.2整式的乘法(1)单项式与单项式、多项式相乘同步练习一、选择题(本大题共8小题)1. 计算3a·2b的结果是( )A.3abB.6aC.6abD.5ab2. 下列说法正确的是( )A.单项式乘以多项式的积可能是一个多项式,也可能是单项式B.单项式乘以多项式的积仍是一个单项式C.单项式乘以多项式的结果的项数与原多项式的项数相同D.单项式乘以多项式的结果的项数与原多项式的项数不同3. 下列计算中,错误的是( )A.(2xy)3(-2xy)2=32x5y5B.(-2ab2)2(-3a2b)3=-108a8b7C.=x4y3D.=m4n44. 当x=2时,代数式x2(2x)3-x(x+8x4)的值是( )A.4B.-4C.0D.15. 现规定一种运算:a*b=ab+a-b,其中a,b为有理数.求a*(a-b)+(b+a)*b的值.A. a2+a+b2+bB. a2+a+b2-bC. a2+a-b2+bD. -a2+a+b2+b6. 某商场4月份售出某品牌衬衣b件,每件c元,营业额a元.5月份采取促销活动,售出该品牌衬衣3b件,每件打八折,则5月份该品牌衬衣的营业额比4月份增加( )A.1.4a元B.2.4a元C.3.4a元D.4.4a元7. 如图,表示这个图形面积的代数式是( )A.ab+bcB.c(b-d)+d(a-c)C.ad+cb-cdD.ad-cd 8. 设P=a 2(-a+b-c),Q=-a(a 2-ab+ac),则P 与Q 的关系是( ) A.P=Q B.P >Q C.P <Q D.互为相反数 二、填空题(本大题共6小题) 9. (-2x 2)·(x 2-2x-12)=___ ____; 10. 计算:= .11. 若单项式-3a4m -n b 2与13a 3b m +n是同类项,则这两个单项式的积是( )A .-a 3b 2B .a 6b 4C .-a 4b 4D .-a 6b 412. 已知ab 2=-4,则-ab(a 2b 5-ab 3-b)的值是 . 13. 已知-2x3m+1y 2n 与7x n-6y-3-m的积与x 4y 是同类项,则m 2+n 的值是 .14. 设计一个商标图案如图中阴影部分所示,长方形ABCD 中,AB=a,BC=b,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F,则商标图案的面积是 .三、计算题(本大题共4小题)15.先化简,再求值.x(x 2-6x-9)-x(x 2-8x-15)+2x(3-x),其中x=-.16. 如图,一长方形地块用来建造住宅、广场、商厦,求这块地的面积.17.有理数x,y满足条件|2x-3y+1|+(x+3y+5)2=0,求代数式(-2xy)2·(-y2)·6xy2的值.18.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高12a米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长600米,那么这段防洪堤坝的体积是多少立方米参考答案:一、选择题(本大题共8小题)1.C分析:利用单项式乘单项式的乘法法则即可得到。
单项式乘多项式专项练习60题(有答案)1.若(a m+1b n+2)•(a2m b2n﹣1)=a4b7,则m+n等于()A.1B.2C.3D.42.长方形的长是1.6×103cm,宽是5×102cm,则它的面积是()A.8×104cm2B.8×106cm2C.8×105cm2D.8×107cm23.计算(﹣x3)2•x的结果是()A.﹣x7B.x7C.﹣x6D.x64.计算(﹣3x)3•2x2的结果是()A.54x5B.﹣54x5C.54x6D.﹣54x65.计算(﹣2a2)•3a3的结果,正确的是()A.﹣6a5B.6a5C.﹣2a6D.2a66.2x2y•3xy的结果是()A.6x3y B.6x3y2C.D.7.计算﹣3x2(4x﹣3)等于()A.﹣12x3+9x2B.﹣12x3﹣9x2C.﹣12x2+9x2D.﹣12x2﹣9x28.下列计算正确的有()A.(6xy2﹣4x2y)•3xy=18xy2﹣12x2yB.(﹣x)(2x+x2﹣1)=﹣x3﹣2x2+1C.(﹣3x2y)(﹣2xy+3yz﹣1)=6x3y2﹣9x2y2z2﹣3x2yD.(a n+1﹣b)•2ab=a n+2b﹣ab29.计算(﹣2a3+3a2﹣4a)(﹣5a5)等于()A.10a15﹣15a10+20a5B.﹣7a8﹣2a7﹣9a6C.10a8+15a7﹣20a6D.10a8﹣15a7+20a610.(﹣3x+1)(﹣2x)2等于()A.﹣6x3﹣2x2B.6x3﹣2x2C.6x3+2x2D.