三年级奥数专题:能被2,5整除的数的特征
- 格式:docx
- 大小:16.20 KB
- 文档页数:6
能被2、5整除的数的特征教学设计知识目标:1、让学生经历能被2、5整除的数的探索过程,掌握能被2、5整除的数的特征。
2、使学生掌握奇数、偶数的概念,知道自然数的分类。
能力目标:能运用特征,正确迅速地判断一个数能否被2 、5 整除。
情感目标:创设和谐、活跃的课堂气氛,注重学生学习习惯的养成,激发学生学习数学的兴趣。
教学重点:掌握能被2、5整除的数的特征及奇数、偶数的概念.教学难点:灵活运用能被2、5整除的数的特征及奇数、偶数的概念进行判断.教学过程:一、导入1、教师;我们学习了整除的有关知识,下面我们做一些数字游戏。
(1)2的倍数(2)能被5整除的数2、报数抢答游戏(1)老师报出一些数。
如:2、15、43、66、90、105……(2)提出要求:能被2整除的数,伸两个手指;能被5整除的数,伸五个手指;都不能的不伸。
3、导入新课(1)提问:你回答得这么快,有什么窍门吗?(2)过渡:在数学计算中,我们常要判断一个数能否被另一个数整除,如果我们知道了这些数的特征,判断就简便了。
这节课我们就来研究能被2、5整除的数的特征。
(3)板书课题。
(板书课题:能被2、5 整除的数的特征)二、新授(一)能被2整除的数的特征1、口答出20以内被2整除的数。
(教师板书)2、4、6、8、1012、14、16、18、202、如果再写下去,是什么?观察这些被2整除的数,有什么共同的特征?3、照上面的规律,继续写下去,是不是仍具备你发现的特征?4、学生试着总结能被2 整除的数的特征。
5、是不是所有的具备这样特征的数都能被2整除呢?(生出数,生检验)6、板书学生举的例子(两位数、三位数)反例7、总结特征教师板书8、及时巩固。
小结:我们掌握了能被2 整除的数的特征,咱们做个报数游戏:让学生依次报数,下令让报的数能被2 整除的同学站起来。
(二)认识奇数、偶数1、介绍偶数、奇数。
(1)提问:有谁知道这些数又叫什么数?(2)板书:偶数、奇数(3)小组交流学习。
能被2、3、4、5、7、9、11、13、27、99等数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c 整除。
性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。
1、看末尾。
能被2整除的数,个位上的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除能被4、25整除的数,末二位所组成的两位数能被4整除,那么这个数能被4整除能被8、125整除的数,末三位数能被8整除,那么这个数能被8整除2、看数字和能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被9整除的数,各个数位上的数字和能被9整除,那么这个数能被9整除能被11整除的数,奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被11整除,则该数就能被11整除。
3、截尾法能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推。
能被11整除的数, 11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1.如:242是不是11的倍数,24—2=22,所以242是11的倍数。
1232,123-2=121, 12—1=11,1232是11的倍数.能被13整除的数,若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。
能被2、3、5、7、9、11、13、17、19整除的数的特征能被2整除的数的特征是个位上是偶数,能被3整除的数的特征是所有位数的和是3的倍数(例如:315能被3整除,因为3+1+5=9是3的倍数)能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
能被8(或125)整除的数的特征:末三位数能被8(或125)整除。
能被5整除的数个位上的数为0或5,能被7整除的数的特征若一个整数的个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果数字仍然太大不能直接观察出来,就重复此过程。
能被9整除的数的特征是所有位数的和是9的倍数能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。
例如:判断491678能不能被11整除。
奇位数字的和9+6+8=23偶位数位的和4+1+7=1223-12=11因此,491678能被11整除。
这种方法叫“奇偶位差法”。
