(完整word版)加减消元法解二元一次方程组专题习题
- 格式:doc
- 大小:45.01 KB
- 文档页数:1
二元一次方程组练习题一.解答题(共16 小题)x 2 y 11.解下列方程组 3 2( 9)( 10) 2x 2 1 y ( 1)( 2) 3 12( 3)5x2 y11a(a为已知数 ) ( 4)4 x 4 y 6a2.求适合的x,y的值.(5)(6).3.已知关于x, y 的二元一次方程y=kx+b 的解有和.( 1)求 k, b 的值.( 2)当 x=2 时, y 的值.( 3)当 x 为何值时, y=3?( 7)x( y 1) y(1 x) 2 ( 8)1) y x 2 0x(x..1.解下列方程组(1)(2);(9)(10);(3);(4)2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错(5).(6)了方程组中的b,而得解为.( 1)甲把 a 看成了什么,乙把 b 看成了什么?(2)求出原方程组的正确解.( 7)(8). .二元一次方程组解法练习题参精考选答案与试题解析故原方程组的解为.一.解答题(共 16 小题)( 2)①× 3﹣②×2得,﹣ 13y=﹣39,1.求适合的 x, y 的值.解得, y=3,把 y=3 代入①得,2x﹣3×3=﹣ 5,解得 x=2.考点:解二元一次方程组.故原方程组的解为.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出 y 的值,继而求出x 的值.( 3)原方程组可化为,解答:解:由题意得:,①+②得, 6x=36,x=6,①﹣②得, 8y=﹣ 4,由( 1)×2 得: 3x﹣ 2y=2( 3),由( 2)×3 得: 6x+y=3 ( 4),y=﹣.所以原方程组的解为.(3)×2得: 6x﹣ 4y=4( 5),(5)﹣( 4)得: y=﹣,( 4)原方程组可化为:,把 y 的值代入( 3)得: x= ,①× 2+②得, x= ,∴.把 x= 代入②得, 3×﹣ 4y=6 ,点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.y=﹣.2.解下列方程组所以原方程组的解为.( 1)( 2)( 3)( 4).点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;考点:解二元一次方程组.②其中一个未知数的系数为 1 时,宜用代入法.分析:( 1)(2)用代入消元法或加减消元法均可;( 3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣ x=﹣ 2,3.解方程组:解得 x=2,把 x=2 代入①得, 2+y=1,解得 y=﹣ 1.考解二元一次方程组.. 点:专计算题.题:分先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.析:解答:解:原方程组可化为,①× 4﹣②× 3,得7x=42,解得 x=6.把 x=6 代入①,得y=4.所以方程组的解为.点;评:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法..考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4 ,①+②,得 s﹣t=6 ,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x, y 的二元一次方程y=kx+b 的解有和.4.解方程组:( 1)求 k, b 的值.( 2)当 x=2 时, y 的值.( 3)当 x 为何值时, y=3?考点:解二元一次方程组.专题:计算题.考点:解二元一次方程组.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.专题:计算题.解答:分析:的值代入方程得出关于k、 b 的二元一次方程组,再运用加减消元解:(1)原方程组化为,( 1)将两组 x, y法求出 k、 b 的值.①+②得: 6x=18,∴x=3.代入①得: y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.( 2)将( 1)中的 k、b 代入,再把x=2 代入化简即可得出y 的值.( 3)将( 1)中的 k、b 和 y=3 代入方程化简即可得出x 的值.解答:解:( 1)依题意得:①﹣②得: 2=4k,所以 k=,所以 b=.5.解方程组:( 2)由 y= x+,word 版本.把 x=2 代入,得 y= .(3)由 y= x+把 y=3 代入,得 x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,( 2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①× 2﹣②得:y=﹣ 1,将 y=﹣ 1 代入①得:x=1.∴方程组的解为;( 2)原方程可化为,即,①× 2+②得:17x=51,x=3,将 x=3 代入 x﹣4y=3 中得:y=0.∴方程组的解为..