﹣12x3+4x211.下列说法正确的是()A.多项式乘以单项式,积可以是多项式也可以是单项式B.多项式乘以单项式,积的次数等于多项式的次数与单项式次数的积C.多项式乘以单项式,积的系数是多项式系数与单项式系数的和D.多项式乘以单项式,积的项数与多项式的项数相等12.下列计算正确的是()A.(﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3b B.(2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4 C.(abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D.(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c13.下列计算正确的是()A.(2xy2﹣3xy)•2xy=4x2y2﹣6x3y B.﹣x(2x+3x2﹣2)=﹣3x3﹣2x2﹣2x C.﹣2ab(ab﹣3ab2﹣1)=﹣2a2b2+6a2b3﹣2abD.(a n+1﹣)•ab=a n+2b﹣ab214.下列计算正确的是()A.x n(x n﹣x2+3)=x2n﹣x n+2+3x n B.(2x+3y)(﹣4xy)=﹣8x2y﹣12xy2=﹣20xy C.(﹣2xy2﹣4x2y)(﹣3xyz)=6x2y3+12x3y2D.(xyz﹣7x2y+1)(﹣xz)=﹣x2yz2+7x3yz15.﹣5x•(2x2﹣x+3)的计算结果为()A.﹣10x3+5x2﹣15x B.﹣10x3﹣5x2+15x C.10x3﹣5x2﹣15x D.﹣10x3+5x2﹣316.计算﹣2a(2a2+3a+1)的结果等于()A.﹣4a3﹣5a2+2a B.﹣4a3+6a2+1C.﹣4a3+6a2D.以上都不对17.如果长方体长为3m﹣4,宽为2m,高为m,则它的体积是()A.3m3﹣4m2B.m2C.6m3﹣8m2D.6m2﹣8m18.(﹣2ab)(3a2﹣3ab﹣4b2)=_________,_________.19.要使(x2+ax+1)•(﹣6x3)的展开式中不含x4项,则a=_________.20.计算:4x•(2x2﹣3x+1)=_________.21.计算:﹣3x•(2x2﹣x+4)=_________.22.(﹣2x2)3•(x2+x2y2+y2)的结果中次数是10的项的系数是_________.23.计算:(x2+x﹣1)•(﹣2x)=_________.24.3ax2•(_________)=3a2x3﹣6ax2+9a3x4.25.计算:=_________.26.(x2y﹣xy﹣y3)(﹣4xy2)=_________.27.计算:(﹣9x2+3x)(﹣3x)=_________.28.计算:=_________.29.计算:=_________.30.计算:﹣3xy(4y﹣2x+1)=_________.31.通过计算几何图形的面积可以得到一些恒等式,根据如图的长方形面积写出的恒等式为_________.32.若A是单项式,且A(4x2y3+3xy2)=﹣12x3y5﹣9x2y4,则A2=_________.33.(x2y﹣xy﹣y3)(﹣4xy2)=_________.34.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.35.计算:﹣6a•(﹣﹣a+2)36.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.37.(3x2y﹣2x+1)(﹣2xy)38.已知某长方形的长为(a+b)cm,它的宽比长短(a﹣b)cm,求这个长方形的周长与面积.39.计算:.40.计算:(﹣a2b)(b2﹣a+)41.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?42.计算:2x(x2﹣x+3)43.2ab(5ab+3a2b)44.计算:.45.(﹣2ab)(3a2﹣2ab﹣4b2)46.计算:xy2(3x2y﹣xy2+y)47.(﹣2ab)(3a2﹣2ab﹣b2)48.﹣2x2(+y2)49.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.50.计算:(﹣2x3y)•(3xy2﹣4xy+1).51..52..53.﹣3a•(2a2﹣a+3)54.2a(3a﹣2b)55.计算:2a2(3a2﹣5b+1)56.5x(2x2﹣3x+4)57.计算:(﹣2a2b)3(3b2﹣4a+6)58.2a2•(3a2﹣5b)59.