能被13整除的数的特征把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。
如果数字仍然太大不能直接观察出来,就重复此过程。
如:判断1284322能不能被13整除。
128432+2×4=12844012844+0×4=128441284+4×4=13001300÷13=100所以,1284322能被13整除。
【其它方法:能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。
】例1:判断1059282是否是7的倍数?例2:判断3546725能否被13整除?能被17整除的数的特征把一个整数的个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。
能被2,3,5,7整除的数的特征“嘿,同学们,今天咱们来聊聊能被 2、3、5、7 整除的数的特征哈。
”能被 2 整除的数的特征很简单,就是个位数是 0、2、4、6、8 的数。
比如说 10、12、14 这些数,它们的个位数都是偶数,所以都能被 2 整除。
就好像咱们排队分组,2 个一组,这些数都能正好分完,没有剩余。
能被 3 整除的数呢,它的特征是这个数的各个数位上的数字之和能被 3 整除。
举个例子哈,123,1+2+3=6,6 能被 3 整除,所以 123 就能被 3 整除。
再比如 369,3+6+9=18,18 能被 3 整除,那 369 也就可以。
这就好比是把一堆东西分成 3 份,每份的数量加起来能被 3 整除才行。
能被 5 整除的数,特征就是个位是 0 或 5 的数。
像 5、10、15 等等,很容易看出来吧。
这个就像是分组,5 个一组,这些数都能刚好分完。
那能被 7 整除的数呢,这个稍微有点复杂。
有一种方法是把这个数的末三位数与末三位以前的数字所组成的数之差,如果能被 7 整除,那么这个数就能被 7 整除。
比如说 1059,末三位 059,前面是 1,1000-59=941,941 能被 7 整除,所以 1059 能被 7 整除。
还有一种割尾法,就是用这个数去掉末位数字后再减去末位数字的 2 倍,如果差是 7 的倍数,那么原来这个数就能被 7 整除。
比如 147,去掉 7 后是 14,14-7×2=0,0 是 7 的倍数,所以 147 能被 7 整除。
咱再来说说实际应用。
比如说在分东西的时候,知道总数,想知道能不能平均分给 2 个人、3 个人、5 个人或者 7 个人,就可以用这些特征来判断。
或者在一些数学竞赛中,也经常会出现判断一个数能不能被这些数整除的题目。
再比如在编程中,也会用到这些整除的特征来进行一些算法的设计。
同学们,这些特征都记住了吧?多练习练习,以后遇到这种问题就轻松解决啦。
能被25398125等数整除的数特征一个数能否被另一个数整除,可以通过除法运算来进行验证。
如果一个数被另一个数整除,那么它们之间就存在整数倍的关系。
在这篇文章中,我们将研究一下能被2、5、3、9、8、125等数整除的数的特征。
首先,我们来看能被2整除的数。
当一个数被2整除时,意味着它是一个偶数。
因为偶数是2的倍数,所以它们之间存在整数倍的关系。
例如,4、10、20等都是偶数,它们都可以被2整除。
接下来,我们考虑能被5整除的数。
当一个数被5整除时,它个位数为0或者5、这是因为5是10的一半,所以能被5整除的数最后一位只能是0或者5、例如,15、20、105等都可以被5整除。
第三个数是能被3整除的数。
当一个数被3整除时,它的各个位数之和能被3整除。
例如,18能被3整除,因为1+8=9,而9能被3整除。
同样地,27和36也能被3整除。
接下来,我们考虑能被9整除的数。
当一个数被9整除时,它的各个位数之和能被9整除。
这跟能被3整除的数类似。
例如,27能被9整除,而2+7=9,9能被9整除。
同样地,36、45和81也能被9整除。
第五个数是能被8整除的数。
当一个数被8整除时,它的末三位形成的三位数能被8整除。
例如,104能被8整除,而104的末三位是4,4能被8整除。
同样地,312和520也能被8整除。
最后,我们来看能被125整除的数。
当一个数被125整除时,它的末三位形成的三位数能被125整除。
例如,1000能被125整除,而1000的末三位是0,0能被125整除。
同样地,625和375也能被125整除。
以上就是能被2、5、3、9、8、125等数整除的数的特征。
这些特征给了我们判断一个数能否被这些数整除的线索。
如果一个数同时满足以上条件,那么它就能被2、5、3、9、8、125等数整除。
能被2,5整除的数在数学中,能同时被2和5整除的数被称为“能被2,5整除的数”。
这类数在数论和数学运算中有着重要的作用,并且在计算机科学、经济学和其他领域也经常被应用。
