2019年广西梧州市高考数学一模试卷(理科)〖详解版〗
- 格式:pdf
- 大小:858.76 KB
- 文档页数:15
高考满分作文经验分享同学们在进入高三之前,一定要调整自己的状态,为总复习提前打好基础。
那么如何才能做到这一点呢?又该如何准备呢?俗话说“题好一半文”,一个好的题目是可以为作文加分的。
现在的考试作文,多是不命题作文,所以就很考验题目“抓眼球”的程度。
当然,前提是你的题目得扣题,不偏题,如果你没有把握,那就按照最普通的方法去拟题。
从近年来的高分甚至满分作文中,我们不难发现,这些作文都有一个比较吸引人的标题。
其中能找到的规律是:对偶逗号式、经典句子换用式、诗词化用式、俗语改动式、固定搭配转换式。
一般三段式的文章会导致中间一段过长,使人看不到重点,分不清条理。
而段落过多的话会显得繁琐。
除了拒绝“大肚子”似的三段式作文外,开头结尾一定要简洁,特别是开头,如果占有太多空间,会入题过慢,引起阅卷疲劳。
一般高分作文在用词和语句上都不会太平淡,会使用大量丰富的词汇和富有诗意的句子,而这些就需要我们注意积累了。
平时,不管是在书本上,还是网络上看到的比较好的句子,都可以摘抄下来,等量积累到一定程度,自己写作也就信手拈来了。
多用哲理化、诗意化的句子表达,但切忌浮夸的词藻堆砌,让人不知所云。
一些高分文章往往都能够引经据典,素材十分丰富。
考生们在拿到一个题目后,短时间内能调用各种相关的人物、事例来论证,从古至今,从经典到时下热点......所以,平时多读书,多积累案例素材,也要学会活用课本知识,不需要刻意去背相关的段落,只需要记住相关的人物的具体事件或生平,具体语言用自己的风格来表述即可。
但不要用一些李白、屈原这种烂大街的例子,避免写出来文章千篇一律。
议论文切忌论点不明确,一定要用合理的案例来支撑一个观点,不要模棱两可,表示两个方向都是对的。
前面虽然提到词汇量要丰富,但要在文章有自己的思想和创造性的前提下。
要不然词语再华丽也是空洞的。
如果想要培养自己的写作素养,大家可以多看看《人民日报》等主流媒体的评论文章,可以学到一些思考方向。
广西省梧州市2019-2020学年高考数学一模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知数列{}n a 的前n 项和为n S ,且14121n n S a n +-=-,11a =,*n N ∈,则{}n a 的通项公式n a =( ) A .nB .1n +C .21n -D .21n + 【答案】C【解析】【分析】利用()12n n n a S S n -=-≥证得数列21n a n ⎧⎫⎨⎬-⎩⎭为常数列,并由此求得{}n a 的通项公式. 【详解】 由14121n n S a n +-=-,得1(21)41n n n a S +-=-,可得1(23)41n n n a S --=-(2n ≥). 相减得1(21)(21)n n n a n a ++=-,则12121n n a a n n +=-+(2n ≥),又 由14121n n S a n +-=-,11a =,得23a =,所以12211211a a =⨯-⨯+,所以21n a n ⎧⎫⎨⎬-⎩⎭为常 数列,所以1121211n a a n ==-⨯-,故21n a n =-. 故选:C【点睛】本小题考查数列的通项与前n 项和的关系等基础知识;考查运算求解能力,逻辑推理能力,应用意识.2.若双曲线()22210x y a a-=>的一条渐近线与圆()2222x y +-=至多有一个交点,则双曲线的离心率的取值范围是( )A .)+∞B .[)2,+∞C .(D .(]1,2 【答案】C【解析】【分析】求得双曲线的渐近线方程,可得圆心()0,2到渐近线的距离d ≥,由点到直线的距离公式可得a 的范围,再由离心率公式计算即可得到所求范围.【详解】 双曲线()22210x y a a-=>的一条渐近线为1y x a =,即0x ay -=,由题意知,直线0x ay -=与圆()2222x y +-=相切或相离,则d =≥,解得1a ≥,因此,双曲线的离心率(c e a ==. 故选:C.【点睛】本题考查双曲线的离心率的范围,注意运用圆心到渐近线的距离不小于半径,考查化简整理的运算能力,属于中档题.3.已知向量a r 与向量()4,6m =u r 平行,()5,1b =-r ,且14a b ⋅=r r ,则a =r ( )A .()4,6B .()4,6--C .1313⎛ ⎝⎭D .⎛ ⎝⎭【答案】B【解析】【分析】 设(),a x y =r ,根据题意得出关于x 、y 的方程组,解出这两个未知数的值,即可得出向量a r 的坐标.【详解】设(),a x y =r ,且()4,6m =u r ,()5,1b =-r ,由//a m r u r 得64x y =,即32x y =,①,由514a b x y ⋅=-+=r r ,②,所以32514x y x y =⎧⎨-+=⎩,解得46x y =-⎧⎨=-⎩,因此,()4,6a =--r . 故选:B.【点睛】本题考查向量坐标的求解,涉及共线向量的坐标表示和向量数量积的坐标运算,考查计算能力,属于中等题.4.若不等式22ln x x x ax -+…对[1,)x ∈+∞恒成立,则实数a 的取值范围是( )A .(,0)-∞B .(,1]-∞C .(0,)+∞D .[1,)+∞【答案】B【解析】【分析】转化22ln ,[1,)x x x ax x -+∈+∞…为2ln a x x +…,构造函数()2ln ,[1,)h x x x x =+∈+∞,利用导数研究单调性,求函数最值,即得解.【详解】由22ln ,[1,)x x x ax x -+∈+∞…,可知2ln a x x +….设()2ln ,[1,)h x x x x =+∈+∞,则2()10hx x'=+>, 所以函数()h x 在[1,)+∞上单调递增,所以min ()(1)1h x h ==.所以min ()1a h x =…. 故a 的取值范围是(,1]-∞.故选:B【点睛】 本题考查了导数在恒成立问题中的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.5.设不等式组030x y x y +≥⎧⎪⎨-≤⎪⎩表示的平面区域为Ω,若从圆C :224x y +=的内部随机选取一点P ,则P 取自Ω的概率为( )A .524B .724C .1124D .1724【答案】B【解析】【分析】画出不等式组表示的可行域,求得阴影部分扇形对应的圆心角,根据几何概型概率计算公式,计算出所求概率.【详解】作出Ω中在圆C 内部的区域,如图所示,因为直线0x y +=,30x -=的倾斜角分别为34π,6π, 所以由图可得P 取自Ω的概率为3746224πππ-=.故选:B【点睛】本小题主要考查几何概型的计算,考查线性可行域的画法,属于基础题.6.已知函数()sin(2019)cos(2019)44f x x x ππ=++-的最大值为M ,若存在实数,m n ,使得对任意实数x 总有()()()f m f x f n ≤≤成立,则M m n ⋅-的最小值为( )A .2019πB .22019πC .42019πD .4038π【答案】B【解析】【分析】根据三角函数的两角和差公式得到()f x =2sin(2019)4x π+,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果.【详解】函数()sin 2019cos 201944f x x x ππ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭)sin 2019cos 2019cos 2019sin 20192x x x x +++ )sin 2019cos 20192sin(2019)4x x x π=+=+则函数的最大值为2,2M m n m n ⋅-=-存在实数,m n ,使得对任意实数x 总有()()()f m f x f n ≤≤成立,则区间(m,n)长度要大于等于半个周期,即min 2220192019m n m n ππ-≥∴-= 故答案为:B.【点睛】这个题目考查了三角函数的两角和差的正余弦公式的应用,以及三角函数的图像的性质的应用,题目比较综合.7.如图,在三棱柱111ABC A B C -中,底面为正三角形,侧棱垂直底面,148AB AA ==,.若E F ,分别是棱1BB CC ,上的点,且1BE B E =,1114C F CC =,则异面直线1A E 与AF 所成角的余弦值为( )A.210B.2613C.1313D.1310【答案】B【解析】【分析】建立空间直角坐标系,利用向量法计算出异面直线1A E与AF所成角的余弦值.【详解】依题意三棱柱底面是正三角形且侧棱垂直于底面.设AB的中点为O,建立空间直角坐标系如下图所示.所以()()()()10,2,8,0,2,4,0,2,0,23,0,6A E A F---,所以()()10,4,4,23,2,6A E AF=-=-u u u r u u u r.所以异面直线1A E与AF所成角的余弦值为118242642213A E AFA E AF⋅-==⨯⋅u u u r u u u ru u u r u u u r.故选:B【点睛】本小题主要考查异面直线所成的角的求法,属于中档题.8.要排出高三某班一天中,语文、数学、英语各2节,自习课1节的功课表,其中上午5节,下午2节,若要求2节语文课必须相邻且2节数学课也必须相邻(注意:上午第五节和下午第一节不算相邻),则不同的排法种数是()A.84B.54C.42D.18【答案】C【解析】【分析】根据题意,分两种情况进行讨论:①语文和数学都安排在上午;②语文和数学一个安排在上午,一个安排在下午.分别求出每一种情况的安排方法数目,由分类加法计数原理可得答案.【详解】根据题意,分两种情况进行讨论:①语文和数学都安排在上午,要求2节语文课必须相邻且2节数学课也必须相邻,将2节语文课和2节数学课分别捆绑,然后在剩余3节课中选1节到上午,由于2节英语课不加以区分,此时,排法种数为1233232218C A AA=种;②语文和数学都一个安排在上午,一个安排在下午.语文和数学一个安排在上午,一个安排在下午,但2节语文课不加以区分,2节数学课不加以区分,2节英语课也不加以区分,此时,排法种数为14242224C AA=种.综上所述,共有182442+=种不同的排法.故选:C.【点睛】本题考查排列、组合的应用,涉及分类计数原理的应用,属于中等题.9.若函数f(x)=13x3+x2-23在区间(a,a+5)上存在最小值,则实数a的取值范围是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)【答案】C【解析】【分析】求函数导数,分析函数单调性得到函数的简图,得到a满足的不等式组,从而得解.【详解】由题意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其图象如图所示.令13x 3+x 2-23=-23,得x =0或x =-3, 则结合图象可知,3050a a -≤<⎧⎨+>⎩解得a ∈[-3,0), 故选C.【点睛】本题主要考查了利用函数导数研究函数的单调性,进而研究函数的最值,属于常考题型.10.命题p :2(1,2],20()x x x a a ∀∈--+≥∈R 的否定为A .2000(1,2],20()x x x a a ∃∈--+≥∈RB .2(1,2],20()x x x a a ∀∈--+<∈RC .2000(1,2],20()x x x a a ∃∈--+<∈R D .2(1,2],20()x x x a a ∀∉--+<∈R 【答案】C【解析】【分析】【详解】命题p 为全称命题,它的否定为特称命题,将全称量词改为存在量词,并将结论否定,可知命题p 的否定为2000(1,2],20()x x x a a ∃∈--+<∈R ,故选C . 11.某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体中最长的棱长为( ).A 2B 3C .1D 6【答案】B【解析】【分析】 首先由三视图还原几何体,进一步求出几何体的棱长.【详解】解:根据三视图还原几何体如图所示,所以,该四棱锥体的最长的棱长为2221113l =++故选:B .【点睛】本题主要考查由三视图还原几何体,考查运算能力和推理能力,属于基础题.12.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,若32z x y =-+的最大值为n ,则2n x x ⎛ ⎝的展开式中2x 项的系数为( )A .60B .80C .90D .120【答案】B【解析】【分析】画出可行域和目标函数,根据平移得到5n =,再利用二项式定理计算得到答案.【详解】如图所示:画出可行域和目标函数, 32z x y =-+,即322z y x =+,故z 表示直线与y 截距的2倍, 根据图像知:当1,1x y =-=时,32z x y =-+的最大值为5,故5n =.52x x ⎛ ⎝展开式的通项为:()()35552155221rr r r r r r r T C x C x x ---+⎛=⋅=⋅⋅-⋅ ⎝, 取2r =得到2x 项的系数为:()225252180C -⋅⋅-=. 故选:B .【点睛】本题考查了线性规划求最值,二项式定理,意在考查学生的计算能力和综合应用能力.二、填空题:本题共4小题,每小题5分,共20分。
