找规律问题
- 格式:ppt
- 大小:1.52 MB
- 文档页数:24
找规律练习题一.数字排列规律题1.4、10、16、22、28……,求第n位数()。
2.2、3、5、9,17增幅为1、2、4、8.第n位数()3.观察下列各式数:0,3,8,15,24,……。
试按此规律写出的第100个数是----,第n个数是---------。
4.1,9,25,49,(),(),的第n项为(),5:2、9、28、65.....:第n位数()6:2、4、8、16......第n位数.()7:2、5、10、17、26……,第n位数.()8:4,16,36,64,?,144,196,…?第一百个数()9、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和。
10、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?11.=8=16=24……用含有N的代数式表示规律()12.12,20,30,42,()127,112,97,82,()3,4,7,12,(),2813.1,2,3,5,(),1314.0,1,1,2,4,7,13,()15.5,3,2,1,1,()16.1,4,9,16,25,(),4917.66,83,102,123,(),18.1,8,27,(),12519。
3,10,29,(),12720,0,1,2,9,()21;()。
则第n项代数式为:()22,2/31/22/51/3()。
则第n项代数式为()23,1,3,3,9,5,15,7,()24.2,6,12,20,()25.11,17,23,(),35。
26.2,3,10,15,26,()。
27.:1,8,27,64,()28.:0,7,26,63,()29.-2,-8,0,64,()30.1,32,81,64,25,()31.1,1,2,3,5,()。
32.4,5,(),14,23,3733.6,3,3,(),3,-334.1,2,2,4,8,32,()35。
五年级找规律一.选择题1.按的方式摆放在桌面上.8个按这种方式摆放,有()个面露在外面.A.20B.23C.26D.292.按下列规律印刷笑脸图案,第8幅图案有()个笑脸.A.8B.32C.363.将一些小圆球如图摆放,第六幅图有()个小圆球.A.30B.36C.424.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”,从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10B.25=9+16C.36=15+21D.49=18+315.找规律填空3、5、8、10、13、()、18、20.A.14B.15C.16D.176.按规律填数:2,3,5,9,(),33,…….A.13B.15C.17D.307.找规律:19.8,18.6,17.4,()A.17.2B.16.8C.16.2D.15.28.按如图规律摆放三角形则第⑥个图三角形的个数为()A.15B.17C.20D.249.观察下面的点阵图,按规律,第(9)个点阵图中有()个点.A.27B.30C.33D.54二.填空题(共19小题)10.摆一个需要4根小棒,摆需要7根小棒,摆需要10根小棒…,像这样摆n个正方形需要根小棒,当n=20时,需要根小棒.11.如图方式摆放桌子和椅子,一张桌子能坐6人,3张桌子能坐人.12.下图编号为(1),(2),(3),(4)这四幅图分别由1,4,9,16个小等边三角形拼成,它们的周长分别为3,6,9,12.按这个规律.由100个小等边三角形拼成的图形,周长为.13.如图,它是由火柴棒拼成的图案,如果在这个图案中用了51根火柴棒,可拼成个三角形.14.找规律填数.(1)1,4,7,10,,,.(2)2,4,6,8,,,.(3)1,1,2,3,5,8,,.(4)2,5,4,7,6,9,8,,.(5)1,﹣4,9,﹣16,25,,.15.△□□△□□△□□…,这一组图形中第16个是,第21个是.16.●●〇●〇〇〇●●〇●〇〇〇…,黑白两色棋子是按的规律摆放的,第51枚棋子是,前20枚棋子中,白色棋子有枚.17.按规律填数:,,,,,,.18.先找规律,再填数:1,,,,,,.19.