什么是能被2,5整除的数?能被2,5整除的数即能被2和5整除的数,也就是能被2和5同时整除的自然数。
具体来说,能被2整除的数是偶数,能被5整除的数是5的倍数。
因此,能被2,5整除的数可以理解为偶数且是5的倍数的数。
能被2,5整除的数的性质能被2,5整除的数具有以下性质:1.能被2,5整除的数一定是能被10整除的数,因为10是2和5的最小公倍数。
2.能被2,5整除的数的个位数字只能是0或5,因为能被5整除的数的个位数字只能是0或5,而能被2整除的数的个位数字只能是偶数(0、2、4、6、8)。
3.能被2,5整除的数的末尾两位数字是可以循环的,即个位数字和十位数字可以重复出现。
例如,20、25、30、35、…都是能被2,5整除的数。
能被2,5整除的数的应用能被2,5整除的数在计算机科学、经济学和其他领域有着重要的应用。
以下列举了一些常见的应用场景:1. 计算机科学在计算机科学中,能被2,5整除的数被广泛应用于算法设计和数据结构中。
例如,在处理循环和迭代过程中,能被2,5整除的数可以用来控制循环次数和迭代次数。
此外,在计算机网络和分布式系统中,能被2,5整除的数也用于实现并行计算和任务分配。
2. 经济学在经济学中,能被2,5整除的数被用于货币计量和价格计算。
例如,在某些国家的货币系统中,货币单位被划分为100个较小的单位,这就意味着能被2,5整除的数在货币换算和价格计算中起到了重要作用。
3. 数论和数学运算在数论和数学运算中,能被2,5整除的数被广泛研究和应用。
例如,能被2,5整除的数在数论中可以用来证明定理和推理结论。
此外,能被2,5整除的数还可以应用于数学运算中,例如求和、求积和求平均值等操作。
总结能被2,5整除的数是能被2和5同时整除的自然数,具有一些特殊的性质和应用场景。
能被2、3、4、5、6、7、8、9等数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c 整除。
性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。
能被2整除的数,个位上的数是0、2、4、6、8、的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除能被6整除的数,个数位上的数字和能被3整除的偶数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
能被8整除的数,百位、个位和十位所组成的三位数能被8整除,那么这个数能被8整除能被9整除的数,各个数位上的数字和能被9整除,那么这个数能被9整除能被10整除的数,如果一个数既能被2整除又能被5整除,那么这个数能被10整除(即个位数为零)能被11整除的数,奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被11整除,则该数就能被11整除。
下面我们讨论能被2,5,3,9,4,25,8,125,11,7,13等数整除的数的特征.1.能被2或5整除的数的特征是:如果这个数的个位数能被2或5整除,那么这个数就能被2或5整除.也就是说:一个数的个位数字是0、2、4、6、8时,这个数一定能被2整除.一个数的个位数字是0、5时,这个数一定能被5整除.例如要判断18762,9685,8760这三个数能否被2或5整除,根据这三个数的个位数字的特点,很快可以判断出,2|18762,2不能整除9685,2|8760;5不能整除18762,5|9685,5|8760.2.能被3或9整除的数的特征是:如果这个数的各个数位上的数字和能被3或9整除,这个数就能被3或9整除.例如要判断47322能否被9整除,由于47322=40000+7000+300+20+2=4×(9999+1)+7×(999+1)+3×(99+1)+2×(9+1)+2=4×9999+7×999+3×99+2×9+4+7+3+2+2=9×(4×1111+7×111+3×11+2×1)+(4+7+3+2+2)9一定能整除9×(4×1111+7×111+2×11+2×1),所以要判断9能否整除47322,只要看9能否整除4+7+3+2+2=18,因为9|18,所以9|47322.可以看到4+7+3+2+2恰好是这个数的各个数位上的数字和.类似的方法我们还可以判断出3|47322.3.能被4或25整除的数的特征是:如果这个数的末两位数能被4或25整除,这个数就能被4或25整除.例如要判断63950能否被4或25整除,由于63950=639×100+50,100=4×25,所以100能被4或25整除,根据整除的性质,639×100能被4或25整除,要判断63950能否被4或25整除,只要看50能否被4或25整除,因为4不能整除50,25|50,所以4不能整除63950,25|63950.可以看出50恰好是63950的末两位数.4.