2019年高考数学一模试题(及答案)一、选择题1.已知在ABC 中,::3:2:4sinA sinB sinC =,那么cosC 的值为( )A .14-B .14C .23-D .232.若43i z =+,则zz=( ) A .1B .1-C .4355i + D .4355i - 3.()22x xe ef x x x --=+-的部分图象大致是( )A .B .C .D .4.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 02≥0D .存在x 0∈R ,使得x 02<05.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A .13B .12 C .23 D .346.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥B .若a αβ∥,b ∥,αβ∥,则a b ∥C .若a b a b αβ⊂⊂,,,则αβ∥D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥7.若设a 、b 为实数,且3a b +=,则22a b +的最小值是( ) A .6B .8C .26D .428.已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B =A .{0}B .{1}C .{1,2}D .{0,1,2}9.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1B .1C .2D .410.sin 47sin17cos30cos17-A .32-B .12-C .12D .3211.函数y ()y ()f x f x ==,的导函数的图像如图所示,则函数y ()f x =的图像可能是A .B .C .D .12.将函数()sin 2y x ϕ=+的图象沿轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .B .C .0D .4π-二、填空题13.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.14.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是15.在ABC 中,60A =︒,1b =3sin sin sin a b cA B C ________.16.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm .17.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 18.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是__________. 19.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.20.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)三、解答题21.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为CDP ,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP 的面积,并确定sin θ的取值范围;(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.22.已知椭圆22221(0)x y a b a b +=>>的离心率为63,以椭圆的2个焦点与1个短轴端点为顶点的三角形的面积为22. (1)求椭圆的方程;(2)如图,斜率为k 的直线l 过椭圆的右焦点F ,且与椭圆交与,A B 两点,以线段AB 为直径的圆截直线1x =所得的弦的长度为5,求直线l 的方程.23.如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,122AA =1C H ⊥平面11AA B B ,且1 5.C H =(Ⅰ)求异面直线AC 与11A B 所成角的余弦值; (Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面111A B C ,求线段BM 的长.24.已知矩形ABCD 的两条对角线相交于点20M (,),AB 边所在直线的方程为360x y --=,点11T -(,)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.25.商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (1) 求的值;(2) 若商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】 【详解】::sin :sin :sin 3:2:4a b c A B C == ,不妨设3,2,4a k b k c k ===,,则()()()2223241cos 2324k k k C k k+-==-⨯⨯ ,选A.2.D解析:D 【解析】 【详解】由题意可得 :5z ==,且:43z i =-,据此有:4343555z i i z -==-. 本题选择D 选项.3.A解析:A 【解析】 【分析】根据函数的奇偶性,排除D ;根据函数解析式可知定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,利用特殊值x=0.01和x=1.001代入即可排除错误选项. 【详解】由函数解析式()22x x e e f x x x --=+-,易知()22x xe ef x x x ---=+-=() f x - 所以函数()22x xe ef x x x --=+-为奇函数,排除D 选项根据解析式分母不为0可知,定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1, 当x=0.01时,代入()f x 可得()0f x <,排除C 选项 当x=1.001时,代入()f x 可得()0f x >,排除B 选项 所以选A 【点睛】本题考查了根据函数解析式判断函数的图象,依据主要是奇偶性、单调性、特殊值等,注意图中坐标的位置及特殊直线,属于中档题.4.D解析:D 【解析】因为全称命题的否定是特称命题,所以命题“对任意x ∈R ,都有x 2≥0”的否定为.存在x 0∈R ,使得x 02<0. 故选D .5.B解析:B 【解析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为201402=,选B. 【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.6.D解析:D 【解析】 【分析】 【详解】试题分析:A 项中两直线a b ,还可能相交或异面,错误; B 项中两直线a b ,还可能相交或异面,错误; C 项两平面αβ,还可能是相交平面,错误; 故选D.7.D解析:D 【解析】 【分析】2a b+≤转化为指数运算即可求解。
广西高考数学一模试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0},则A∩B=()A.[﹣1,0] B.[﹣1,2] C.[0,1] D.(﹣∞,1]∪[2,+∞)2.设复数z=1+i,i是虚数单位,则+()2=()A.1﹣3i B.1﹣i C.﹣1﹣i D.﹣1+i3.“log22x>0”是“x>1”成立的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.下列函数是偶函数,且最小正周期为π的是()A.y=sin(π﹣2x)B.y=sin2xcos2x C.y=cos22x+1 D.y=cos(2x﹣π)5.阅读如图所示的程序框图,运行相应的程序,若判断框内是n≤6,则输出的S为()A.B.C.D.6.已知双曲线,它的一个顶点到较近焦点的距离为1,焦点到渐近线的距离是,则双曲线C的方程为()A.x2﹣=1 B.﹣y2=1 C.﹣y2=1 D.x2﹣=17.已知数列{a n}是等比数列,且a3=1,a5a6a7=8,则a9=()A.2 B.4 C.6 D.88.一个几何体的三视图如图,则该几何体的表面积为()A.8+6B.10+8 C.12+4 D.14+29.将函数y=sin2x的图象向左平移φ(φ>0)个单位,得到g(x)的图象,若g(x)的图象关于直线x=对称,则φ的最小值为()A.B.C.D.10.若x,y满足不等式组,z=x﹣y的最大值为4,则实数a=()A.4 B.C.5 D.11.已知圆C:x2+y2﹣2x+4y=0关于直线3x﹣ay﹣11=0对称,则圆C中以(,﹣)为中点的弦长为()A.1 B.2 C.3 D.412.已知曲线f(x)=e x﹣ax在点(0,f(0))处的切线方程为3x+y+b=0,则下列不等式恒成立的是()A.f(x)≥2﹣4ln2 B.f(x)≤2﹣4ln2 C.f(x)≥4﹣8ln2 D.f(x)≤4﹣8ln2二、填空题(共4小题,每小题5分,满分20分)13.(2x﹣)6展开式中常数项为(用数字作答).14.向量=(1,﹣2)与=(3,t)的夹角为θ,=(1,﹣3),⊥,则cosθ=.15.设函数f(x)=,若存在实数b,使函数y=f(x)﹣b有且只有2个零点,则实数b的取值范围是.16.已知等差数列{a n}的前n项和为S n,a1=﹣1,(a n+1﹣4)n=2S n,则S n= .三、解答题(共5小题,满分60分)17.在三角形ABC中,角A,B,C的对边分别是a,b,c.若b=,c=3,B+C=3A.(1)求边a;(2)求sin(B+)的值.18.