照下图排列的规律,第10幅图有个圆点,第n个图有个圆点.20.用同样长的小木棒摆成如图,照这样摆下去,第6幅图需要根这样的小木棒.21.下图是小亮在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第7个小房子用了块石子.22.将一些▲按一定的规律摆放,(如图所示).图中▲的个数依次是6、10、16、24……第10个图形共有个▲.第m个图形中共有个▲.23.用边长为1的小三角形按如图方式摆图形.摆第7个图形需要个小三角形,第7个图形的周长是.24.将一些半径相同的小圆按如图所示的規律摆放:第1个图形中有6个小圆,第2个形中有10个小圆,第3个图形中有16个小圆,第4个图形中有24个小圆,…依此律,第6个图形有个小圆.25.仔细观察如图,照这样排列下去,第六个图形中共有个三角形,其中涂色的三角形有个.26.数形结合是一种重要的数学思想.请你仔细观察,找出下面图形与算式的关系,再直接填空.(1)推算:1+3+5+…+19=2(2)概括:=2(3)拓展应用:1+3+5+7+9+11+13+15+13+11+9+7+5+3+1=27.奇思用小棒这样摆三角形:…,一共用了27根小棒,摆出了个三角形.28.如图,每个图案都是由若干个棋子摆成,依照此规律,第100个图案中棋子的总个数是.三.解答题(共2小题)29.学校准备了40000元,够不够?30.摆放易拉罐,(如图)看图回答问题.(1)摆两层一共有:1+2=3个摆三层一共有1+2+3=6个摆四层一共有个.摆五层一共有个.摆六层一共有个.…(2)用n表示摆的层数,你能总结出一个计算公式吗?.五年级找规律参考答案与试题解析一.选择题(共9小题)1.按的方式摆放在桌面上.8个按这种方式摆放,有()个面露在外面.A.20B.23C.26D.29【解】根据题干分析可得,n个正方体有5+(n﹣1)×3=3n+2;所以8个小正方体时,露在外部的面有:3n+2=3×8+2=26(个)故选:C.2.按下列规律印刷笑脸图案,第8幅图案有()个笑脸.A.8B.32C.36【解】1+2+3+4+5+6+7+8,=(1+8)+(2+7)+(3+6)+(4+5),=9×4,=36;答:第8副图案有36个笑脸.故选:C.3.将一些小圆球如图摆放,第六幅图有()个小圆球.A.30B.36C.42【解】观察图形可知:第一个图形中有1×2=2个小圆球,第二个图形中有2×3=6个小圆球,第三个图形中有3×4=12个小圆球,第四个图形中有4×5=20个小圆球,…所以第六幅图有6×7=42个小圆球.故选:C.4.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”,从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10B.25=9+16C.36=15+21D.49=18+31【解】这些三角形数的规律是1,3,6,10,15,21,28,36,45,…,且正方形数是这串数中相邻两数之和,很容易看到:恰有36=15+21.故选:C.5.找规律填空3、5、8、10、13、()、18、20.A.14B.15C.16D.17【解】10+5=15故选:B.6.按规律填数:2,3,5,9,(),33,…….A.13B.15C.17D.30【解】2×9﹣1=18﹣1=17所以:2,3,5,9,17,33,…….故选:C.7.找规律:19.8,18.6,17.4,()A.17.2B.16.8C.16.2D.15.2【解】17.4﹣1.2=16.2.故选:C.8.按如图规律摆放三角形则第⑥个图三角形的个数为()A.15B.17C.20D.24【解】图①三角形的个数:2×3﹣1=5(个)图②三角形的个数:3×3﹣1=8(个)图③三角形的个数:4×3﹣1=11(个)……图n三角形的个数:3(n+1)﹣1=(3n+2)个……第⑥个图三角形的个数为:3×6+2=18+2=20(个)答:第⑥个图三角形的个数为20个.故选:C.9.观察下面的点阵图,按规律,第(9)个点阵图中有()个点.A.27B.30C.33D.54【解】由分析可知,第n项是(3n+3)个点3×9+3=27+3=30答:第(9)个点阵图中有30个点.故选:B.二.填空题(共19小题)10.