能被8或125整除的数的数的特征是:如果这个数的末三位数能被8或125整除,这个数就能被8或125整除.例如要判断4986576能否被8整除,由于4986576=4986×1000+576,1000=8×125,所以8|1000,根据整除的性质,8|4986000,要判断8能否整除4986576,只要看8能否整除576,因为8|576,所以8|4986576.可以看出576恰好是4986576的末三位数.同理可以判断这个数不能被125整除.5.能被11整除的数的特征是:如果这个数的奇数位上的数字和与偶数位上的数字和的差(大减小)能被11整除,这个数就能被11整除.奇数位是指从个位起的第1、3、5…位,其余数位是偶数位.例如要判断64251能否被11整除,由于64251=6×104+4×103+2×102+5×10+1=6×(9999+1)+4×(1000+1-1)+2×(99+1)+5×(10+1-1)+1=6×(11×909+1)+4×(11×91-1)+2×(11×9+1)+5×(11-1)+1=[11×(6×909+4×91+2×9+5)]+[(6+2+1)-(4+5)]上式第一个中括号内的数能被11整除,要判断64251能否被11整除,只要(6+2+1)-(4+5)=0能被11整除,因为11|0,所以11|64251,而(6+2+1)-(4+5)恰好是64251的奇数位上的三个数减去偶数位上的两个数字.6.能被7、11、13整除的数的特征是:如果这个数的末三位数所组成的数与末三位以前的数所组成的数的差(大减小)能被7、11、13整除,这个数就能被7、11、13整除.例如要判断1096823能否被7、11、13整除,由于7×11×13=1001,所以7|1001,11|1001,13|10011096823=1096×1000+823=1096×(1001-1)+823=1096×1001-(1096-823)因为1096×1001能被7、11、13整除,要判断1096823能否被7、11、13整除,只要判断1096-823=273能否被7、11、13整除,由于7|273,13|273,11不能整除273,所以7|1096823,13|1096823,11不能整除1096823,而1096-823恰好是1096823的末三位以前的数所组成的四位数减去1096823的末三位数所组成的数.下面举例说明整除的性质及数的整除特征的应用.例1在□内填上适当的数字,使(1)34□□能同时被2、3、4、5、9整除;(2)7□36□能被24整除;(3)□1996□□能同时被8、9、25整除.分析:(1)题目要求34□□能同时被2、3、4、5、9整除,因为能被4整除的数一定能被2整除,能被9整除的数一定能被3整除,所以34□□只要能被4、9、5整除,就一定能被2、3、4、5、9整除.先考虑能被5整除的条件.个位是0或5,再考虑能被4整除的条件,由于4不能整除34□5,所以个位必须是0,最后考虑能被9整除的条件,34□0的各个数位上的数字和是9的倍数,3+4+□+0=7+□,这时十位数字只能是2,问题得以解决.(2)题目要求7□36□能被24整除,24=3×8,而3与8互质,根据整除的性质,考虑被24整除,只要分别考虑被3、8整除就行了.先考虑被8整除的条件,7□36□的末三位数所组成的数36□能被8整除,所以个位数字只能是0或8,当个位数字为0时,由于要求7□360能被3整除,所以7+□+3+6+0=16+□能被3整除,这样千位数字只能是2或5或8;当个位数字为8时,由于要求7□368能被3整除,所以7+□+3+6+8=24+□能被3整除,这样千位数字只能是0或3或6或9.(3)题目要求□1996□□能同时被8、9、25整除,首先考虑能被25整除的条件,□1996□□的末两位数能被25整除,末两位数只能是00,25,50,75.其次考虑能被8整除的条件,□1996□□的末三位数字组成的数能被8整除,但600,625,650,675这四个数中,只有600这个数能被8整除.最后□199600这个数能被9整除,其各个数位上的数字和□+1+9+9+9+6+0=25+□能被9整除,所以第七位数字是2.解:(1)因为34□□能同时被2、3、4、5、9整除,因此只要34□□能同时被4、5、9整除.由于34□□能被5整除,所以个位数字只能是0或5,又因为4不能整除34□5,所以个位必须是0,又34□0能被9整除,3+4+□+0=7+□能被9整除,所以十位数字只能是2.3420能同时被2、3、4、5、9整除.(2)因为24=3×8,3与8互质,7□36□被8整除的条件是,7□36□的末三位数所组成的数36□能被8整除,所以个位数字只能是0或8;当个位数字是0时,7□360能被3整除,7+□+3+6+0=16+□能被3整除,所以千位数字只能是2或5或8;当个位数字是8时,7□368能被3整除,7+□+3+6+8=24+□能被3整除,所以千位数字只能是0或3或6或9.