某地区交通执法部门从某日上午9时开始对经过当地的200名车辆驾驶人员驾驶的车辆进行超速测试并分组,并根据测速的数据制作了频率分布图:(Ⅱ)若在第2,3,4,5组用分层抽样的方法随机抽取12名驾驶人员做回访调查,并在这12名驾驶人员中任意选3人,这3人中超速在[20%,80%)内的人数记为ξ,求ξ的数学期望.19.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AC⊥AD,AB⊥BC,PA=AB=BC=1,AC=AD,点E在棱PB上,且PE=2EB.(1)求证:PD∥平面EAC.(2)求平面ACE和平面ABCD所成锐二面角的余弦值.20.已知椭圆G:+=1(a>b>0)的离心率为,左顶点为A,上顶点为E,O是坐标原点,△OAE面积为.(1)求椭圆G的方程;(2)若过椭圆G的右焦点作垂直于x轴的直线m与G在第一象限内交于点M,平行于AM的直线l与椭圆G相交于B,C两点,判断直线MB,MC是否关于直线m对称,并说明理由.21.设函数f(x)=x3+ax2+bx(x>0)的图象与x轴相切于M(3,0).(1)求f(x)的解析式,并求y=+4lnx的单调减区间;(2)是否存在两个不等正数s,t(x>t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有这样的正数s,t,若不存在,请说明理由.请在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分[选修4-1:几何证明选讲]22.如图,A,B,C,D四点在同一圆上,AB∥CD,AD的延长线与BC的延长线交于E点.(1)证明:EC=ED.(2)延长CD到F,延长DC到G,连接EF、EG,使得EF=EG,证明:A,B,G,F四点共圆.[选修4-4:坐标系与参数方程]23.已知曲线C1的参数方程为(θ为参数),曲线C2的极坐标方程为ρ=2cosθ+6sinθ.(1)将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程;(2)曲线C1,C2是否相交,若相交请求出公共弦的长,若不相交,请说明理由.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣a|(a∈R).(1)若a=4,求不等式f(x)≥5的解集;(2)若存在x∈R,使f(x)≤4成立,求a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0},则A∩B=()A.[﹣1,0] B.[﹣1,2] C.[0,1] D.(﹣∞,1]∪[2,+∞)【考点】交集及其运算.【分析】直接由一元二次不等式化简集合B,则A交B的答案可求.【解答】解:∵B={x|x2﹣2x≤0}={x|0≤x≤2},∴A∩B={x|﹣1≤x≤1}∩{x|0≤x≤2}={x|0≤x≤1}.则A∩B的区间为:[0,1].故选C.2.设复数z=1+i,i是虚数单位,则+()2=()A.1﹣3i B.1﹣i C.﹣1﹣i D.﹣1+i【考点】复数代数形式的混合运算.【分析】利用复数的运算法则和共轭复数的定义即可得出.【解答】解:复数z=1+i,i是虚数单位,则+()2=+(1﹣i)2=1﹣i﹣2i=1﹣3i,故选:A3.“log22x>0”是“x>1”成立的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义进行判断即可.【解答】解:若log22x>0,则2x>1,得x>0,则“log22x>0”是“x>1”成立的必要不充分条件,故选:B.4.下列函数是偶函数,且最小正周期为π的是()A.y=sin(π﹣2x)B.y=sin2xcos2x C.y=cos22x+1 D.y=cos(2x﹣π)【考点】三角函数的周期性及其求法.【分析】根据正弦型函数及余弦型函数的性质,我们逐一分析四个答案中的四个函数的周期性及奇偶性,然后和题目中的条件进行比照,即可得到答案.【解答】D解:A中,函数y=sin(π﹣2x)=sin2x为奇函数,不满足条件;B中,函数y=sin2xcos2x=sin4x周期为,不满足条件;C中,函数y=cos22x+1=cos4x+周期为,不满足条件;D中,函数y=cos(2x﹣π)=﹣cos2x是最小正周期为π的偶函数,满足条件;故选:D.5.阅读如图所示的程序框图,运行相应的程序,若判断框内是n≤6,则输出的S为()A.B.C.D.【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的S,n的值,当n=8时,此时应该不满足条件n≤6,退出循环,输出S的值为.【解答】解:模拟执行程序框图,可得:S=0,n=2满足条件n≤6,S=,n=4满足条件n≤6,S=,n=6满足条件n≤6,S=+=,n=8由题意,此时应该不满足条件n≤6,退出循环,输出S的值为,故选:C.6.已知双曲线,它的一个顶点到较近焦点的距离为1,焦点到渐近线的距离是,则双曲线C的方程为()A.x2﹣=1 B.﹣y2=1 C.﹣y2=1 D.x2﹣=1【考点】双曲线的简单性质.【分析】由题意可得c﹣a=1,求出渐近线方程和焦点的坐标,运用点到直线的距离公式,可得b=,由a,b,c的关系,可得a,进而得到所求双曲线的方程.【解答】解:双曲线的一个顶点(a,0)到较近焦点(c,0)的距离为1,可得c﹣a=1,由双曲线的渐近线方程为y=x,则焦点(c,0)到渐近线的距离为d==b=,又c2﹣a2=b2=3,解得a=1,c=2,即有双曲线的方程为x2﹣=1.故选:A.7.已知数列{a n}是等比数列,且a3=1,a5a6a7=8,则a9=()A.2 B.4 C.6 D.8【考点】等比数列的通项公式.【分析】设等比数列{a n}的公比为q,由a3=1,a5a6a7=8,可得=1,=8,解得q3,即可得出.【解答】解:设等比数列{a n}的公比为q,∵a3=1,a5a6a7=8,∴=1,=8,解得q3=2.则a9==4.8.一个几何体的三视图如图,则该几何体的表面积为()A.8+6B.10+8 C.12+4 D.14+2【考点】由三视图求面积、体积.【分析】由三视图知该几何体是一个直四棱柱,由三视图求出几何元素的长度,由面积公式求出各个面的面积,加起来即可求出几何体的表面积.【解答】解:根据三视图可知几何体是一个直四棱柱,由俯视图知底面是等腰梯形:上底、下底分别是1、3,梯形的高是1,则腰长是,且直四棱柱的高是2,∴几何体的表面积S==12+4,故选:C.9.将函数y=sin2x的图象向左平移φ(φ>0)个单位,得到g(x)的图象,若g(x)的图象关于直线x=对称,则φ的最小值为()A. B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由条件利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得φ的最小值.【解答】解:将函数y=sin2x的图象向左平移φ(φ>0)个单位,得到g(x)=sin2(x+φ)=sin(2x+2φ)的图象,若g(x)的图象关于直线x=对称,则+2φ=kπ+,k∈Z,则φ的最小值为,故选:A.10.若x,y满足不等式组,z=x﹣y的最大值为4,则实数a=()A.4 B.C.5 D.【考点】简单线性规划.【分析】作出可行域,变形目标函数,平移直线可得z的最值,可得a的方程,解方程可得.【解答】解:作出不等式组所对应可行域(如图△ABC),变形目标函数z=x﹣y可得y=x﹣z,平移直线y=x可知:当直线经过点A(a,3﹣a)时,直线截距最小值,z取最大值,代值可得a﹣(3﹣a)=4,解得a=,故选:B.11.已知圆C:x2+y2﹣2x+4y=0关于直线3x﹣ay﹣11=0对称,则圆C中以(,﹣)为中点的弦长为()A.1 B.2 C.3 D.4【考点】直线与圆的位置关系.【分析】由已知直线3x﹣ay﹣11=0过圆心C(1,﹣2),从而得到a=4,点(1,﹣1)到圆心C(1,﹣2)的距离d=1,圆C:x2+y2﹣2x+4y=0的半径r=,由此能求出圆C中以(,﹣)为中点的弦长.【解答】解:∵圆C:x2+y2﹣2x+4y=0关于直线3x﹣ay﹣11=0对称,∴直线3x﹣ay﹣11=0过圆心C(1,﹣2),∴3+2a﹣11=0,解得a=4,∴(,﹣)=(1,﹣1),点(1,﹣1)到圆心C(1,﹣2)的距离d==1,圆C:x2+y2﹣2x+4y=0的半径r==,∴圆C中以(,﹣)为中点的弦长为:2=2=4.故选:D.12.已知曲线f(x)=e x﹣ax在点(0,f(0))处的切线方程为3x+y+b=0,则下列不等式恒成立的是()A.f(x)≥2﹣4ln2 B.f(x)≤2﹣4ln2 C.f(x)≥4﹣8ln2 D.f(x)≤4﹣8ln2 【考点】利用导数研究曲线上某点切线方程.【分析】求出函数的导数,可得切线的斜率,由切线的方程可得斜率,解方程可得a,求出单调区间、极值和最值,即可得到结论.【解答】解:f(x)=e x﹣ax的导数为f′(x)=e x﹣a,可得在点(0,f(0))处的切线斜率为1﹣a,由切线方程为3x+y+b=0,可得1﹣a=﹣3,即有a=4,可得f′(x)=e x﹣4,当x>ln4时,f′(x)>0,f(x)递增;当x<ln4时,f′(x)<0,f(x)递减.可得f(x)在x=ln4处取得极小值,也为最小值4﹣8ln2.即为f(x)≥4﹣8ln2.故选:C.二、填空题(共4小题,每小题5分,满分20分)13.(2x﹣)6展开式中常数项为60 (用数字作答).【考点】二项式定理.【分析】用二项展开式的通项公式得展开式的第r+1项,令x的指数为0得展开式的常数项.【解答】解:(2x﹣)6展开式的通项为=令得r=4故展开式中的常数项.故答案为6014.向量=(1,﹣2)与=(3,t)的夹角为θ,=(1,﹣3),⊥,则cosθ=.【考点】平面向量数量积的运算.【分析】根据向量的数量积的运算和向量的夹角公式计算即可.【解答】解:∵=(1,﹣2)与=(3,t)的夹角为θ,=(1,﹣3),⊥,∴3×1﹣3t=0,∴t=1,∴=(3,1),∴||=,||=,•=1×3﹣2×1=1,∴cosθ==故答案为:.15.设函数f(x)=,若存在实数b,使函数y=f(x)﹣b有且只有2个零点,则实数b的取值范围是(0,+∞).【考点】函数零点的判定定理.【分析】由题意可得函数f(x)=的图象和直线y=b有2个交点,分类讨论,数形结合求得a的取值范围.【解答】解:由题意可得函数y=f(x)=的图象和直线y=b有且只有2个交点,当a=0 时,f(x)=,如图(1)所示,函数y=f(x)的图象和直线y=b之多有一个交点,不满足条件.当a>0时,f(x)=的图象如图(2)所示,此时,应有b>0.当a<0时,f(x)=的图象如图(3)所示,此时,函数y=f(x)的图象和直线y=b之多有一个交点,不满足条件.综上可得,b>0,故答案为:(0,+∞).16.已知等差数列{a n}的前n项和为S n,a1=﹣1,(a n+1﹣4)n=2S n,则S n= .【考点】等差数列的前n项和.【分析】设等差数列{a n}的公差为d,a1=﹣1,则a n+1=﹣1+nd,S n=﹣n+d,代入(a n+1﹣4)n=2S n,化简整理即可得出.【解答】解:设等差数列{a n}的公差为d,a1=﹣1,则a n+1=﹣1+nd,S n=﹣n+d,代入(a n+1﹣4)n=2S n,可得:(﹣5+nd)n=﹣2n+n(n﹣1)d,化为:d=3.则S n=﹣n+=.故答案为:.三、解答题(共5小题,满分60分)17.在三角形ABC中,角A,B,C的对边分别是a,b,c.若b=,c=3,B+C=3A.(1)求边a;(2)求sin(B+)的值.【考点】正弦定理的应用;两角和与差的正弦函数.【分析】(1)由条件利用余弦定理求得a的值.(2)由条件利用正弦定理求得sinB的值,可得cosB的值,再利用两角和差的正弦公式,求得sin(B+)的值.