摆一个需要4根小棒,摆需要7根小棒,摆需要10根小棒…,像这样摆n个正方形需要3n+1根小棒,当n=20时,需要61根小棒.【解】第一个正方形由四根火柴摆成,以后加三根就可加一个正方形,摆n个正方形需要3n+1根小棒,当n=20时,需要3×20+1=61根小棒.故答案为:3n+1,61.11.如图方式摆放桌子和椅子,一张桌子能坐6人,3张桌子能坐14人.【解】有1张桌子时有6把椅子,有2张桌子时有10把椅子,10=6+4×1,有3张桌子时有14把椅子,14=6+4×2,答:3张桌子可以坐14人.故答案为:14.12.下图编号为(1),(2),(3),(4)这四幅图分别由1,4,9,16个小等边三角形拼成,它们的周长分别为3,6,9,12.按这个规律.由100个小等边三角形拼成的图形,周长为30.【解】因为:100=102所以由100个小等边三角形拼成的图形编号为(10),所以周长为:3×10=30.故答案为:30.13.如图,它是由火柴棒拼成的图案,如果在这个图案中用了51根火柴棒,可拼成25个三角形.【解】第一个三角形有1+2=3根火柴棒组成,以后每多一个三角形就多用2根火柴棒,所以组成n个三角形就需要1+2n根火柴棒;当1+2n=51时2n=50n=25答:可拼成25个三角形.故答案为:25.14.找规律填数.(1)1,4,7,10,13,16,19.(2)2,4,6,8,10,12,14.(3)1,1,2,3,5,8,13,21.(4)2,5,4,7,6,9,8,11,10.(5)1,﹣4,9,﹣16,25,49,﹣64.【解答】解(1)10+3=1313+3=1616+3=19(2)8+2=1010+2=1212+2=14(3)5+8=138+13=21(4)72=49﹣16×4=﹣64故答案为:13,16,19;10,12,14,13,21,49,﹣64.15.△□□△□□△□□…,这一组图形中第16个是△,第21个是□.【解】16÷3=5…1,所以这一组图形中第16个是△;21÷3=7,所以这一组图形中第21个是□;故答案为:△,□.16.●●〇●〇〇〇●●〇●〇〇〇…,黑白两色棋子是按●●〇●〇〇〇的规律摆放的,第51枚棋子是黑色的,前20枚棋子中,白色棋子有11枚.【解】51÷7=7(周)…2(个)第51枚棋子是黑色的.20÷7=2(周)…6(个)2×4+3=11(个)所以前20枚中一共有11个白色的.答:第51枚棋子是黑色的,前20枚棋子中,白色棋子有11枚.故答案为:黑色的,11.17.按规律填数:,,,,,,.【解】==故答案为:;.18.先找规律,再填数:1,,,,,,.【解】1=,由前几个分数可知,分子是从1开始的连续奇数,分母是项数的平方;所以,第6项的分子是11,分母是62=36,是.故答案为:.19.照下图排列的规律,第10幅图有33个圆点,第n个图有(3n+3)个圆点.【解】第一幅图圆点个数:1+2+3=6(个)第二副图圆点个数:2+3+4=9(个)第三幅图圆点个数:3+4+5=12(个)……第10幅图圆点个数:10+11+12=33(个)……第n幅图圆点的个数:n+(n+1)+(n+2)=(3n+3)个答:第10幅图有33个圆点,第n个图有(3n+3)个圆点.故答案为:33;(3n+3).20.用同样长的小木棒摆成如图,照这样摆下去,第6幅图需要34根这样的小木棒.【解】由分析可得:第n幅图需要小棒:4+6(n﹣1)根.所以第6幅图需要小棒:4+6(n﹣1)=4+6×(6﹣1)=4+30=34(根)答:第6幅图需要34根这样的小木棒.故答案为:34.21.下图是小亮在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第7个小房子用了77块石子.【解】第一个图形有5块小石子,5=1×(1+4)第二个图形有12块小石子,12=2×(2+4)第三个图形由21块小石子,21=3×(3+4)……由此推出:第n个图形有n(n+4)块石子7×(7+4)=7×11=77(块)答:第7个小房子用了77块石子.故答案为:77.22.将一些▲按一定的规律摆放,(如图所示).图中▲的个数依次是6、10、16、24……第10个图形共有114个▲.第m个图形中共有m(m+1)+4个▲.