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?60.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案:1.∵(a m+1b n+2)•(a2m b2n﹣1)=a m+1+2m b n+2+2n﹣1=a4b7,∴m+1+2m=4,n+2+2n﹣1=7,解得m=1,n=2.∴m+n=1+2=3.故选C.2.(1.6×103)×(5×102)=(1.6×5)×(103×102)=8×105(cm2).故选:C.3.(﹣x3)2•x=x3×2•x=x7.故选B.4.(﹣3x)3•2x2=﹣27x3•2x2=(﹣27×2)•(x3•x2)=﹣54x5.故选:B.5.(﹣2a2)•3a3=﹣2×3a2•a3=﹣6x5.故选A.6.2x2y•3xy=6x3y;故选A.7.﹣3x2(4x﹣3)=﹣12x3+9x2.故选A.8.A、应为(6xy2﹣4x2y)•3xy=18x2y3﹣12x3y2,故本选项错误;B、应为(﹣x)(2x+x2﹣1)=﹣2x2﹣x3+x,故本选项错误;C、应为(﹣3x2y)(﹣2xy+3yz﹣1)=6x3y2﹣9x2y2z+3x2y,故本选项错误;D、(a n+1﹣b)•2ab=a n+2b﹣ab2,正确.故选D.9.(﹣2a3+3a2﹣4a)(﹣5a5)=10a8﹣15a7+20a6.故选D.10.(﹣3x+1)(﹣2x)2=(﹣3x+1)•(4x2)=﹣12x3+4x2.故选D.11.A、多项式乘以单项式,积一定是多项式,而不是单项式,故本选项错误;B、多项式乘以单项式,积的次数等于多项式的次数与单项式次数的和,故本选项错误;C、多项式乘以单项式,积的系数是多项式系数与单项式系数的积,故本选项错误;D、正确.故选D.12.A、应为(﹣2a)•(3ab﹣2a2b)=﹣6a2b+4a3b,故本选项错误;B、应为(2ab2)•(﹣a2+2b2﹣1)=﹣2a3b2+4ab4﹣2ab2,故本选项错误;C、应为(abc)•(3a2b﹣2ab2)=3a3b2c﹣2a2b3c,故本选项错误;D、(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c,正确.故选D.13.A、应为(2xy2﹣3xy)•2xy=4x2y3﹣6x2y2,故本选项错误;B、应为﹣x(2x+3x2﹣2)=﹣3x3﹣2x2+2x,故本选项错误;C、应为﹣2ab(ab﹣3ab2﹣1)=﹣2a2b2+6a2b3+2ab,故本选项错误;D、(a n+1﹣)•ab=a n+2b﹣ab2,正确.故选D.14.A、x n(x n﹣x2+3)=x2n﹣x n+2+3x n,正确;B、应为(2x+3y)(﹣4xy)=﹣8x2y﹣12xy2,故本选项错误;C、应为(﹣2xy2﹣4x2y)(﹣3xyz)=6x2y3z+12x3y2z,故本选项错误;D、应为(xyz﹣7x2y+1)(﹣xz)=﹣x2yz2+7x3yz﹣xz,故本选项错误.故选A.15.原式=﹣(10x3﹣5x2+15x)=﹣10x3+5x2﹣15x.故选A.16.﹣2a(2a2+3a+1)=﹣4a3﹣6a2﹣2a.故选D.17.∵长方体长为3m﹣4,宽为2m,高为m,∴它的体积是:(3m﹣4)×2m×m=6m3﹣8m2.故选C18.(﹣2ab)(3a2﹣3ab﹣4b2)=﹣6a3b+6a2b2+8ab3,﹣2x4+x3﹣x2.19.(x2+ax+1)•(﹣6x3)=﹣6x5﹣6ax4﹣6x3,∵展开式中不含x4项,∴﹣6a=0,解得a=0.20.4x•(2x2﹣3x+1)=8x3﹣12x2+4x.21.﹣3x•(2x2﹣x+4)=﹣6x3+3x2﹣12x.22.(﹣2x2)3•(x2+x2y2+y2)的结果中次数是10的项的系数是﹣8.23.(x2+x﹣1)•(﹣2x)=﹣2x3﹣x2+2x.24.(3a2x3﹣6ax2+9a3x4)÷3ax2=3a2x3÷3ax2﹣6ax2÷3ax2+9a3x4÷3ax2=ax﹣2+3a2x2.故答案为:ax﹣2+3a2x2.25.=x4﹣6x3+3x2.26.(x2y﹣xy﹣y3)(﹣4xy2)=﹣3x3y3+2x2y3+xy5.27.计算:(﹣9x2+3x)(﹣3x)=27x3﹣9x2.28.计算:=﹣3x2y+8x3y2.29.计算:=﹣2x3+x2﹣6x30.计算:﹣3xy(4y﹣2x+1)=﹣12xy2+6x2y﹣3xy.31.长方形的面积等于:2a(a+b),也等于四个小图形的面积之和:a2+a2+ab+ab=2a2+2ab,即2a(a+b)=2a2+2ab.