【解答】解:(1)三角形ABC中,∵b=,c=3,B+C=3A,∴A=,利用余弦定理可得a2=b2+c2﹣2bc•cosA=5,∴a=.(2)由正弦定理=,可得=,∴sinB=,再结合b<c,可得B为锐角,∴cosB==,∴sin(B+)=sinBcos+cosBsin=+•=.18.某地区交通执法部门从某日上午9时开始对经过当地的200名车辆驾驶人员驾驶的车辆进行超速测试并分组,并根据测速的数据制作了频率分布图:(Ⅱ)若在第2,3,4,5组用分层抽样的方法随机抽取12名驾驶人员做回访调查,并在这12名驾驶人员中任意选3人,这3人中超速在[20%,80%)内的人数记为ξ,求ξ的数学期望.【考点】离散型随机变量的期望与方差;分层抽样方法.【分析】(Ⅰ)由频率=,能求出z,y,x的值.(Ⅱ)若在第2,3,4,5组用分层抽样的方法随机抽取12名驾驶人员,则第2,3,4,5组抽取的人数分别是4,3,2,1,设任意选取的3人超速在(20%,80%)的人数是ξ,则ξ=2或ξ=3,由此能求出ξ的数学期望.【解答】解:(Ⅰ)由题意得x=200×0.01=2,y=6÷200=0.03,z=0.88÷20=0.044.(Ⅱ)若在第2,3,4,5组用分层抽样的方法随机抽取12名驾驶人员,则第2,3,4,5组抽取的人数分别是4,3,2,1,设任意选取的3人超速在(20%,80%)的人数是ξ,则ξ=2或ξ=3,P(ξ=2)==,P(ξ=3)==,∴Eξ==.19.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AC⊥AD,AB⊥BC,PA=AB=BC=1,AC=AD,点E在棱PB上,且PE=2EB.(1)求证:PD∥平面EAC.(2)求平面ACE和平面ABCD所成锐二面角的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(1)根据线面平行的判定定理即可证明PD∥平面EAC.(2)建立坐标系,求出平面的法向量,利用向量法即可求平面ACE和平面ABCD所成锐二面角的余弦值.【解答】证明:(1)∵AB⊥BC,AB=BC=1,∴AC=,∠BAC=,∵AC=AD,AC⊥AD,∴CD=2,∠ACD=,∴∠BAC=∠ACD,则AB∥CD,连接BD,交AC于M,连EM,则,又PE=2EB,在△BPD中,,∴PD∥EM,∵PD⊄平面EAC,EM⊂平面EAC,∴PD∥平面EAC(2)建立如图所示的空间坐标系如图:则A(0,0,0),P(0,0,1),B(0,1,0),C(1,1,0),E(0,,),设=(x,y,z)是平面AEC的一个法向量,则=(1,1,0),(0,,),则•=x+y=0,•=y+z=0,得,令y=1,则x=﹣1,z=﹣2,则=(﹣1,1,﹣2),同理平面ABCD的法向量为==(0,0,1),则cos<,>==,即平面ACE和平面ABCD所成锐二面角的余弦值是.20.已知椭圆G:+=1(a>b>0)的离心率为,左顶点为A,上顶点为E,O是坐标原点,△OAE面积为.(1)求椭圆G的方程;(2)若过椭圆G的右焦点作垂直于x轴的直线m与G在第一象限内交于点M,平行于AM的直线l与椭圆G相交于B,C两点,判断直线MB,MC是否关于直线m对称,并说明理由.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率公式和实际行动面积公式,及a,b,c的关系,解得a,b,进而得到椭圆方程;(2)求得椭圆的右焦点坐标,M,A的坐标,求得斜率.可设BC的方程为y=x+t,代入椭圆方程3x2+4y2=12,可得x2+tx+t2﹣3=0,设B(x1,y1),C(x2,y2),运用韦达定理和直线的斜率公式,可得k MB+k MC=0,进而得到直线MB和直线MC关于直线m对称.【解答】解:(1)由题意可得e==,由A(﹣a,0),E(0,b),可得△OAE面积为,即有ab=,又a2﹣b2=c2,解得a=2,b=,c=1,即有椭圆的方程为+=1;(2)椭圆的右焦点为(1,0),可得M(1,),A(﹣2,0),k AM==,设BC的方程为y=x+t,代入椭圆方程3x2+4y2=12,可得x2+tx+t2﹣3=0,设B(x1,y1),C(x2,y2),即有x1+x2=﹣t,x1x2=t2﹣3,由k MB+k MC=+=+===0.即有直线MB和直线MC关于直线m对称.21.设函数f(x)=x3+ax2+bx(x>0)的图象与x轴相切于M(3,0).(1)求f(x)的解析式,并求y=+4lnx的单调减区间;(2)是否存在两个不等正数s,t(x>t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有这样的正数s,t,若不存在,请说明理由.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)由已知得f′(x)=3x2+2ax+b.依题意f(3)=0,f′(3)=0,解方程即可求出f(x)=x3﹣6x2+9x.(2)由函数的定义域是正数知,s>0,故极值点x=3不在区间[s,t]上,由此利用分类讨论思想能求出不存在正数s,t满足要求.【解答】解:(1)∵f(x)=x3+ax2+bx,∴f′(x)=3x2+2ax+b.依题意则有f(3)=0,f′(3)=0,即27+9a+3b=0,①27+6a+b=0,②解得a=﹣6,b=9,∴f(x)=x3﹣6x2+9x.则y=+4lnx=x2﹣6x+9+4lnx,x>0,y′=2x﹣6+==,由y′<0得1<x<2,即y=+4lnx的单调减区间为(1,2).(2)f′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),由f′(x)=0,得x=1或x=3.列表讨论,得:由函数的定义域是正数知,s>0,故极值点x=3不在区间[s,t]上,①若极值点1∈[s,t],此时0<s≤1≤t<3,在此区间上f(x)的最大值是4,不可能等于t,故在区间[s,t]上没有极值点;②若f(x)=x3﹣6x2+9x在[s,t]上单调增,即0<s<t≤1或3<s<t,则,即,解得不合要求.(3)若f(x)=x3﹣6x2+9x在[s,t]上单调减,即1≤s<t<3,则,两式相减并除s﹣t,得:(s+t)2﹣6(s+t)﹣st+10=0,①两式相除并开方,得[s(s﹣3)]2=[t(t﹣3)]2,即s(3﹣s)=t(3﹣t),整理,并除以s﹣t,得:s+t=3,②则①、②得,即s,t是方程x2﹣3x+1=0的两根,即s=,t=不合要求;综上,不存在正数s,t满足要求.…请在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分[选修4-1:几何证明选讲]22.如图,A,B,C,D四点在同一圆上,AB∥CD,AD的延长线与BC的延长线交于E点.(1)证明:EC=ED.(2)延长CD到F,延长DC到G,连接EF、EG,使得EF=EG,证明:A,B,G,F四点共圆.【考点】与圆有关的比例线段.【分析】(1)根据四点共圆,得到四边形的一个外角等于不相邻的一个内角,根据两直线平行,同位角相等,等量代换得到两个角相等,从而两条边相等,得到结论;(2)根据第一问做出的边和角之间的关系,得到两个三角形全等,根据全等三角形的对应角相等,根据平行的性质定理,等量代换,得到四边形的一对对角相等,得到四点共圆.【解答】(1)证明:因为A,B,C,D四点在同一圆上,所以∠EDC=∠EBA因为CD∥AB,所以∠ECD=∠EBA,所以∠EDC=∠ECD,所以EC=ED.(2)解:由(1)知,AE=BE,因为EF=EG,故∠EFD=∠EGC从而∠FED=∠GEC连接AF,BG,△EFA≌△EGB,故∠FAE=∠GBE又CD∥AB,∠FAB=∠GBA,所以∠AFG+∠GBA=180°故A,B.G,F四点共圆.[选修4-4:坐标系与参数方程]23.已知曲线C1的参数方程为(θ为参数),曲线C2的极坐标方程为ρ=2cosθ+6sinθ.(1)将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程;(2)曲线C1,C2是否相交,若相交请求出公共弦的长,若不相交,请说明理由.【考点】圆的参数方程;简单曲线的极坐标方程.【分析】(1)根据同角三角函数关系消去参数θ,即可求出曲线C1的普通方程,曲线C2的极坐标方程两边同乘ρ,根据极坐标公式进行化简就可求出直角坐标方程;(2)先求出两个圆心之间的距离与两半径和进行比较,设相交弦长为d,因为两圆半径相等,所以公共弦平分线段C1C2,建立等量关系,解之即可.【解答】解:(1)由得(x+2)2+y2=10∴曲线C1的普通方程为得(x+2)2+y2=10∵ρ=2cosθ+6sinθ∴ρ2=2ρcosθ+6ρsinθ∵ρ2=x2+y2,x=ρcosθ,y=ρsinθ∴x2+y2=2x+6y,即(x﹣1)2+(y﹣3)2=10∴曲线C2的直角坐标方程为(x﹣1)2+(y﹣3)2=10(2)∵圆C1的圆心为(﹣2,0),圆C2的圆心为(1,3)∴∴两圆相交设相交弦长为d,因为两圆半径相等,所以公共弦平分线段C1C2∴∴d=∴公共弦长为[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣a|(a∈R).(1)若a=4,求不等式f(x)≥5的解集;(2)若存在x∈R,使f(x)≤4成立,求a的取值范围.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(1)不等式即|x﹣1|+|x﹣4|≥5,通过去绝对值符号,列出不等式组,分别求出每个不等式组的解集,再取并集即得所求.(2)利用f(x)=|x﹣1|+|x﹣a|≥|a﹣1|,由题意可得|a﹣1|≤4,由此解得a的范围.【解答】解:(1)解:(Ⅰ)当a=4时,不等式f(x)≥5,即|x﹣1|+|x﹣4|≥5,等价于,或,或.解得:x≤0或x≥5.…故不等式f(x)≥6的解集为{x|x≤0,或x≥5};(2)∵f(x)=|x﹣1|+|x﹣a|≥|(x﹣1)﹣(x﹣a)|=|a﹣1|.(当x=1时等号成立)所以:f(x)min=|a﹣1|.…由题意得:|a﹣1|≤4,解得:﹣3≤a≤5.…。