【解】∵第1个图形有1×2+4=6个三角形,第2个图形有4+2×3=10个三角形,第3个图形有4+3×4=16个三角形,…,∴第m个图形中有m(m+1)+4个三角形,∴第10个图形棋子的颗数为:10×(10+1)+4=10×11+4=110+4=114(个)故答案为:114,m(m+1)+4.23.用边长为1的小三角形按如图方式摆图形.摆第7个图形需要49个小三角形,第7个图形的周长是21.【解】根据题干分析可得:第一个图形是12=1个三角形,边长是1;第二个图形是22=4个三角形,边长是2;第三个图形是32=9个三角形,边长是3;…,第七个图形是72=49个三角形,边长是7,周长是7×3=21.答:摆第7个图形需要49个小三角形,第7个图形的周长是21.故答案为:49;21.24.将一些半径相同的小圆按如图所示的規律摆放:第1个图形中有6个小圆,第2个形中有10个小圆,第3个图形中有16个小圆,第4个图形中有24个小圆,…依此律,第6个图形有44个小圆.【解】第1个图形中有6个小圆第2个形中有10个小圆第3个图形中有16个小圆第4个图形中有24个小圆……第n个图形为:[n(n+1)+4]个小圆所以,第6个图形小圆的个数为:6×7+4=42+2=44(个)答:第6个图形有44个小圆.故答案为:44.25.仔细观察如图,照这样排列下去,第六个图形中共有49个三角形,其中涂色的三角形有21个.【解】根据题干分析可得:第n个图形涂色的小三角形个数为1+2+3+…+n,没有涂色的小三角形个数为1+2+3+…+n+n+1,当n=6时,1+2+3+4+5+6=21(个)没有涂色小三角形有1+2+3+4+5+6+7=28(个)21+28=49(个)故答案为:49,21.26.数形结合是一种重要的数学思想.请你仔细观察,找出下面图形与算式的关系,再直接填空.(1)推算:1+3+5+…+19=102(2)概括:=n2(3)拓展应用:1+3+5+7+9+11+13+15+13+11+9+7+5+3+1=113【解】(1)1+3+5+…+19=(19+1)÷2=10(个),即1+3+5+…+19由10个加数其和是102即1+3+5+…+19=102(2)=n2(3)1+3+5+7+9+11+13+15+13+11+9+7+5+3+1=(1+3+5+7+9+11+13+15)+(1+3+5+7+9+11+13)=82+72=64+49=113故答案为:10,n,113.27.奇思用小棒这样摆三角形:…,一共用了27根小棒,摆出了13个三角形.【解】当有n个三角形时小棒的数量就是:3+2(n﹣1)=3+2n﹣2=2n+1(根);当有27根小棒时:2n+1=272n=26n=13;答:摆27根小棒能摆出13个三角形.故答案为:13.28.如图,每个图案都是由若干个棋子摆成,依照此规律,第100个图案中棋子的总个数是10100.【解】由分析可得:每个图案的纵队棋子个数是:n,每个图案的横队棋子个数是:n+1,那么第n个图案中棋子的总个数与n的关系式为:总个数=n(n+1).那么第100个图案中棋子的总个数:100×(100+1)=100×101=10100(个)答:第100个图案中棋子的总个数是10100个.故答案为:10100.三.解答题(共2小题)29.学校准备了40000元,够不够?【解】172×42+328×45=7224+14760=21984(元)21984<40000答:学校准备了40000元,够.30.摆放易拉罐,(如图)看图回答问题.(1)摆两层一共有:1+2=3个摆三层一共有1+2+3=6个摆四层一共有1+2+3+4=10个.摆五层一共有1+2+3+4+5=15个.摆六层一共有1+2+3+4+5+6=21个.…(2)用n表示摆的层数,你能总结出一个计算公式吗?n(n+1).【解】(1)摆两层一共有:1+2=3个摆三层一共有1+2+3=6个摆四层一共有1+2+3+4=10个.摆五层一共有1+2+3+4+5=15个.摆六层一共有1+2+3+4+5+6=21个(2)用n表示摆的层数:n(n+1)故答案为:1+2+3+4=10;1+2+3+4+5=15;1+2+3+4+5+6=21;n(n+1)。
找规律的方法在日常生活和学习工作中,我们经常需要找到一些规律来解决问题,无论是数学、科学、技术还是生活中的琐事,都需要我们去寻找规律。
那么,如何才能找到规律呢?下面我将就这个问题分享一些方法。
首先,我们可以通过观察来找规律。