故答案为:2a(a+b)=2a2+2ab.32由题意得:﹣12x3y5﹣9x2y4=﹣3xy2(4x2y3+3xy2),∴A=﹣3xy2,则A2=9x2y4.故答案为:9x2y433.(x2y﹣xy﹣y3)(﹣4xy2)=﹣3x3y3+2x2y3+xy5.34.原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=(2a2b﹣2a2b)+(2ab2﹣ab2)+(2﹣2)=0+ab2=ab2当a=﹣2,b=2时,原式=(﹣2)×22=﹣2×4=﹣8.35.﹣6a•(﹣﹣a+2)=3a3+2a2﹣12a36.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.37.(3x2y﹣2x+1)(﹣2xy)=﹣6x3y2+4x2y﹣2xy.38.由题意可得:这个长方形的宽为(a+b)﹣(a﹣b)=2b(cm),长方形的周长为2(a+b+2b)=2a+6b(cm),长方形的面积为(a+b)×2b=2ab+2b2(cm2).39.原式=﹣8a3b3(5a2b﹣ab2+b3)=﹣40a5b4+4a4b5﹣2a3b6.40.(﹣a2b)(b2﹣a+)=(﹣a2b)•b2+(﹣a2b)(﹣a)+(﹣a2b)•=﹣a2b3+a3b﹣a2b.41.(1)防洪堤坝的横断面积S=[a+(a+2b)]×a=a(2a+2b)=a2+ab.故防洪堤坝的横断面积为(a2+ab)平方米;(2)堤坝的体积V=Sh=(a2+ab)×100=50a2+50ab.故这段防洪堤坝的体积是(50a2+50ab)立方米.42.2x(x2﹣x+3)=2x•x2﹣2x•x+2x•3=2x3﹣2x2+6x43.2ab(5ab+3a2b)=10a2b2+6a3b2;故答案为:10a2b2+6a3b244.(﹣xy2)2(3xy﹣4xy2+1)=x2y4(3xy﹣4xy2+1)=x3y5﹣x3y6+x2y445.(﹣2ab)(3a2﹣2ab﹣4b2)=(﹣2ab)•(3a2)﹣(﹣2ab)•(2ab)﹣(﹣2ab)•(4b2)=﹣6a3b+4a2b2+8ab3.46.原式=xy2(3x2y)﹣xy2•xy2+xy2•y=3x3y3﹣x2y4+xy347.(﹣2ab)(3a2﹣2ab﹣b2)=(﹣2ab)•(3a2)+(﹣2ab)•(﹣2ab)+(﹣2ab)•(﹣b2)=﹣6a3b+4a2b2+2ab3.48.﹣2x2(+y2)=﹣x3y﹣2x2y249.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.50.(﹣2x3y)•(3xy2﹣4xy+1)=﹣2x3y•3xy2+(﹣2x3y)•4xy+(﹣2x3y)=﹣6x4y3+8x4y2﹣2x3y.51.=﹣2a2•ab+2a2•b2=﹣a3b+2a2b²52.=﹣2x2•(xy)﹣2x2•y2=﹣x3y﹣2x2y253.﹣3a•(2a2﹣a+3)=﹣3a•2a2+3a•a﹣3a•3=﹣6a3+3a2﹣9a.54.2a(3a﹣2b)=2a•3a﹣2a•2b=6a2﹣4ab.55.2a2(3a2﹣5b+1),=2a2•3a2+2a2•(﹣5b)+2a2,=6a4﹣10a2b+2a256.原式=10x3﹣15x2+20x57.(﹣2a2b)3(3b2﹣4a+6)=﹣8a6b3•(3b2﹣4a+6)=﹣24a6b5+32a7b3﹣48a6b3.58.2a2•(3a2﹣5b)=2a2•3a2﹣2a2•5b=6a5﹣10a2b.59.这个多项式是(x2﹣4x+1)﹣(﹣3x2)=4x2﹣4x+1,正确的计算结果是:(4x2﹣4x+1)•(﹣3x2)=﹣12x4+12x3﹣3x2.60.∵x△d=x,∴ax+bd+cdx=x,∴(a+cd﹣1)x+bd=0,∵有一个不为零的数d使得对任意有理数x△d=x,则有①,∵1△2=3,∴a+2b+2c=3②,∵2△3=4,∴2a+3b+6c=4③,又∵d≠0,∴b=0,∴有方程组解得.故a的值为5、b的值为0、c的值为﹣1、d的值为4.。