2019年广西梧州市高考数学一模试卷(理科)一、单选题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.(5分)若集合A=[2,3],B={x|x2﹣5x+6=0},则A∩B=()A.{2,3}B.∅C.2D.[2,3]2.(5分)已知复数z的实部为﹣1,虚部为2,则=()A.2﹣i B.2+i C.﹣2﹣i D.﹣2+i3.(5分)计算log2sin+log2cos的值为()A.﹣4B.4C.2D.﹣24.(5分)若a,4,3a为等差数列的连续三项,则a0+a1+a2+…+a9的值为()A.2047B.1062C.1023D.5315.(5分)甲、乙、丙.丁四辆玩具赛车同时从起点出发并做匀速直线运动,丙车最先到达终点.丁车最后到达终点.若甲、乙两车的s﹣t图象如图所示,则对于丙、丁两车的图象所在区域,判断正确的是()A.丙在Ⅲ区域,丁在Ⅰ区域B.丙在Ⅰ区城,丁在Ⅲ区域C.丙在Ⅱ区域,丁在Ⅰ区域D.丙在Ⅲ区域,丁在Ⅱ区域6.(5分)已知△ABC一边的两个端点是A(7,0),B(﹣7,0),另两边斜率的积是,那么顶点C的轨迹方程是()A.x2+y2=49(y≠0)B.=1(y≠0)C.=1(y≠0)D.=1(y≠0)7.(5分)下列四个结论中正确命题的个数是()①命题“若f(x)是周期函数,则f(x)是三角函数”的否命题是“若f(x)是周期函数,则f(x)不是三角函数”;②命题“∃x0∈R,x02﹣x0﹣1<0”的否定是“∀x∈R,x2﹣x﹣1≥0”;③在△ABC中,“sin A>sin B”是“A>B”的充要条件;④当a>0时,幂函数y=x a在区间(0,+∞)上单调递增.A.1个B.2个C.3个D.4个8.(5分)已知函数f(x)=,则=()A.1+B.+C.1+D.+9.(5分)函数f(x)=(e是自然对数的底数)的图象大致为()A.B.C.D.10.(5分)已知某几何体的三视图如图所示,则该几何体的表面积为()A.B.C.13D.11.(5分)设A、B、C、D是半径为2的球面上的四点,且满足AB⊥AC、AD⊥AC、AB ⊥AD,则S△ABC+S△ABD+S△ACD的最大值为()A.4B.8C.12D.1612.(5分)设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2019)2f(x+2019)﹣4f(﹣2)<0的解集为()A.(﹣2019,﹣2017)B.(﹣2019,﹣2018)C.(﹣2021,﹣2019)D.(﹣2020,﹣2019)二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)已知{a n}是等比数列,若=(2,a2),=(3,a3),且∥,则=.14.(5分)已知圆(x+1)2+y2=4与抛物线y2=2px(p>0)的准线交于A、B两点,且AB =2,则p的值为.15.(5分)若f(x)=(1+x)6(1﹣x)5,f′(x)是f(x)的导函数,则函数f′(x)中x2的系数为.(用数字作答)16.(5分)某计算机程序每运行一次都随机出现一个五位数A=,其中A的各位数中,a1=1,a k(k=2,3,4,5)出现0的概率为,出现1的概率为,记X=a2+a3+a4+a5,当程序运行一次时,X的数学期望EX=.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)17.(12分)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知,(1)求的值;(2)若a=2,,求b的值.18.(12分)基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验,某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月的市场占有率t=y%进行了统计,结果如表:(1)请用相关系数说明能否用线性回归模型拟合y与月份代码x之间的关系,如果能,请计算出y关于x的线性回归方程,并预测该公司2018年12月的市场占有率.如果不能,请说明理由.(2)根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元/辆和800元/辆的A,B两款车型,报废年限各不相同.考虑公司的经济效益,该公司决定对两款单车进行科学模拟测试,得到两款单车使用寿命频数表如表:经测算,平均每辆单车每年可以为公司带来收入500元.不考虑除采购成本以外的其他成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,分别以这100辆单车所产生的平均利润作为决策依据,如果你是该公司的负责人,会选择釆购哪款车型?参考数据:(x i﹣)2=17.5,(x i)(y i)=35,≈36.5参考公式:相关系数r=回归直线方程=x+中的斜率和截距的最小二乘估计公式分别为:=,=.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C是菱形,其对角线的交点为O,且AB=AC1,AB⊥B1C.(1)求证:AO⊥平面BB1C1C;(2)设∠B1BC=60°,若直线A1B1与平面BB1C1C所成的角为45°,求二面角A1﹣B1C ﹣A的大小.20.(12分)已知动圆O与x轴切于点A(﹣3,0),又点B(﹣1,0),C(1,0),过B,C分别作圆O′异于x轴的两切线,两切线交于点M.(1)求点M的轨迹Γ的方程;(2)x轴上是否存在定点N,使得过点N的直线l与轨迹Γ交于P,Q时,恒有为定值?若存在,求出定点与定值;若不存在,请说明理由.21.(12分)已知函数f(x)=ax﹣的两个极值点x1,x2满足x1<x2,且e<x2<3,其中e为自然对数的底数.(Ⅰ)求实数a的取值范围;(Ⅱ)求f(x2)﹣f(x1)的取值范围.请考生在第22、23两题中任选一题作答.注意:只能做选定的题目.如果多做,则按所做的第一题计分.作答时,请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,曲线C的极坐标方程为ρ=.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;(Ⅱ)过点P(0,2)作斜率为1直线l与曲线C交于A,B两点,试求+的值.[选修4-5:不等式选讲]23.设函数f(x)=|3x﹣1|+ax+3.(Ⅰ)若a=1,解不等式f(x)≤4;(Ⅱ)若函数f(x)有最小值,求a的取值范围.2019年广西梧州市高考数学一模试卷(理科)参考答案与试题解析一、单选题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.【解答】解:集合A=[2,3],B={x|x2﹣5x+6=0|={2,3},则A∩B={2,3}.故选:A.2.【解答】解:因为由条件知z=﹣1+2i,则=,故选:A.3.【解答】解:∵==2﹣2.∴原式===﹣2.故选:D.4.【解答】解:由于a+3a=4a=2×4,解得a=2,故a0+a1+a2+…+a9=20+21+22+…+29=.故选:C.5.【解答】解:∵丙车最先到达终点.丁车最后到达终点,∴丙车速度最大,丁车速度最小,∴丙车所在直线的倾斜角最大,丁车所在直线的倾斜角最小.故选:A.6.【解答】解:设顶点A的坐标为(x,y),则;k BC=,由题意得=,即=1(y≠0),故选:D.7.【解答】解:①,命题“若f(x)是周期函数,则f(x)是三角函数”的否命题是:“若f(x)不是周期函数,则f(x)不是三角函数”,故①错误;②,命题“∃x0∈R,x02﹣x0﹣1<0”的否定是“∀x∈R,x2﹣x﹣1≥0”,故②正确;③,在△ABC中,“sin A>sin B”⇔“2R sin A>2R sin B”⇔“a>b”⇔“A>B”,故③正确;④,当a>0时,幂函数y=x a在区间(0,+∞)上单调递增,故④正确.其中正确命题的个数为3.故选:C.8.【解答】解:=+=()+=+故选:B.9.【解答】解:f(﹣x)===﹣=﹣f (x),则函数f(x)是奇函数,图象关于原点对称,排除B,C.当x>1时,f(x)>0,排除D,故选:A.10.【解答】解由三视图可知几何体为三棱台,作出直观图如图所示,则CC′⊥平面ABC,上下底均为等腰直角三角形,AC⊥BC,AC=BC=1,A′C′=B′C′=C′C=2,∴AB=,A′B′=2.∴棱台的上底面积为=,下底面积为=2,梯形ACC′A′的面积为(1+2)×2=3,梯形BCC′B′的面积为=3,过A作AD⊥A′C′于D,过D作DE⊥A′B′,则AD=CC′=2,DE为△A′B′C′斜边高的,∴DE=,∴AE==.∴梯形ABB′A′的面积为()×=.∴几何体的表面积S==13.故选:C.11.【解答】解:设AB=a,AC=b,AD=c,因为AB,AC,AD两两互相垂直所以a2+b2+c2=4×22S△ABC+S△ACD+S△ADB=(ab+ac+bc)≤(a2+b2+c2)=8.即最大值8.故选:B.12.【解答】解:由2f(x)+xf′(x)>x2,(x<0),得:2xf(x)+x2f′(x)<x3,即[x2f(x)]′<x3<0,令F(x)=x2f(x),则当x<0时,得F′(x)<0,即F(x)在(﹣∞,0)上是减函数,∴F(x+2019)=(x+2019)2f(x+2019),F(﹣2)=4f(﹣2),即不等式等价为F(x+2019)﹣F(﹣2)<0,∵F(x)在(﹣∞,0)是减函数,∴由F(x+2019)<F(﹣2)得,x+2019>﹣2,即x>﹣2021,又x+2019<0,解得:x<﹣2019,故﹣2021<x<﹣2019,故选:C.二、填空题(本大题共4小题,每小题5分,共20分)13.【解答】解:{a n}是等比数列,若=(2,a2),=(3,a3),且∥,可得:3a2=2a3,所以q=,则==.故答案为:.14.【解答】解:抛物线y2=2px(p>0)的准线为x=﹣,设A、B两点坐标为(﹣,y1),(﹣,y2),∴(﹣+1)2+y2=4,即y2=4﹣(﹣+1)2,∴y=±,∴|AB|=|y2﹣y1|=2=2,∴4﹣(﹣+1)2=3,解得p=4,故答案为:4.15.【解答】解:f(x)=(1+x)6(1﹣x)5=(1﹣x2)5(1+x),则(1﹣x2)5的通项公式为:T r+1=(﹣x2)r,令r=1,可得:x2的系数为﹣5.∴f(x)的展开式中x3的系数为﹣5×3=﹣15.故答案为:﹣15.16.【解答】解:由题意可得:X~B,∴EX==.故答案为:.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)17.【解答】解:(1)因为锐角△ABC中,A+B+C=π,,所以cos A=,则=(2),则bc=3.将a=2,cos A=,c=代入余弦定理:a2=b2+c2﹣2bc cos A中得b4﹣6b2+9=0解得b=18.【解答】解:(1)=(11+13+16+15+20+21)=16,故=76,故r===≈0.96,故两变量之间有较强的相关关系,故可用线性回归模型拟合y与月份代码x之间的关系,===2,==16﹣2×3.5=9,故回归方程是=2x+9,x=7时,=23,即2018年12月的市场占有率是23%;(2)用频率估计概率,这100辆A款单车的平均利率为:(﹣500×10+0×30+500×40+1000×20)=350(元),这100辆B款车的平均利润为:(﹣300×15+200×40+700×35+1200×10)=400(元),故会选择釆购B款车型.19.【解答】证明:(1)∵四边形BB1C1C是菱形,∴B1C⊥BC1,∵B1C⊥AB,且BC1∩AB=B,∴B1C⊥平面ABC1,∴B1C⊥AO,∵AB=AC1,O是BC1的中点,∴AO⊥BC1,又BC1∩B1C=O,AO⊥平面BB1C1C.解:(2)∵AB∥A1B1,∴直线A1B1与平面BB1C1C的所成角等于直线AB与平面BB1C1C的所成角,∵AO⊥平面BB1C1C,∴直线AB与平面BB1C1C的所成角为∠ABO,即∠ABO=45°,设菱形BB1C1C的边长为2,则在等边△BB1C中,BO=,CO=B1O=1,在直角△ABO中,AO=BO=,以O为原点建立空间直角坐标系,则B1(0,1,0),C(0,﹣1,0),A1(﹣),=(),=(0,﹣2,0),设平面A1B1C的一个法向量为=(x,y,z),则,取x=1,得=(1,0,1),平面AB1C的一个法向量为=(1,0,0),cos<>==,∴二面角A1﹣B1C﹣A的大小为45°.20.【解答】解:(1)过点B的非x轴的切线且圆O′于点E,过点C的非x轴的切线且圆O′于点D,根据切线长性质可得|BA|=|BE|,|CD|=|CA|,|MD|=|ME|,则|MC|=|CD|﹣|MD|=|CA|﹣|ME|,①|MB|=|BE|+|ME|=|BA|+|CA|,②,①+②可得|MB|+|MC|=|BA|+|CA|=4+2=6,∴点M的轨迹Γ是以B,C为焦点,长轴长为6的椭圆(除去长轴的两顶点),且点M的轨迹Γ的方程是+=1,(y≠0),(2)设存在定点N(n,0)满足题意,由题意可知直线l的斜率不为零,则设过点N的直线l的方程为x=my+n,其交点P(x1,y1),Q(x2,y2)不妨设点P在x轴上方,联立直线与椭圆的方程可得(8m2+9)y2+16mny+8n2﹣72=0,△=(16mn)2﹣4(8m2+9)(8n2﹣72)>0,∴y1+y2=﹣,y1y2=,∴y2﹣y1=﹣=,∴|PN|===|y1|=•y1,∴|PM|==|y2|=•y2,∴=﹣=•=•,∵m为变量,∴当9﹣n2=8,即n2=1时,为定值,此时定点为(1,0),(﹣1,0),故存在定点N(1,0)或(﹣1,0),使得为定值.21.