观察是找规律的基础,只有仔细观察,才能发现事物的内在规律。
比如,我们可以通过观察一组数字或一系列事件的变化,来寻找其中的规律。
在数学中,我们可以观察数列的变化规律,从而找到数列的通项公式;在生活中,我们也可以通过观察天气变化规律来预测未来的天气情况。
其次,我们可以通过归纳总结来找规律。
通过观察一组数据或一系列事件,我们可以总结出它们之间的共同特点和规律性,从而找到规律。
比如,我们可以通过总结一组数字的特点,找到它们之间的数学关系;通过总结一系列事件的规律,找到它们之间的因果关系。
通过归纳总结,我们可以更好地理解事物的规律性。
此外,我们还可以通过推理分析来找规律。
推理是一种逻辑思维方式,通过推理分析,我们可以找到事物内在的规律。
比如,我们可以通过数学推理来证明数学定理;通过逻辑推理来解决问题;通过科学推理来探索未知。
通过推理分析,我们可以深入理解事物的本质和规律。
最后,我们可以通过实践验证来找规律。
在找到规律之后,我们需要通过实践来验证它是否正确。
只有通过实践验证,我们才能确认所找到的规律是否有效。
比如,在数学中,我们可以通过代入法来验证数学公式的正确性;在科学实验中,我们也可以通过实验数据来验证科学理论的正确性。
总而言之,找规律的方法有很多种,可以通过观察、归纳总结、推理分析和实践验证来找到规律。
通过这些方法的运用,我们可以更好地理解事物的规律性,从而更好地解决问题。
希望以上内容能对您有所帮助,谢谢阅读!。
找规律的三种方法
找规律是数学和逻辑问题中常见的解题方法。
以下是三种常用的找规律方法:
1. 数字规律法:通过观察一系列数字或数字序列,寻找其中的规律和模式。
例如,可以尝试计算每个数与前一个数的差异、比率或乘积,看是否能找到递增或递减的规律。
2. 图形规律法:对于一系列图形或图案,可以通过观察图形的形状、线条、对称性等特征,寻找其中的规律。
可以尝试通过旋转、镜像、移动等操作,找出图形之间的关联性。
3. 字母规律法:针对字母序列或单词,可以通过观察字母的位置、排列、重复性等特征,寻找规律。
可以尝试根据字母在字母表中的顺序或根据字母的形状进行推理。
除了以上三种方法,还有一些其他的找规律方法,比如利用代数公式、模型建立、归纳法等。
在解决问题时,可以尝试结合多种方法,综合分析,找出最合适的规律和模式。
在实际应用中,找规律的能力有助于解决数学问题、逻辑问题、编程问题以及一些日常生活中的难题。
通过不断练习和思考,可以提高找规律的能力,并更加灵活地运用于解决各类问题。
初一数学找规律题及答案归纳法——找规律研究归纳法——找规律的具体方法和步骤是:(1)通过对几个特例的分析,寻找规律并归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确。
下面通过举例来说明这些问题。
一、数字排列规律题1、观察下列各算式:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42按此规律1)猜想:1+3+5+7+…+2005+2007的值是多少?2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?2、下面数列后两位应该填上什么数字呢?xxxxxxxx____3、请填出下面横线上的数字。
____214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?5、有一串数字xxxxxxxx___第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是().A.1 B.2 C.3 D.47、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1.那么这100个数中“ ”的个数为_________个.二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):从第1个球起到第2004个球止,共有实心球个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称).三、数、式计算规律题1、已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;由此规律知,第⑤个等式是.2、观察下面的几个算式:1+2+1=4。
1+2+3+2+1=9。