所以所求的数为72360,75360,78360,70368,73368,76368,79368.(3)因为□1996□□能被25整除,□1996□□的末两位数能被25整除,这样末两位数只能是00,25,50,75;又因为□1996□□能被8整除,但□1996□□的末三位数600,625,650,675这四个数中,只有600能被8整除;而□199600又能被9整除,□+1+9+9+6+0+0=25+□能被9整除,所在第七位数字只能是2.所以2199600能同时被8、9、25整除.例2把915连续写多少次,所组成的数就能被9整除,并且这个数最小.分析:要求这个数能被9整除,而9+1+5=15显然不能被9整除,但3×15能被9整除,因此只要把915连续写3次,所组成的数就能被9整除,并且这个数最小.解:因为9+1+5=15,15不能被9整除,而3×15能被9整除,所以只要把915连续写3次,即915915915必能被9整除,且这个数最小.例3希希买了九支铅笔,两支圆珠笔,三个练习本和五块橡皮.她看到圆珠笔每支3角9分,橡皮每块6分,其余她没注意.售货员要她付3元8角,希希马上说:“阿姨你算错了.”请问售货员的帐算错了没有?为什么?分析:根据圆珠笔与橡皮的单价,可以算出圆珠笔、橡皮共需39×2+6×5=108(分),而3元8角即380分减去108分等于272分,这272分是买九支铅笔、三个练习本的价格,这9与3正好是3的倍数,也就是说九支铅笔与三个练习本的总价钱应是3的倍数(无论它们各自的单价是多少),而272不是3的倍数,显然是售货员把账算错了.解:两支圆珠笔和五块橡皮的总钱数39×2+6×5=108(分)3元8角即380分,380-108=272(分)应是九支铅笔与三个练习本付的总价钱,因为九支铅笔与三个练习本的总价钱必是3的倍数,而272不是3的倍数,所以售货员把账给算错了.。
三年级奥数专题:能被2,5整除的数的特征
同学们都知道,自然数和0统称为(非负)整数.同学们还知道,两个整数相加,和仍是整数;两个整数相乘,乘积也是整数;两个整数相减,当被减数不小于减数时,差还是整数.两个整数相除时,情况就不那么简单了.如果被除数除以除数,商是整数,我们就说这个被除数能被这个除数整除;否则,就是不能整除.例如,
84能被2,3,4整除,因为84÷2=42,84÷3=28,84÷4=21,42,28,21都是整数.
而84不能被5整除,因为84÷5=16……4,有余数4.也不能被13整除,因为84÷13=6……6,有余数6.
因为0除以任何自然数,商都是0,所以0能被任何自然数整除.
这一讲的内容是能被2和5整除的数的特征,也就是讨论什么样的数能被2或5整除.
1.能被2整除的数的特征
因为任何整数乘以2,所得乘数的个位数只有0,2,4,6,8五种情况,所以,能被2整除的数的个位数一定是0,2,4,6或8.也就是说,凡是个位数是0,2,4,6,8的整数一定能被2整除,凡是个位数是1,3,5,7,9的整数一定不能被2整除.
例如,38,172,960等都能被2整除,67,881,235等都不能被2整除.
能被2整除的整数称为偶数,不能被2整除的整数称为奇数.
0,2,4,6,8,10,12,14,…就是全体偶数.
1,3,5,7,9,11,13,15,…就是全体奇数.
偶数和奇数有如下运算性质:
偶数±偶数=偶数,
奇数±奇数=偶数,
偶数±奇数=奇数,
奇数±偶数=奇数,
偶数×偶数=偶数,
偶数×奇数=偶数,
奇数×奇数=奇数.
例1在1~199中,有多少个奇数?有多少个偶数?其中奇数之和与偶数之和谁大?大多少?
分析与解:由于1,2,3,4,…,197,198,199是奇、偶数交替排列的,从小到大两两配对:
(1,2),(3,4),…,(197,198),
还剩一个199.共有198÷2=99(对),还剩一个奇数199.所以
奇数的个数=198÷2+1=100(个),
偶数的个数=198÷2=99(个).
因为每对中的偶数比奇数大1,99对共大99,而199-99=100,所以奇数之和比偶数之和大,大100.
如果按从大到小两两配对:
(199,198),(197,196),…,(3,2),那么怎样解呢?
例2(1)不算出结果,判断数(524+42-429)是偶数还是奇数?
(2)数(42□+30-147)能被2整除,那么,□里可填什么数?
(3)下面的连乘积是偶数还是奇数?
1×3×5×7×9×11×13×14×15.
解:根据奇偶数的运算性质:
(1)因为524,42是偶数,所以(524+42)是偶数.又因为429是奇数,所以(524+42-429)是奇数.
(2)数(42□+30-147)能被2整除,则它一定是偶数.因为147是奇数,所以数(42□+30)必是奇数.又因为其中的30是偶数,所以,数42□必为奇数.于是,□里只能填奇数1,3,5,7,9.