点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得 10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把 x=3 代入第一个方程,得4y=11,y=...化和运用.解之得.11.解方程组:点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:( 1)运用代入法,把①代入②,可得出x, y 的值;( 2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y) +2y=﹣ 1,所以 y=﹣,把 y=﹣代入③,得 x=4﹣ = .所以原方程组的解为.(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组( 1)需要先化简,再根据方程组的特点选择解法;方程组( 2)采用换元法较简单,设x+y=a, x﹣ y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设 x+y=a, x﹣ y=b,∴原方程组可化为,解得,∴∴原方程组的解为.( 2)原方程组整理为,点评:此题考查了学生的计算能力,解题时要细心.③× 2﹣④× 3,得 y= ﹣24,把 y=﹣ 24 代入④,得 x=60,12.解二元一次方程组:所以原方程组的解为( 1);.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强.(2).考点:解二元一次方程组.专题:计算题.分析:( 1)运用加减消元的方法,可求出x、 y 的值;( 2)先将方程组化简,然后运用加减消元的方法可求出x、 y 的值.解答:解:(1)将①× 2﹣②,得15x=30,x=2,把 x=2 代入第一个方程,得y=1.则方程组的解是;( 2)此方程组通过化简可得:,①﹣②得: y=7,把 y=7 代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把 a 看成了什么,乙把 b 看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:( 1)把甲乙求得方程组的解分别代入原方程组即可;( 2)把甲乙所求的解分别代入方程②和①,求出正确的a、 b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,.得,解得:.把代入方程组,得,解得:.∴甲把 a 看成﹣ 5;乙把 b 看成 6;( 2)∵正确的 a 是﹣ 2, b 是 8,∴方程组为,解得: x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由( 1) +( 2),并解得x=(3),把( 3)代入( 1),解得y=.∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①× 3,得 3x+3y=1500③,②﹣③,得x=350.把 x=350 代入①,得 350+y=500,∴y=150.故原方程组的解为.( 2)化简整理为,①× 5,得 10x+15y=75③,②× 2,得 10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把 y=1 代入①,得 2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程..16.解下列方程组:( 1)( 2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①× 2﹣②得: x=1,将 x=1 代入①得:2+y=4,y=2.∴原方程组的解为;( 2)原方程组可化为,①× 2﹣②得:﹣y=﹣ 3,y=3.将 y=3 代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.。
《解⼆元⼀次⽅程组》教案(例题+练习+答案)word版本⼆元⼀次⽅程组的解法1.⼆元⼀次⽅程的概念:含有两个未知数,且含未知数的项的次数为1的整式⽅程叫做⼆元⼀次⽅程。
例1.下列⽅程组中,哪些是⼆元⼀次⽅程组_______________判断⼀个⽅程是为⼆元⼀次⽅程的三个要素:①含有两个未知数②未知数的次数为1 ③整式⽅程想⼀想:⼆元⼀次⽅程的解与⼀元⼀次⽅程的解有什么区别?①⼆元⼀次⽅程的解是成对出现的;②⼆元⼀次⽅程的解有⽆数个;③⼀元⼀次⽅程的解只有⼀个。
例2 若⽅程是⼆元⼀次⽅程,求m 、n 的值.分析:变式:⽅程是⼆元⼀次⽅程,试求a 的值.注意:①含未知项的次数为1;②含有未知项的系数不能为02.⼆元⼀次⽅程组的解⼆元⼀次⽅程组的解法,即解⼆元⼀次⽅程的⽅法;今天我们就⼀起探究⼀下有什么⽅法能解⼆元⼀次⽅程组。