七年级数学上册同步练习2.1.2单项式与多项式时间:30分钟一、单选题1.代数式:①2a 3;①πr 2;①21x 12+;①﹣3a 2b ;①a bc +.其中整式的个数是( )A .2B .3C .4D .5 2.单项式﹣2πxy 2的系数和次数分别是( )A .﹣2和4B .2π和3C .2和4D .﹣2π和3 3.整式-0.3x 2y ,0,12x +,-22abc 2,13x 2,−14y ,−13ab 2-12a 2b 中单项式的个数有()A .6个B .5个C .4个D .3个 4.下列各式中不是单项式的是( )A .a +bB .-2aC .0D .π 5.多项式32281x x x -+-与多项式323253x mx x +-+的和不含二次项,则m 为( ) A .2 B .-2 C .4 D .-4 6.下列说法正确的是( )A .m 2+m ﹣1的常数项为1B .单项式32mn 3的次数是6次C .多项式5m n+的次数是1,项数是2D .单项式﹣12πmn 的系数是﹣127.下列判断中错误的是( )A .2a ab --是二次三项式B .3m n-是多项式C .22r π中,系数是2D .2020是单项式8.若(3x 3+M )(2x 2-1)是一个五次多项式,则下列说法中正确的是( ) A .M 是一个三次单项式 B .M 是一个三次多项式C .M 的次数不高于三D .M 不可能是一个常数9.下列说法正确的是( )A .﹣5,a 不是单项式B .﹣2abc的系数是﹣2C .223x y -的系数是﹣13,次数是4 D .x 2y 的系数为0,次数为210.下列各式是5次单项式的是( )A .45xy -B .32xyC .5x yD .32x x +二、填空题11.多项式112m x -﹣3x+7是关于x 的四次三项式,则m 的值是_____. 12.222324x y x y xy -+--的最高次项为_______.13.写出一个系数是﹣1,次数是3的单项式_____________.14.在112,,5,,22x y a x π+--中,是单项式的为_______. 15.在式子2a ,3a ,1+y x ,﹣12,1﹣x ﹣5xy 2,﹣x ,6xy+1,a 2+b 2中,多项式有_____个. 16.单项式317xy -的系数是____________,次数是____________. 17.写出系数为-1,含有字母x y 、的四次单项式___________.18.单项式212xy -的系数和次数的和为__________.三、解答题19.把下列各式式的序号分别填在相应的大括号内: ① 67ab -;① 23n p m -;① 1a +;① 2123xy xy +-;①3m y π;①2221352x y x y +-;①3. 单项式:{ };多项式:{ };20.分别写出下列各项的系数与次数(1)32x ;(2)2x y -;(3)35xy ; (4)23815x y -.21.已知多项式3322351x y x y x ---+.(1)求次数为3的项的系数和.(2)当1x =-,2y =-时,求该多项式的值.22.已知多项式2123536m x y xy x +-+--是六次四项式,且253n m x y -的次数跟它相同. (1)求m 、n 的值;(2)求多项式各项的系数和.23.把下列代数式的序号填入相应的集合括号里.A .3x 2+2y ;B .35x −x 2+1;C .2a b +;D .–23xy ;E .0;F .–x +3y ;G .2xy a . (1)单项式集合{____________________________…}(2)多项式集合{____________________________…}.24.若关于,x y 的多项式23m x nx y x --是一个三次三项式,且最高次项的系数是3-,求m n -的值. 25.一块原长分别为a 、b (1,1a b >>)的长方形,一边增加1,另一边减少1(1)当a b =时,变化后的面积是增加还是减少?(2)当a b >时,有两种方案,第一种方案如图1,第二种方案如图2,请你比较这两种方案,确定哪一种方案变化后的面积比较大.参考答案1.C【解析】①23a ;①πr 2;①12x 2+1;①﹣3a 2b ,都是整式, ①a b c+,分母中含有字母,不是整式,故选:C . 2.D【解析】解:单项式﹣2πxy 2的系数和次数分别是:﹣2π和3.故选:D .3.B【解析】根据单项式的定义:由数字和字母的积组成的代数式叫做单项式判断,有-0.3x 2y ,0,-22abc 2,13x 2,−14y 是单项式,共有5个,故选B. 4.A【解析】解:-2a ,0,π都是单项式,a +b 不是单项式,是多项式,故选A .5.C【解析】解:根据题意得:2x 3-8x 2+x -1+3x 3+2mx 2-5x +3=5x 3+(2m -8)x 2-4x +2, 由结果不含二次项,得到2m -8=0,解得:m =4.故选C .6.C【解析】解:A .m 2+m ﹣1的常数项为﹣1,故本选项错误;B .单项式32mn 3的次数是4次,故本选项错误;C .多项式5m n +的次数是1,项数是2,故本选项正确; D .