1+2+3+4+3+2+1=16。
1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n1n n1,其中n是正整数。
幼儿数学找规律练习题在幼儿园阶段,数学教育起着至关重要的作用。
通过数学的学习,幼儿可以培养逻辑思维和解决问题的能力。
其中,找规律是数学学习中的重要一环。
通过找规律练习题,幼儿可以激发他们的思维能力和创造力。
下面,我们一起来看几道有趣的找规律练习题。
问题一:请找出下面这组数列中的规律,然后依据规律选择合适的数字填空。
1, 4, 7, 10, ___, ___思路提示:观察数字之间的变化规律,尝试找出每个数字与前一个数字之间的差异。
答案解析:观察数列中的数字,我们可以发现每个数字与前一个数字之间的差异是3。
所以,下两个数字应分别是13和16。
问题二:请在下面的括号中填上合适的数字,使得等号左边的数字和等号右边的数字之间满足相同的规律。
8 + 5 = (12 + 2)思路提示:尝试从等号左侧的数字与等号右侧的数字之间找出规律,再填入括号中。
答案解析:观察等号左侧的数字8和等号右侧的数字12,我们可以发现它们之间的差异是4。
同样地,观察等号左侧的数字5和等号右侧的数字2,我们可以发现它们之间的差异是3。
所以,合适的填入方式是(8+4) + (5-2)。
问题三:请根据以下数字序列找出规律,然后填上合适的数字。
2, 4, 16, 256, ___, ___思路提示:观察数字序列中每个数字与前一个数字之间的关系,找出规律。
答案解析:从2到4,我们可以发现乘以2的关系;从4到16,我们可以发现乘以4的关系;从16到256,我们可以发现乘以16的关系。
所以,下两个数字分别是4096和65536。
通过上面的几道找规律练习题,我们可以培养幼儿的观察力、分析解决问题的能力,同时也提升他们的创造力。
在幼儿数学教育中,找规律是锻炼孩子的数学思维和逻辑能力的重要方法之一。
然而,在数学教育中,不仅仅有找规律这一部分内容,还有很多其他的数学知识需要我们去学习和掌握。
幼儿数学教育应该贯穿于整个教育过程中,不仅仅是在幼儿园阶段进行。
一年级找规律的数学题一年级找规律的数学题1. 小明有5个红色球,他每天都往这个盒子里放入一些红色球,他发现每天放入的红色球的数量都比前一天多2个,请问第10天他一共放了多少个红色球?解答:第1天放入5个红色球,第2天放入7个,第3天放入9个,以此类推。
我们可以写一个算式来找规律:第n天放入红色球的数量 = 5 + 2n 。
我们可以代入n=10,得知第10天放入的红色球的数量为5 + 2 × 10 = 25个。
2. 有一些方块,它们按照下面的顺序排列:第1个图案:■第2个图案:■■第3个图案:■■■第4个图案:■■■■第5个图案:■■■■■观察这个规律,请问第10个图案有多少个方块?解答:我们可以发现每个图案中方块的数量都比前一个图案多一个。
可以写一个算式来找规律:第n个图案中方块的数量 = n。
我们可以代入n=10,得知第10个图案中方块的数量为10。
3. 请写出下面计算式的规律:1 + 1 = 22 + 2 = 43 + 3 = 64 + 4 = 85 + 5 = 10观察这个规律,请问10 + 10等于多少?解答:我们可以发现每个计算式的结果都是两个相同的数字的和。
可以写一个算式来找规律:n + n = 2n 。
我们可以代入n=10,得知10 + 10 = 2 × 10 = 20。
4. 小华每天往一个罐子里放入一些糖果,他发现每天放入的糖果数量比前一天多3个,并且每过5天他会停一天不放糖果。
请问第20天他一共放了多少个糖果?解答:我们可以观察到第1天放入的糖果数量为3个,第2天放入6个,第3天放入9个,以此类推。
我们可以写一个算式来找规律:第n天放入糖果的数量 = 3n ,但是要排除停放糖果的那一天。
我们可以把第20天分成4个5天加上最后一个剩下的两天:总糖果数量 = (3×5) + (3×5) + (3×5) + (3×5) + (3×2) = 75 + 75 + 75 + 75 + 6 = 306个糖果。