【解答】解:(Ⅰ),f′(x)=,由题意知x1、x2为方程ax2﹣4x+a=0的两个根.根据韦达定理得x1+x2=,x1•x2=1.整理得a=.又y=在(e,3)上单调递增,∴.(Ⅱ)∵f(x2)﹣f(x1)=﹣ax1++4lnx1,∵,∴f(x2)﹣f(x1)=﹣+ax2+4ln=2a(x2﹣)﹣8lnx2,由(Ⅰ)知a=,代入得f(x2)﹣f(x1)=(x2﹣)﹣8lnx2=﹣8lnx2,令t=x22∈(e2,9),于是可得h(t)==4lnt,故h′(t)=,∴h(t)在(e2,9)上单调递减,∴f(x2)﹣f(x1)的取值范围为().请考生在第22、23两题中任选一题作答.注意:只能做选定的题目.如果多做,则按所做的第一题计分.作答时,请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-4:坐标系与参数方程]22.【解答】解:(I)∵ρ=,∴ρ2cos2θ=ρsinθ,∴曲线C的直角坐标方程是x2=y,即y=x2.(II)直线l的参数方程为(t为参数).将(t为参数)代入y=x2得t2﹣﹣4=0.∴t1+t2=,t1t2=﹣4.∴+====.[选修4-5:不等式选讲]23.【解答】解:(Ⅰ)当a=1时,f(x)=|3x﹣1|+x+3,当x时,f(x)≤4可化为3x﹣1+x+3≤4,解得;当x时,f(x)≤4可化为﹣3x+1+x+3≤4,解得.综上可得,原不等式的解集为{x|},(Ⅱ)f(x)=|3x﹣1|+ax+3=函数f(x)有最小值的充要条件为,即﹣3≤a≤3.。
绝密★启用前广西2019年高考理科数学试卷注意事项:1、答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3、考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={﹣1,0,1,2},B={x|x2≤1},则A∩B=()A.{﹣1,0,1}B.{0,1}C.{﹣1,1}D.{0,1,2} 2.(5分)若z(1+i)=2i,则z=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i3.(5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.84.(5分)(1+2x2)(1+x)4的展开式中x3的系数为()A.12B.16C.20D.245.(5分)已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=()A.16B.8C.4D.26.(5分)已知曲线y=ae x+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=﹣1B.a=e,b=1C.a=e﹣1,b=1D.a=e﹣1,b=﹣1 7.(5分)函数y=在[﹣6,6]的图象大致为()A.B.C.D.8.(5分)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线9.(5分)执行如图的程序框图,如果输入的ɛ为0.01,则输出s的值等于()A.2﹣B.2﹣C.2﹣D.2﹣10.(5分)双曲线C:﹣=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点.若|PO|=|PF|,则△PFO的面积为()A.B.C.2D.311.(5分)设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log3)>f(2)>f(2)B.f(log3)>f(2)>f(2)C.f(2)>f(2)>f(log3)D.f(2)>f(2)>f(log3)12.(5分)设函数f(x)=sin(ωx+)(ω>0),已知f(x)在[0,2π]有且仅有5个零点.下述四个结论:①f(x)在(0,2π)有且仅有3个极大值点②f(x)在(0,2π)有且仅有2个极小值点③f(x)在(0,)单调递增④ω的取值范围是[,)其中所有正确结论的编号是()A.①④B.②③C.①②③D.①③④二、填空题:本题共4小题,每小题5分,共20分。
广西2019年高考理科数学模拟试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数21i- (i 为虚数单位)的共轭复数是 A .1+iB .1−iC .−1+iD .−1−i2.设集合{}{}{}20,1,2,3,4,5,1,2,3,|540U A B x Z x x ===∈-+≥,则()U AB =A .{}1,2,3B .{}1,2C .{}2,3D .{}23. 下列说法中正确的是A.命题“若22am bm <,则a b <”的逆命题是真命题B.命题“p 或q ”为真命题,则命题p 和命题q 均为真命题C.命题“存在000,1x x ex ∈≤+R ”的否定为:“对,1xx e x ∀∈>+R ”D.直线l 不在平面α内,则“l 上有两个不同的点到α的距离相等”是“//l α”的充要条件 4.设向量a 与b 的夹角为θ,且)1,2(-=a ,)3,2(2=+b a ,则θcos = A. 35- B.35 C.55 D.255- 5.已知α是第四象限角,且1sin cos 5αα+=,则tan 2α=A .13 B .13- C .12D .12-6. 已知数列}{n a 为等比数列,274=+a a ,865-=⋅a a ,则101a a +的值为A. 7B.5C.7-D.5-7. 设不等式组-20+200x y x y x ≤⎧⎪-≥⎨⎪≥⎩表示的平面区域为Ω.则A. 原点O 在Ω内B.Ω的面积是1C. Ω内的点到y 轴的距离有最大值D.若点P(x 0,y 0) ∈Ω,则x 0+y 0≠08.如右图是寻找“徽数”的程序框图.其中“S MOD 10”表示自然数S 被10除所得的余数,“S \10”表示自然数S 被10除所得的商.则 根据上述程序框图,输出的“徽数”S 为 A .18B .16C .14D .129. 已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行翻折,使BDC ∠为直角,则过A B C D ,,,四点的球的表面积为A .3πB .4π C.5π D .6π10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.根据需要安排甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班; 乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是 A .2日和5日 B .5日和6日 C .6日和11日 D .2日和11日 12.椭圆)0(12222>>=+b a by ax 的左右焦点分别为12,F F ,A 为椭圆上一动点(异于左右顶点),若△12AF F 的周长为6且面积的最大值为3,则椭圆的标准方程为A. 22143y x +=B. 22132y x +=C. 2212x y +=D. 2214x y +=二、填空题(本题共4小题,每小题5分,共20分)13. 设集合{}22(,)|(3sin )(3cos )1,A x y x y R ααα=+++=∈,{}(,)|34100B x y x y =++=,记P AB =,则点集P 所表示的轨迹长度为 。
广西省梧州市2019-2020学年高考数学一月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是边长为2的正方形,5PA =,E 为PC 的中点,则异面直线BE 与PD 所成角的余弦值为( ) A.13- B .13 C .15- D .15 【答案】B【解析】【分析】由题意建立空间直角坐标系,表示出各点坐标后,利用cos ,BE PD BE PD BE PD⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r 即可得解. 【详解】Q PA ⊥平面ABCD ,底面ABCD 是边长为2的正方形,∴如图建立空间直角坐标系,由题意:()0,0,0A ,()2,0,0B ,()2,2,0C ,()0,0,5P ,()0,2,0D ,Q E 为PC 的中点,∴51,1,E ⎛⎫ ⎪ ⎪⎝⎭. ∴51,1,BE ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,()0,2,5PD =-u u u r , ∴1132cos ,1332BE PD BE PD BE PD -⋅===-⋅⋅u u u r u u u r u u u r u u u r u u u r u u u r , ∴异面直线BE 与PD 所成角的余弦值为cos ,BE PD u u u r u u u r 即为13. 故选:B.【点睛】本题考查了空间向量的应用,考查了空间想象能力,属于基础题.2.在三角形ABC 中,1a =,sin sin sin sin b c a b A A B C++=+-,求sin b A =( )A .2B .3C .12D .2【答案】A【解析】【分析】利用正弦定理边角互化思想结合余弦定理可求得角B 的值,再利用正弦定理可求得sin b A 的值.【详解】sin sin sin sin b c a b A A B C ++=+-Q ,由正弦定理得b c a b a a b c++=+-,整理得222a c b ac +-=, 由余弦定理得2221cos 22a cb B ac +-==,0B Q π<<,3B π∴=.由正弦定理sin sin a b A B =得sin sin 1sin 3b A a B π==⨯=. 故选:A.【点睛】本题考查利用正弦定理求值,涉及正弦定理边角互化思想以及余弦定理的应用,考查计算能力,属于中等题.3.已知抛物线24y x =的焦点为F ,P 为抛物线上一点,(1,1)A ,当PAF ∆周长最小时,PF 所在直线的斜率为( )A .43-B .34-C .34D .43【答案】A【解析】【分析】本道题绘图发现三角形周长最小时A,P 位于同一水平线上,计算点P 的坐标,计算斜率,即可.【详解】结合题意,绘制图像要计算三角形PAF 周长最小值,即计算PA+PF 最小值,结合抛物线性质可知,PF=PN ,所以PF PA PA PN AN AG +=+≥≥,故当点P 运动到M 点处,三角形周长最小,故此时M 的坐标为1,14⎛⎫⎪⎝⎭,所以斜率为1041314k -==--,故选A . 【点睛】 本道题考查了抛物线的基本性质,难度中等.4.如图示,三棱锥P ABC -的底面ABC 是等腰直角三角形,90ACB ∠=︒,且2PA PB AB ===,3PC =,则PC 与面PAB 所成角的正弦值等于( )A .13B .63C 3D .23【答案】A【解析】【分析】首先找出PC 与面PAB 所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值.【详解】由题知ABC V 是等腰直角三角形且90ACB ∠=︒,ABP △是等边三角形,设AB 中点为O ,连接PO ,CO ,可知62PO =,2CO = 同时易知AB PO ⊥,AB CO ⊥, 所以AB ⊥面POC ,故POC ∠即为PC 与面PAB 所成角, 有22222cos 23PO CO PC POC PO CO +-∠==⋅, 故1sin 1cos 3POC POC ∠=-∠=. 