单项式﹣12πmn 的系数是﹣12π,故本选项错误;故选:C .7.C【解析】解:A 、2a ab --是二次三项式,正确,不合题意;B 、3m n -是多项式,正确,不合题意;C 、22r π中,系数是2π,故此选项错误,符合题意;D 、2020是单项式,正确,不合题意.故选:C .8.C【解析】解:(3x 3+M )(2x 2-1)=6x 5-3x 3+2Mx 2-M ,因为结果是一个五次多项式,所以M 的次数不高于三,故选:C .9.C【解析】A 、﹣5,a 是单项式,故此选项错误;B 、2abc -的系数是12-,故此选项错误; C 、223x y -的系数是13-,次数是4,故此选项正确; D 、x 2y 的系数为1,次数为3,故此选项错误.故选:C .10.A【解析】解:A 、单项式45xy -的次数是1+4=5次,符合题意;B 、单项式32xy 的次数是1+1=2次,不符合题意;C 、单项式5x y 的次数是5+1=6次,不符合题意;D 、32x x +是多项式不是单项式,其次数是3次,不符合题意;故选择:A11.5【解析】解:①多项式112m x -﹣3x+7是关于x 的四次三项式, ①m ﹣1=4,解得m =5,故答案为:5.12.222x y -.【解析】解:222324x y x y xy -+--的最高次项为:222x y -.故答案为:222x y -.13.3a -.【解析】解:系数是-1、次数是3的单项式,如:3a -.故答案为:3a -.14.1,5,2a π- 【解析】解:在112,,5,,22x y a x π+--中, 单项式有:1,5,2a π-, 故答案为:1,5,2a π-. 15.3【解析】根据多项式的定义可知,上述各式中属于多项式的有:1﹣x ﹣5xy 2、6xy+1、a 2﹣b 2,共3个.故答案为3.16.17- 4 【解析】解:单项式317xy -的系数是17-,次数是1+3=4, 故答案为:17-;4. 17.3-x y【解析】解:系数为-1,含有字母x y 、的四次单项式为:3-x y .故答案为:3-x y .18.52【解析】解:单项式212xy -的系数和次数分别是:-12和3, ①单项式212xy -的系数和次数的和为-12+3=52. 故答案为:52. 19.① ① ①,① ① ①【解析】单项式:{ ① ① ① };多项式:{ ① ① ① };20.(1)系数:2,次数:3;(2)系数:-1,次数:3;(3)系数:35,次数:2;(4)系数:815-,次数:5 【解析】解:(1)32x 的系数:2,次数:3;(2)2x y -系数:-1,次数:3;(3)35xy 系数:35,次数:2; (4)23815x y -系数:815-,次数:5. 21.(1)3;(2)15【解析】解:(1)多项式3322351x y x y x ---+中,次数为3的项是33x ,3y -和25x y -,系数分别是3,-1,-5,①和为3-1-5=-3;(2)当1x =-,2y =-时,3322351x y x y x ---+=15.22.(1)3m =,2n =;(2)-13【解析】解:(1)①多项式2123536m x y xy x +-+--是六次四项式,①216m ++=,解得,3m =,5-m=5-3=2,253n m x y -的次数与多项式的次数相同,226n +=,解得,2n =.(2)各项的系数之和为:51(3)(6)13-++-+-=-.23.(1)D ,E (2)B ,C ,F【解析】(1)单项式集合:{D ,E…};(2)多项式集合:{B ,C ,F…}.24.-1【解析】①关于x ,y 的多项式23m x nx y x --是一个三次三项式,且最高次项的系数是3,①m +1=3,﹣n =- 3,解得:m =2,n =3, ①231m n -=-=-.25.(1)减小(2)方案2变化后面积大【解析】解:(1)设原来长方形的面积是S 前,变化后的长方形的面积是S 后, 根据题意得:S 前=ab ,S 后=(a +1)(b −1)=ab +b −a −1, ①S 后−S 前=ab +b −a −1−ab =b −a −1, ①a =b ,①b −a −1=−1<0,①S 后<S 前,①变化后面积减小了.(2)方案1,S 1=(a +1)(b −1)=ab −a +b −1, 方案2,S 2=(a −1)(b +1)=ab +a −b −1, ①S 1−S 2=−2a +2b =−2(a −b ), ①a >b ,①S 1−S 2<0,①方案2变化后面积大.。