1找规律专项训练一:数式问题1.(湛江)已知 22 222,3 3 323,4 4 424,⋯⋯,若 8a82a( a 、 b 为正整数)则 a b33 88 1515bb.2.(贵阳)有一列数 a 1, a 2, a 3,a 4, a 5,⋯, a n ,其中 a 1= 5× 2+ 1, a 2=5× 3+ 2,a 3= 5× 4+ 3, a 4= 5× 5+ 4, a 5= 5× 6+ 5,⋯,当 a n = 2009 时, n 的值等于()A . 2010B .2009C .401D . 3343.(沈阳)有一组单项式:a2,- a 3 , a 4 ,- a 5,⋯.观察它们构成规律,用你发现的规律写出第 10 个单2 34项式为.4.(牡丹江)有一列数1 2 3 47 个数是.2 ,,, ,⋯,那么第510 175.(南充)一组按规律排列的多项式:a b , a 2b 3 , a 3 b 5 , a 4b 7 ,⋯⋯,其中第 10 个式子是 ()A . a 10b 19B . a 10b 19C . a 10b 17D . a 10b 216.(安徽)观察下列等式:1 1 12 22 3 331, 23, 34,⋯⋯2234( 1)猜想并写出第 n 个等式;( 2)证明你写出的等式的正确性.7.(绵阳)将正整数依次按下表规律排成四列,则根据表中的排列规律,数 2009 应排的位置是第行第列.第 1 列第 2 列 第 3 列 第 4 列第 1 行 12 3第 2 行65 4第 3 行 7 8 9 第 4 行 121110⋯⋯8.(台州)将正整数 1,2,3,⋯从小到大按下面规律排列.若第 4 行第 2 列的数为 32,则① n▲ ;②第 i 行第 j 列的数为▲ (用 i , j 表示).第 1列第 2 列第 3 列⋯第 n 列1123⋯n第 行2第 2 行n 1n 2n 3⋯2n第 3 行2n 12n 22n 3⋯3n⋯⋯⋯⋯⋯⋯二:定义运算问题1.(定西)在实数范围内定义运算“”,其法则为: a b a2b2,求方程( 43)x24 的解.2.有一列数,,,,,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a12,a1 a2a3a n 则 a2007为()A. 2007B. 2C.1D. 1 2三:剪纸问题1.(2004年河南)如图( 9),把一个正方形三次对折后沿虚线剪下则得到的图形是()2.(2004年浙江湖州)小强拿了一张正方形的纸如图(10)①,沿虚线对折一次得图②,再对折一次得图③,然后用剪刀沿图③中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是()3.(2004年浙江衢州)如图(11),将一张正方形纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个小正方形,再将其中的一个正方形剪成四个小正方形,如此继续下去,⋯⋯,根据以上操作方法,请你填写下表:3操作次数 N 1 2 3 4 5 ⋯N ⋯正方形的个数47 10⋯⋯3. (莆田) 如图, 在 x 轴的正半轴上依次截取 OA 1 A 1 A 2 A 2 A 3 A 3 A 4 A 4 A 5 ,过点 A 1、A 2、A 3、 A 4、A 5分别作 x 轴的垂线与反比例函数 y2 x 0 的图象相交于点P 1、 P 2、 P 3、 P 4、 P 5 ,得直角三角形xOP 1 A 1、 A 1P 2 A 2、 A 2 P 3 A 3、A 3P 4 A 4、 A 4 P 5 A 5,并设其面积分别为2yxS 、S 、S 、S 、S , .y12345则S 5的值为P 1P 2P 3P 4 P 5O12 A 345xA A A A (第 10 题图)4.(长春)用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个 图案多一个正六边形和两个正三角形,则第 n 个图案中正三角形的个数为 (用含 n 的代数式表示) .(第 4题)5.(丹东)如图 6,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第 1004个图案需棋子枚.⋯⋯图案 1图案 2图案 3图 6的三角形都是全等的),请写出第 n 个图中最小的三角形的个数有6.