故选:A.【点睛】本题主要考查了空间几何题中线面夹角的计算,属于基础题.5.将函数()sin 2f x x =的图象向左平移02πϕϕ⎛⎫≤≤⎪⎝⎭个单位长度,得到的函数为偶函数,则ϕ的值为( )A .12πB .6πC .3πD .4π 【答案】D【解析】【分析】利用三角函数的图象变换求得函数的解析式,再根据三角函数的性质,即可求解,得到答案.【详解】将将函数()sin 2f x x =的图象向左平移ϕ个单位长度,可得函数()sin[2()]sin(22)g x x x ϕϕ=+=+又由函数()g x 为偶函数,所以2,2k k Z πϕπ=+∈,解得,42k k Z ππϕ=+∈, 因为02πϕ≤≤,当0k =时,4πϕ=,故选D .【点睛】本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟记三角函数的图象变换,合理应用三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.6.已知||23zz i=-(i为虚数单位,z为z的共轭复数),则复数z在复平面内对应的点在(). A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】设i,(,)z a b a b R=+∈,由||23zz i=-,得222i=(2)i=3a bz a b+--+,利用复数相等建立方程组即可.【详解】设i,(,)z a b a b R=+∈,则222i=(2)i=3a bz a b+--+,所以22320a bab⎧+⎪=⎨⎪+=⎩,解得222ab⎧=⎪⎨⎪=-⎩,故22i2z=-,复数z在复平面内对应的点为2(,2)2-,在第四象限.故选:D.【点睛】本题考查复数的几何意义,涉及到共轭复数的定义、复数的模等知识,考查学生的基本计算能力,是一道容易题.7.如图是国家统计局于2020年1月9日发布的2018年12月到2019年12月全国居民消费价格的涨跌幅情况折线图.(注:同比是指本期与同期作对比;环比是指本期与上期作对比.如:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比)根据该折线图,下列结论错误的是()A.2019年12月份,全国居民消费价格环比持平B.2018年12月至2019年12月全国居民消费价格环比均上涨C.2018年12月至2019年12月全国居民消费价格同比均上涨D .2018年11月的全国居民消费价格高于2017年12月的全国居民消费价格【答案】D【解析】【分析】先对图表数据的分析处理,再结简单的合情推理一一检验即可【详解】由折线图易知A 、C 正确;2019年3月份及6月份的全国居民消费价格环比是负的,所以B 错误;设2018年12月份,2018年11月份,2017年12月份的全国居民消费价格分别为,,a b c ,由题意可知,b a =,1.9%a c c -=,则有1 1.9%a c ab =<=+,所以D 正确. 故选:D【点睛】此题考查了对图表数据的分析处理能力及进行简单的合情推理,属于中档题.8.如图,PA ⊥平面ABCD ,ABCD 为正方形,且PA AD =,E ,F 分别是线段PA ,CD 的中点,则异面直线EF 与BD 所成角的余弦值为( )A 2B .3C 3D 2 【答案】C【解析】【分析】分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系A xyz -,再利用向量法求异面直线EF 与BD 所成角的余弦值.【详解】由题可知,分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系A xyz -.设2AD =.则3(2,2,0),(1,2,1),cos ,86BD EF BD EF =-=-〈〉==⨯u u u r u u u r u u u r u u u r . 故异面直线EF 与BD 3故选:C【点睛】本题主要考查空间向量和异面直线所成的角的向量求法,意在考查学生对这些知识的理解掌握水平. 9.设1F ,2F 分别为双曲线22221x y a b-=(a >0,b >0)的左、右焦点,过点1F 作圆222x y b += 的切线与双曲线的左支交于点P ,若212PF PF =,则双曲线的离心率为( )A 2B 3C 5D 6 【答案】C【解析】【分析】设过点1F 作圆222x y b += 的切线的切点为T ,根据切线的性质可得1OT PF ⊥,且||OT a =,再由212PF PF =和双曲线的定义可得12||2,||4PF a PF a ==,得出T 为1F P 中点,则有2//OT PF ,得到21PF PF ⊥,即可求解.【详解】设过点1F 作圆222x y b += 的切线的切点为T ,22111,||||OT PF FT OF b a ∴⊥=-= 2121212,2,4,2PF PF PF PF a PF a PF a =-===,所以T 是1F P 中点,212//,OT PF PF PF ∴∴⊥,22221212||||20||4PF PF a F F c ∴+===,225,c e a=∴=故选:C.【点睛】本题考查双曲线的性质、双曲线定义、圆的切线性质,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.10.已知()f x 为定义在R 上的奇函数,且满足f x f x (4)(),+=当(0,2)x ∈时,2()2f x x =,则(3)f =( )A .18-B .18C .2-D .2【答案】C【解析】【分析】由题设条件()()4f x f x +=,可得函数的周期是4,再结合函数是奇函数的性质将()3f 转化为()1f 函数值,即可得到结论.【详解】由题意,()()4f x f x +=,则函数()f x 的周期是4,所以,()()()3341f f f =-=-,又函数()f x 为R 上的奇函数,且当()0,2x ∈时,()22f x x =, 所以,()()()3112f f f =-=-=-.故选:C.【点睛】本题考查函数的周期性,由题设得函数的周期是解答本题的关键,属于基础题.11.已知命题300:2,80p x x ∃>->,那么p ⌝为( ) A .3002,80x x ∃>-≤B .32,80x x ∀>-≤C .3002,80x x ∃≤-≤D .32,80x x ∀≤-≤【答案】B【解析】【分析】利用特称命题的否定分析解答得解.【详解】已知命题0:2p x ∃>,3080x ->,那么p ⌝是32,80x x ∀>-≤. 故选:B .【点睛】本题主要考查特称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.12.已知点A 是抛物线24x y =的对称轴与准线的交点,点F 为抛物线的焦点,点P 在抛物线上且满足PA m PF =,若m 取得最大值时,点P 恰好在以,A F 为焦点的椭圆上,则椭圆的离心率为( ) A1B1 C.12 D.12【答案】B【解析】【分析】设(),P x y ,利用两点间的距离公式求出m 的表达式,结合基本不等式的性质求出m 的最大值时的P 点坐标,结合椭圆的定义以及椭圆的离心率公式求解即可.【详解】设(),P x y ,因为A 是抛物线24x y =的对称轴与准线的交点,点F 为抛物线的焦点, 所以()()0,1,0,1A F -, 则PAm PF ==== 当0y =时,1m =,当0y >时,m ==≤= 当且仅当1y =时取等号,∴此时()2,1P±,2PA PF ==, Q 点P 在以,A F 为焦点的椭圆上,22c AF ==,∴由椭圆的定义得22a PA PF =+=,所以椭圆的离心率212c c e a a ====,故选B.【点睛】本题主要考查椭圆的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解.二、填空题:本题共4小题,每小题5分,共20分。
2019年广西梧州市高考数学一模试卷(理科)一、单选题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.(5分)若集合A=[2,3],B={x|x2﹣5x+6=0},则A∩B=()A.{2,3}B.∅C.2D.[2,3]2.(5分)已知复数z的实部为﹣1,虚部为2,则=()A.2﹣i B.2+i C.﹣2﹣i D.﹣2+i3.(5分)计算log2sin+log2cos的值为()A.﹣4B.4C.2D.﹣24.(5分)若a,4,3a为等差数列的连续三项,则a0+a1+a2+…+a9的值为()A.2047B.1062C.1023D.5315.(5分)甲、乙、丙.丁四辆玩具赛车同时从起点出发并做匀速直线运动,丙车最先到达终点.丁车最后到达终点.若甲、乙两车的s﹣t图象如图所示,则对于丙、丁两车的图象所在区域,判断正确的是()A.丙在Ⅲ区域,丁在Ⅰ区域B.丙在Ⅰ区城,丁在Ⅲ区域C.丙在Ⅱ区域,丁在Ⅰ区域D.丙在Ⅲ区域,丁在Ⅱ区域6.(5分)已知△ABC一边的两个端点是A(7,0),B(﹣7,0),另两边斜率的积是,那么顶点C的轨迹方程是()A.x2+y2=49(y≠0)B.=1(y≠0)C.=1(y≠0)D.=1(y≠0)7.(5分)下列四个结论中正确命题的个数是()①命题“若f(x)是周期函数,则f(x)是三角函数”的否命题是“若f(x)是周期函数,则f(x)不是三角函数”;②命题“∃x0∈R,x02﹣x0﹣1<0”的否定是“∀x∈R,x2﹣x﹣1≥0”;③在△ABC中,“sin A>sin B”是“A>B”的充要条件;④当a>0时,幂函数y=x a在区间(0,+∞)上单调递增.A.1个B.2个C.3个D.4个8.(5分)已知函数f(x)=,则=()A.1+B.+C.1+D.+9.(5分)函数f(x)=(e是自然对数的底数)的图象大致为()A.B.C.D.10.(5分)已知某几何体的三视图如图所示,则该几何体的表面积为()A.B.C.13D.11.(5分)设A、B、C、D是半径为2的球面上的四点,且满足AB⊥AC、AD⊥AC、AB ⊥AD,则S△ABC+S△ABD+S△ACD的最大值为()A.4B.8C.12D.1612.(5分)设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2019)2f(x+2019)﹣4f(﹣2)<0的解集为()A.(﹣2019,﹣2017)B.(﹣2019,﹣2018)C.(﹣2021,﹣2019)D.(﹣2020,﹣2019)二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)已知{a n}是等比数列,若=(2,a2),=(3,a3),且∥,则=.14.(5分)已知圆(x+1)2+y2=4与抛物线y2=2px(p>0)的准线交于A、B两点,且AB =2,则p的值为.15.(5分)若f(x)=(1+x)6(1﹣x)5,f′(x)是f(x)的导函数,则函数f′(x)中x2的系数为.(用数字作答)16.(5分)某计算机程序每运行一次都随机出现一个五位数A=,其中A的各位数中,a1=1,a k(k=2,3,4,5)出现0的概率为,出现1的概率为,记X=a2+a3+a4+a5,当程序运行一次时,X的数学期望EX=.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)17.(12分)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知,(1)求的值;(2)若a=2,,求b的值.18.(12分)基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验,某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月的市场占有率t=y%进行了统计,结果如表:(1)请用相关系数说明能否用线性回归模型拟合y与月份代码x之间的关系,如果能,请计算出y关于x的线性回归方程,并预测该公司2018年12月的市场占有率.如果不能,请说明理由.(2)根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元/辆和800元/辆的A,B两款车型,报废年限各不相同.考虑公司的经济效益,该公司决定对两款单车进行科学模拟测试,得到两款单车使用寿命频数表如表:经测算,平均每辆单车每年可以为公司带来收入500元.不考虑除采购成本以外的其他成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,分别以这100辆单车所产生的平均利润作为决策依据,如果你是该公司的负责人,会选择釆购哪款车型?参考数据:(x i﹣)2=17.5,(x i)(y i)=35,≈36.5参考公式:相关系数r=回归直线方程=x+中的斜率和截距的最小二乘估计公式分别为:=,=.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C是菱形,其对角线的交点为O,且AB=AC1,AB⊥B1C.(1)求证:AO⊥平面BB1C1C;(2)设∠B1BC=60°,若直线A1B1与平面BB1C1C所成的角为45°,求二面角A1﹣B1C ﹣A的大小.。