初一数学单项式与多项式试题1.单项式7ab2c3的次数是()A.3B.5C.6D.7【答案】C【解析】根据单项式次数的定义来求解.单项式中所有字母的指数和叫做这个单项式的次数.解:根据单项式定义得:单项式7ab2c3的次数是1+2+3=6.故选C.2.单项式﹣2xy的系数和次数分别是()A.2,1B.2,2C.﹣2,1D.﹣2,2【答案】D【解析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.解:根据单项式系数、次数的定义可知:单项式﹣2xy的系数是﹣2;次数是2.故选D.3.下列说法正确的是()A.4不是单项式B.﹣的系数是2C.的系数是D.πr2的次数是3【答案】C【解析】根据单项式、概念及单项式的次数、系数的定义解答.解:根据单项式、多项式及单项式的次数和系数的定义:A、4是单项式,故错误;B、﹣的系数是﹣,故错误;C、的系数是,故正确;D、πr2的次数是2,故错误.故选C.4.已知下列各式中:,其中单项式个数有()A.3个B.4个C.5个D.6个【答案】B【解析】根据单项式的定义解答,定义为:数字与字母的积叫做单项式.(单独的一个数或一个字母也叫单项式).解:根据单项式的定义可知abc,2πR,,0是单项式;x+3y,是多项式.故选B.5.多项式1+xy﹣xy2的次数及最高次项的系数分别是()A.2,1B.2,﹣1C.3,﹣1D.5,﹣1【答案】C【解析】根据多项式次数和单项式的系数的定义求解.多项式的次数是多项式中最高次项的次数,即﹣xy2的次数.解:多项式1+xy﹣xy2的次数及最高次项的系数分别是3,﹣1.故选C.6.多项式1﹣2xy+xy3的次数是()A.1B.2C.3D.4【答案】D【解析】多项式的次数是多项式中最高次项的次数,根据定义即可求解.解:多项式1﹣2xy+xy3的次数最高的项xy3的次数是4,因而多项式的次数是4.故选D.7.下列说法正确的是()A.单项式m既没有系数,也没有次数B.单项式5×105t的系数是5C.﹣2007是常数D.多项式的常数项是【答案】C【解析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.不含字母的项是常数项.解:A、单项式m的系数是1,次数是1,故错误;B、单项式5×105t的系数是5×105,故错误;C、﹣2007是常数;D、多项式的常数项是﹣,故错误故选C.8.下列说法中正确的个数是()(1)a和0都是单项式.(2)多项式﹣3a2b+7a2b2﹣2ab+1的次数是3.(3)单项式﹣πa2b的系数为﹣.(4)x2+2xy﹣y2可读作x2、2xy、﹣y2的和.A.1个B.2个C.3个D.4个【答案】B【解析】根据单项式与多项式的定义对各选项依次进行判断即可解答.解:(1)a和0都是单项式,正确.(2)多项式﹣3a2b+7a2b2﹣2ab+1的次数是4,错误.(3)单项式﹣πa2b的系数为﹣π,错误.(4)x2+2xy﹣y2可读作x2、2xy、﹣y2的和,正确.正确的有2个.故选B.9.下列说法正确的是()A.﹣2不是单项式B.﹣a的次数是0C.的系数是3D.是多项式【答案】D【解析】根据单项式定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.可判断出A、B、C的正误,再根据多项式定义可判断出D的正误.解:A、﹣2是单项式,故此选项错误;B、﹣a的次数是1,故此选项错误;C、的系数是,故此选项错误;D、是多项式,故此选项正确;故选:D.10.下列多项式是二次三项式的是()A.2x2+3B.3x2+2C.2x+3y+1D.2x2+3y+1【答案】D【解析】找到单项式的最高次数是2的,整个式子由3个单项式组成的多项式即可.解:A、单项式的最高次数是2,整个式子由2个单项式组成,不符合题意;B、单项式的最高次数是2,整个式子由2个单项式组成,不符合题意;C、单项式的最高次数是1,整个式子由3个单项式组成,不符合题意;D、单项式的最高次数是2,整个式子由3个单项式组成,符合题意;故选D.。
单项式和多项式练习题
一、填空题
1. 与_字母_的积组成的代数式。
单独的一个_数_或_字母_也是单项式。
2. ,对应单项式中的数字(包括数字符号)部分。
如x 3,π, ab ,2.6h ,-m 它们都是单项式,系数分别为_1,π,1,2.6,-1_
3. 单项式次数:一个单项式中,_所有字母_的指数的和叫这个单项式的次数。
只与字母指数有关。
如x 3,ab ,2.6h ,-m, 它们都是单项式,次数分别为_3,2,1,1_分别叫做三次单项式,二次单项式,一次单项式。
7. 一个多项式含有几项,就叫几项式。
8.当a =-1时,3a 4.