(3)1,3,5,7,9,11,13,15都是奇数,由1×3为奇数,推知1×3×5为奇数……推知
1×3×5×7×9×11×13×15
为奇数.因为14为偶数,所以
(1×3×5×7×9×11×13×15)×14为偶数,即
1×3×5×7×9×11×13×14×15为偶数.
由例2得出:
(1)在全部是加、减法的运算中,若参加运算的奇数的个数是偶数,则结果是偶数;若参加运算的奇数的个数是奇数,则结果是奇数. (2)在连乘运算中,只要有一个因数是偶数,则整个乘积一定是偶数. 例3在黑板上先写出三个自然数3,然后任意擦去其中的一个,换成所剩两个数的和.照这样进行100次后,黑板上留下的三个自然数的奇偶性如何?它们的乘积是奇数还是偶数?为什么?
解:根据奇偶数的运算性质知:
第一次擦后,改写得到的三个数是6,3,3,是“二奇一偶”;
第二次擦后,改写得到的三个数是6,3,3或6,9,3或6,3,9,都是“二奇一偶”.
以后若擦去的是偶数,则改写得到的数为二奇数之和,是偶数;若擦去的是奇数,则改写得到的数为一奇一偶之和,是奇数.总之,黑板上仍保持“二奇一偶”.
所以,无论进行多少次擦去与改写,黑板上的三个数始终为“二奇一偶”.它们的乘积
奇数×奇数×偶数=偶数.
故进行100次后,所得的三个自然数的奇偶性为二奇数、一偶数,它们的乘积一定是偶数.
2.能被5整除的数的特征
由0×5=0,2×5=10,4×5=20,6×5=30,8×5= 40,…可以推想任何一个偶数乘以5,所得乘积的个位数都是0.
由1×5=5,3×5=15,5×5=25,7×5=35,9×5= 45,…可以推想,任何一个奇数乘以5,所得乘积的个位数都是5.
因此,能被5整除的数的个位数一定是0或5.也就是说,凡是个位数是0或5的整数一定能被5整除;凡是个位数不是0或5的整数一定不能被5整除.例如,870,6275,1234567890等都能被5整除,264,3588等都不能被5整除.
例4由0,3,5写成的没有重复数字的三位数中,有哪些能被5整除?
解:因为个位数为0或5的数才能被5整除,所以由0,3,5写成的没有重复数字的三位数中,只有350,530,305三个数能被5整除. 例5下面的连乘积中,末尾有多少个0?
1×2×3×…×29×30.
解:因为2×5=10,所以在连乘积中,有一个因子2和一个因子5,末尾就有一个0.连乘积中末尾的0的个数,等于1~30中因子2的个数与因子5的个数中较少的一个.而在连乘积中,因子2的个数比因子5的个数多(如4含两个因子2,8含三个因子2),所以,连乘积末尾0的个数与连乘积中因子5的个数相同.连乘积中含因子5的数有5,10,15,20,25,30,这些数中共含有七个因子 5(其中25含有两个因子5).所以,1×2×3×…×29×30的积中,末尾有七个0.
练习18
1.在20~200的整数中,有多少个偶数?有多少个奇数?偶数之和与奇数之和谁大?大多少?
2.不算出结果,直接判断下列各式的结果是奇数还是偶数:
(1)1+2+3+4+5;
(2)1+2+3+4+5+6+7;
(3)1+2+3+…+9+10;
(4)1+3+5+…+21+23;
(5)13-12+11-10+…+3-2+1.
3.由4,5,6三张数字卡片能组成多少个能被2整除的三位数?
4.两个质数之和是13,这两个质数之积是多少?
5.下面的连乘积中,末尾有多少个0?
20×21×22×…×49×50.
6.用0,1,2,3,4,5这六个数码组成的没有重复数字的两位数中,能被5整除的有几个?能被2整除的有几个?能被10整除的有几个?
答案与提示练习18
1.解:偶数有(200-20)÷2+1=91(个),
奇数有(200-20)÷2=90(个),偶数之和比奇数之和大1×90+20=110.
2.(1)奇数;(2)偶数;(3)奇数;
(4)偶数;(5)奇数.
3.6个.
提示:卡片6可以看成9,能被2整除的有
564,654,594,954,456,546.
4.22.
解:13为奇数,它必是一奇一偶之和.因为质数中唯一的偶数是2,所以这两个质数中的偶数是2,奇数是13-2=11,乘积为2×11=22.
5.9个0.
6.有9个能被5整除;有13个能被2整除;有5个能被10整除.。