(抚顺)观察下列图形(每幅图中最小....个.第1个图第2个图第3个图第4个图(第 16 题图)7.(哈尔滨)观察下列图形:它们是按一定规律排列的,依照此规律,第16 个图形共有个★.五:对称问题1.(伊春)在平面直角坐标系中,已知 3 个点的坐标分别为 A1 (1,1) 、 A2 (0 ,2) 、 A3 ( 1 ,1). 一只电子蛙位于坐标原点处,第 1 次电子蛙由原点跳到以1A1为对称中心的对称点 P1,第 2 次电子蛙由 P 点跳到以 A2为对称中心的对称点P2,第 3 次电子蛙由 P2点跳到以 A3为对称中心的对称点 P3,⋯,按此规律,电子蛙分别以 A1、 A2、 A3为对称中心继续跳下去.问当电子蛙跳了 2009 次后,电子蛙落点的坐标是P2009( _______,_______ ) .2. ( 2004 年宁波)仔细观察下列图案,如图(12),并按规律在横线上画出合适的图形。
数学试题分类汇编——找规律姓名:___________ 成绩:_______1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有__________个小圆圈.(1)(2)(3)2、找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有个菱形,第n幅图中有个菱形.3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子枚(用含n的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a、b、c的值分别为______________.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案,则其中完整的圆共有个.6、如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n个图案需要用白色棋子枚(用含有n的代数式表示,并写成最简形式).○○○○○○○○○○○○○●●○○●●●○○●○○●●○○●●●○○○○○○○○○●●●○○○○○○1 2 3 n……第1个图第2个图第3个图…127、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形需 根火柴棒。
8、将正整数按如图5所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示实数9,则表示实数17的有序实数对是 .9、如图 2 ,用n 表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n 的关系是10、观察图4的三角形数阵,则第50行的最后一个数是 ( )1 -23 -45 -67 -89 -10 。
找规律的三种方法
在生活和学习中,我们经常需要找出一些规律来解决问题,无论是数学题、逻
辑推理还是其他方面的问题,找规律都是一个非常重要的方法。
下面我将介绍三种找规律的方法,希望能对大家有所帮助。
第一种方法是逐项比较法。
逐项比较法是通过逐一比较对象的不同之处,找出
规律的一种方法。
例如,当我们面对一组数字时,可以逐个数字进行比较,找出它们之间的关系。
逐项比较法适用于一些简单的规律,通过逐项比较,我们可以找到数字之间的增减关系、倍数关系等规律。
第二种方法是归纳总结法。
归纳总结法是通过总结一系列事实或现象的共同特点,找出规律的一种方法。
例如,当我们面对一组数据时,可以先将它们进行分类,然后找出每个分类中的共同特点,从而找出规律。
归纳总结法适用于一些复杂的规律,通过对数据进行分类和总结,我们可以找到更深层次的规律。
第三种方法是递推推理法。
递推推理法是通过不断推演,找出规律的一种方法。
例如,当我们面对一个数列时,可以通过递推推理,找出每一项与前一项之间的关系,从而找出规律。
递推推理法适用于一些复杂的数学问题,通过递推推理,我们可以找到数列中每一项之间的关系,从而找出规律。
总结一下,找规律的三种方法分别是逐项比较法、归纳总结法和递推推理法。
不同的方法适用于不同的问题,我们可以根据具体情况选择合适的方法来找出规律。
希望大家在遇到问题时能够灵活运用这些方法,找出规律,解决问题。