9. 单项式2
1xy 2z 是_4_次单项式;若单项式-2x 3y n -3是一个关于x ,y 的5次单项式,则n=_5_.
10.单项式:32y x 34-22005xy 3
11.多项式:y y x 5xy 3x 43223+-+
12.y 3x 42-
13.多项式a 2-21ab 2-b 2有_3_项,其中-2
1ab 2
14.把代数式2a 2b 2c 和a 3b 2的相同点填在横线上:(1(2
15.x 3y 2-2xy 2-3xy 4-9是_5_次_4_项式,
16.多项式x 2y +xy -xy 2-53中的三次项是;当a=__1_时,整式x 2+a -1是单项式.
17.如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则
18. 若多项式(m+2)12-m x y 2-3xy 3是五次二项式,则m=__2__.
19. 写出一个关于x 的二次三项式,使得它的二次项系数为21-
,则这个二次三项式是__________。
20. 请写出一个关于x 的二次三项式,使二次项的系数为1,一次项的系数为-3,常数项是2,则这个二次三项式是__x ²-3x+2__.
21. 若(m -1)xy n +1是关于x 、y 的系数为-2的三次单项式,则m =__-1__,n =__1__.
二、选择题
1. 在下列代数式:1,2
12,3,1,2122+-++++x x b ab ab ππ中,多项式有( A ) A. 2个 B. 3个 C. 4个 D. 5个
2. 下列多项式次数为3的是( C )
A -5x 2+6x -1 B. πx 2+x -1 C. a 2b +ab +b 2 D. x 2y 2-2xy -1
3. 下列说法中正确的是( B )
A.代数式一定是单项式
B. 单项式一定是代数式
C. 单项式x 的次数是0
D. 单项式-π2x 2y 2的次数是6
4. 下列语句正确的是( D )
A. x 2+1是二次单项式
B. -m 2的次数是2,系数是1
C. 2
1x 是二次单项式 D. 32abc 是三次单项式 5. 2a 2-3ab +2b 2-(2a 2+ab -3b 2)的值是( D )
A2ab -5b 2 B. 4ab +5b 2 C. -2ab -5b 2 D. -4ab +5b 2
6.下列说法正确的是( C )
A. 8-z
2是多项式 B. -x 2yz 是三次单项式,系数为0 C. x 2-3xy 2+2 x 2y 3-1是五次多项式 D. x
b 5-是单项式 7.下列结论中,正确的是( C )
A. 单项式5
2ab 2的系数是2,次数是2 B. 单项式a 既没有系数,也没有指数 C. 单项式-ab 2c 的系数是—1,次数是4 D. 没有加减运算的代数式是单项式
8. 单项式-x 2yz 2的系数、次数分别是( C )
A. 0,2
B. 0,4
C. -1,5
D. 1,4
9.下列说法正确的是( C )
A. 没有加、减运算的式子叫单项式
B. 35πab 的系数是3
5,次数是3 C. 单项式―1的次数是0 D. 2a 2b -2ab+3是二次三项式
10.如果一个多项式的次数是5,那么这个多项式的任何一项的次数( D )
A .都小于5 B. 都等于5 C.都不小于5 D.都不大于5
11.在y 3+1,m 3+1,―x 2y ,c
ab ―1,―8z ,0中,整式的个数是( C ) A. 6 B.3 C.4 D.5
解答题
1.如果多项式3x m -(n―1)x+1是关于x 的二次二项式,试求m ,n 的值。
m=2,n=1
2.如果单项式3a 2b 43-m 的次数与单项式31x 3y 2z 2的次数相同,试求m 的值。
m=3。