20.(12分)已知动圆O与x轴切于点A(﹣3,0),又点B(﹣1,0),C(1,0),过B,C分别作圆O′异于x轴的两切线,两切线交于点M.(1)求点M的轨迹Γ的方程;(2)x轴上是否存在定点N,使得过点N的直线l与轨迹Γ交于P,Q时,恒有为定值?若存在,求出定点与定值;若不存在,请说明理由.21.(12分)已知函数f(x)=ax﹣的两个极值点x1,x2满足x1<x2,且e<x2<3,其中e为自然对数的底数.(Ⅰ)求实数a的取值范围;(Ⅱ)求f(x2)﹣f(x1)的取值范围.请考生在第22、23两题中任选一题作答.注意:只能做选定的题目.如果多做,则按所做的第一题计分.作答时,请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,曲线C的极坐标方程为ρ=.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;(Ⅱ)过点P(0,2)作斜率为1直线l与曲线C交于A,B两点,试求+的值.[选修4-5:不等式选讲]23.设函数f(x)=|3x﹣1|+ax+3.(Ⅰ)若a=1,解不等式f(x)≤4;(Ⅱ)若函数f(x)有最小值,求a的取值范围.2019年广西梧州市高考数学一模试卷(理科)参考答案与试题解析一、单选题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.【解答】解:集合A=[2,3],B={x|x2﹣5x+6=0|={2,3},则A∩B={2,3}.故选:A.2.【解答】解:因为由条件知z=﹣1+2i,则=,故选:A.3.【解答】解:∵==2﹣2.∴原式===﹣2.故选:D.4.【解答】解:由于a+3a=4a=2×4,解得a=2,故a0+a1+a2+…+a9=20+21+22+…+29=.故选:C.5.【解答】解:∵丙车最先到达终点.丁车最后到达终点,∴丙车速度最大,丁车速度最小,∴丙车所在直线的倾斜角最大,丁车所在直线的倾斜角最小.故选:A.6.【解答】解:设顶点A的坐标为(x,y),则;k BC=,由题意得=,即=1(y≠0),故选:D.7.【解答】解:①,命题“若f(x)是周期函数,则f(x)是三角函数”的否命题是:“若f(x)不是周期函数,则f(x)不是三角函数”,故①错误;②,命题“∃x0∈R,x02﹣x0﹣1<0”的否定是“∀x∈R,x2﹣x﹣1≥0”,故②正确;③,在△ABC中,“sin A>sin B”⇔“2R sin A>2R sin B”⇔“a>b”⇔“A>B”,故③正确;④,当a>0时,幂函数y=x a在区间(0,+∞)上单调递增,故④正确.其中正确命题的个数为3.故选:C.8.【解答】解:=+=()+=+故选:B.9.【解答】解:f(﹣x)===﹣=﹣f (x),则函数f(x)是奇函数,图象关于原点对称,排除B,C.当x>1时,f(x)>0,排除D,故选:A.10.【解答】解由三视图可知几何体为三棱台,作出直观图如图所示,则CC′⊥平面ABC,上下底均为等腰直角三角形,AC⊥BC,AC=BC=1,A′C′=B′C′=C′C=2,∴AB=,A′B′=2.∴棱台的上底面积为=,下底面积为=2,梯形ACC′A′的面积为(1+2)×2=3,梯形BCC′B′的面积为=3,过A作AD⊥A′C′于D,过D作DE⊥A′B′,则AD=CC′=2,DE为△A′B′C′斜边高的,∴DE=,∴AE==.∴梯形ABB′A′的面积为()×=.∴几何体的表面积S==13.故选:C.11.【解答】解:设AB=a,AC=b,AD=c,因为AB,AC,AD两两互相垂直所以a2+b2+c2=4×22S△ABC+S△ACD+S△ADB=(ab+ac+bc)≤(a2+b2+c2)=8.即最大值8.故选:B.12.【解答】解:由2f(x)+xf′(x)>x2,(x<0),得:2xf(x)+x2f′(x)<x3,即[x2f(x)]′<x3<0,令F(x)=x2f(x),则当x<0时,得F′(x)<0,即F(x)在(﹣∞,0)上是减函数,∴F(x+2019)=(x+2019)2f(x+2019),F(﹣2)=4f(﹣2),即不等式等价为F(x+2019)﹣F(﹣2)<0,∵F(x)在(﹣∞,0)是减函数,∴由F(x+2019)<F(﹣2)得,x+2019>﹣2,即x>﹣2021,又x+2019<0,解得:x<﹣2019,故﹣2021<x<﹣2019,故选:C.二、填空题(本大题共4小题,每小题5分,共20分)13.【解答】解:{a n}是等比数列,若=(2,a2),=(3,a3),且∥,可得:3a2=2a3,所以q=,则==.故答案为:.14.【解答】解:抛物线y2=2px(p>0)的准线为x=﹣,设A、B两点坐标为(﹣,y1),(﹣,y2),∴(﹣+1)2+y2=4,即y2=4﹣(﹣+1)2,∴y=±,∴|AB|=|y2﹣y1|=2=2,∴4﹣(﹣+1)2=3,解得p=4,故答案为:4.15.【解答】解:f(x)=(1+x)6(1﹣x)5=(1﹣x2)5(1+x),则(1﹣x2)5的通项公式为:T r+1=(﹣x2)r,令r=1,可得:x2的系数为﹣5.∴f(x)的展开式中x3的系数为﹣5×3=﹣15.故答案为:﹣15.16.【解答】解:由题意可得:X~B,∴EX==.故答案为:.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)17.【解答】解:(1)因为锐角△ABC中,A+B+C=π,,所以cos A=,则=(2),则bc=3.将a=2,cos A=,c=代入余弦定理:a2=b2+c2﹣2bc cos A中得b4﹣6b2+9=0解得b=18.【解答】解:(1)=(11+13+16+15+20+21)=16,故=76,故r===≈0.96,故两变量之间有较强的相关关系,故可用线性回归模型拟合y与月份代码x之间的关系,===2,==16﹣2×3.5=9,故回归方程是=2x+9,x=7时,=23,即2018年12月的市场占有率是23%;(2)用频率估计概率,这100辆A款单车的平均利率为:(﹣500×10+0×30+500×40+1000×20)=350(元),这100辆B款车的平均利润为:(﹣300×15+200×40+700×35+1200×10)=400(元),故会选择釆购B款车型.19.【解答】证明:(1)∵四边形BB1C1C是菱形,∴B1C⊥BC1,∵B1C⊥AB,且BC1∩AB=B,∴B1C⊥平面ABC1,∴B1C⊥AO,∵AB=AC1,O是BC1的中点,∴AO⊥BC1,又BC1∩B1C=O,AO⊥平面BB1C1C.解:(2)∵AB∥A1B1,∴直线A1B1与平面BB1C1C的所成角等于直线AB与平面BB1C1C的所成角,∵AO⊥平面BB1C1C,∴直线AB与平面BB1C1C的所成角为∠ABO,即∠ABO=45°,设菱形BB1C1C的边长为2,则在等边△BB1C中,BO=,CO=B1O=1,在直角△ABO中,AO=BO=,以O为原点建立空间直角坐标系,则B1(0,1,0),C(0,﹣1,0),A1(﹣),=(),=(0,﹣2,0),设平面A1B1C的一个法向量为=(x,y,z),则,取x=1,得=(1,0,1),平面AB1C的一个法向量为=(1,0,0),cos<>==,∴二面角A1﹣B1C﹣A的大小为45°.20.【解答】解:(1)过点B的非x轴的切线且圆O′于点E,过点C的非x轴的切线且圆O′于点D,根据切线长性质可得|BA|=|BE|,|CD|=|CA|,|MD|=|ME|,则|MC|=|CD|﹣|MD|=|CA|﹣|ME|,①|MB|=|BE|+|ME|=|BA|+|CA|,②,①+②可得|MB|+|MC|=|BA|+|CA|=4+2=6,∴点M的轨迹Γ是以B,C为焦点,长轴长为6的椭圆(除去长轴的两顶点),且点M的轨迹Γ的方程是+=1,(y≠0),(2)设存在定点N(n,0)满足题意,由题意可知直线l的斜率不为零,则设过点N的直线l的方程为x=my+n,其交点P(x1,y1),Q(x2,y2)不妨设点P在x轴上方,联立直线与椭圆的方程可得(8m2+9)y2+16mny+8n2﹣72=0,△=(16mn)2﹣4(8m2+9)(8n2﹣72)>0,∴y1+y2=﹣,y1y2=,∴y2﹣y1=﹣=,∴|PN|===|y1|=•y1,∴|PM|==|y2|=•y2,∴=﹣=•=•,∵m为变量,∴当9﹣n2=8,即n2=1时,为定值,此时定点为(1,0),(﹣1,0),故存在定点N(1,0)或(﹣1,0),使得为定值.21.【解答】解:(Ⅰ),f′(x)=,由题意知x1、x2为方程ax2﹣4x+a=0的两个根.根据韦达定理得x1+x2=,x1•x2=1.整理得a=.又y=在(e,3)上单调递增,∴.(Ⅱ)∵f(x2)﹣f(x1)=﹣ax1++4lnx1,∵,∴f(x2)﹣f(x1)=﹣+ax2+4ln=2a(x2﹣)﹣8lnx2,由(Ⅰ)知a=,代入得f(x2)﹣f(x1)=(x2﹣)﹣8lnx2=﹣8lnx2,令t=x22∈(e2,9),于是可得h(t)==4lnt,故h′(t)=,∴h(t)在(e2,9)上单调递减,∴f(x2)﹣f(x1)的取值范围为().请考生在第22、23两题中任选一题作答.注意:只能做选定的题目.如果多做,则按所做的第一题计分.作答时,请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-4:坐标系与参数方程]22.【解答】解:(I)∵ρ=,∴ρ2cos2θ=ρsinθ,∴曲线C的直角坐标方程是x2=y,即y=x2.(II)直线l的参数方程为(t为参数).将(t为参数)代入y=x2得t2﹣﹣4=0.∴t1+t2=,t1t2=﹣4.∴+====.[选修4-5:不等式选讲]23.【解答】解:(Ⅰ)当a=1时,f(x)=|3x﹣1|+x+3,当x时,f(x)≤4可化为3x﹣1+x+3≤4,解得;当x时,f(x)≤4可化为﹣3x+1+x+3≤4,解得.综上可得,原不等式的解集为{x|},(Ⅱ)f(x)=|3x﹣1|+ax+3=函数f(x)有最小值的充要条件为,即﹣3≤a≤3.。