练⼀练:1、若 =-??=?x 1y 2是关于 x 、y 的⽅程 5x +ay = 1 的解,则a=().2、⽅程组 +=??-=?y z 180y z ()的解是 =??=y 100z ().3、若关于x 、y 的⼆元⼀次⽅程组––=??+=?4x 3y 1kx k 1y 3()的解x 与 y 的值相等,则k =().3、⽤⼀个未知数表⽰另⼀个未知数想⼀想:(1)24x y +=,所以________x =;2(1)3x y y z +=??+=?,5(2)6x y xy +=??=?,7(3)6a b b -=??=?,2(4)13x y x y +=--=??,52(5)122y x x y=-??+=,25(6)312321m n -=??-=?1(2)2a x a y -+-=(2)345x y +=,所以________x =,________y =; (3) 2y x ,所以x =,________y =.总结出⽤⼀个未知数表⽰另⼀个未知数的⽅法步骤:①被表⽰的未知数放在等式的左边,其他的放在等式的右边.②把被表⽰的未知数的系数化为1.4.⼆元⼀次⽅程的解法(1)⽤代⼊法解⼆元⼀次⽅程组将⽅程组中的⼀个⽅程的某个未知数⽤含有另⼀个未知数的代数式表⽰,并代⼊到另⼀个⽅程中,消去⼀个未知数,得到⼀元⼀次⽅程,最后求得⽅程组的解,这种解⽅程组的⽅法叫做代⼊消元法,简称代⼊法. 代⼊消元法解⽅程组的步骤是:①⽤⼀个未知数表⽰另⼀个未知数;②把新的⽅程代⼊另⼀个⽅程,得到⼀元⼀次⽅程(代⼊消元);③解⼀元⼀次⽅程,求出⼀个未知数的值;④把这个未知数的值代⼊⼀次式,求出另⼀个未知数的值;⑤检验,并写出⽅程组的解.例3:⽅程组92x y y x ……①………②ì+=?í= 解:把②代⼊①得,29x x +=3x 9= 3x =把x=3代⼊②,得6y =所以,原⽅程组的解是36x y ì=??í= 总结:解⽅程组的⽅法的图解:练⼀练:1、如果31014x y +=,那么x =________;2、解⽅程组35,23 1.x y x y ì-=??í?-=??3、解⽅程组31014101532x y x y ì+=??í?+=??3、以?-=-=5.05.1y x 为解的⽅程组是()A.=-+=--0530=++=+-05301y x y x C. ??-=+=-y x y x 531D. ??=+=-531y x y x 4、⽤代⼊消元法解下列⼆元⼀次⽅程组:(1)23321y x x y =-??+=? (2)??-=-=+42357y x y x (3) 233418x yx y ?=?+=?(2)加减消元法:两个⼆元⼀次⽅程中同⼀未知数的系数相反或相等时,将两个⽅程的两边分别相加或相减,就能消去这个未知数,得到⼀个⼀元⼀次⽅程,这种⽅法叫做加减消元法,简称加减法。
二元一次方程组的解法(加减消元法)学习目标:1、使学生进一步理解方程组的消元思想。
2、会用加减消元法这一基本方法解一些简单的二元一次方程组。
一、温故互查1、简述用代入法解二元一次方程组的主要步骤2、用代入法解二元一次方程组3553423x yx y+=⎧⎨-=⎩①②二、问题探究1、在二元一次方程组3553423x yx y+=⎧⎨-=⎩①②中,未知数x的系数都,都是,若把这两个方程的左边与左边相减,右边与右边相减,就消去了,得到,解得y=。
把y=代入①得,解得x=。
这样我们就得到了一对x、y的值,通过检验,我们可以得到是原方程的解。
以上两种方法哪种更简便?这个方程有什么特点?还有别的解法吗?2、在二元一次方程组379475x yx y+=⎧⎨-=⎩①②中,未知数y的系数,若把这两个方程的左边与左边相加,右边与右边相加,就消去了,得到,解得x=。
把x=代入①得,解得y=。
这样我们就得到了一对x、y的值,通过检验,我们可以得到是原方程的解。
3、在以上解答过程中,你发现了二元一次方程组的新解法即。
观察同一未知数的系数的特点,若,就使方程组的两边分别相加;若,就使方程组的两边分别相减,达到的目的,这种解二元一次方程组的方法叫做加减消元法。
三、合作讨论加减消元法的过程及特点四、交流展示解方程32155423x y x y -=⎧⎨-=⎩ 731232m n n m -=⎧⎨+=-⎩五、自我检测1、解方程(1) 23123417x y x y +=⎧⎨+=⎩ (2) 6323()2()28x y x y x y x y +-⎧+=⎪⎨⎪+--=⎩2.二元一次方程组941611x y x y +=⎧⎨+=-⎩的解满足2x -ky =10,则k 的值等于( )A .4B .-4C .8D .-83.解方程组35123156x y x y +=⎧⎨-=-⎩比较简便的方法为( ) A .代入法 B .加减法 C .换元法 D .三种方法都一样。
七年级下册数学《第八章二元一次方程组》专题解二元一次方程组(计算题50题)1.用代入法解下列方程组:(1)x−y=4,3x+y=16;(2)x−y=2,3x+5y=14.2.用代入法解下列方程组:(1)2x−y=33x+2y=8;(2)u+v=103u−2v=5.3.用代入法解下列方程组:(1)3x−y=2,9x+8y=17;(2)3x−4y=10x+3y=12.4.用代入法解下列方程组.(1)x+2y=4y=2x−3;(2)x−y=44x+2y=−2.5.用代入法解下列方程组:(1)5x+4y=−1.52x−3y=4(2)4x−3y−10=03x−2y=06.用代入法解下列方程组:(1)x−y=42x+y=5;(2)3x−y=29x+8y=17;(3)3x+2y=−8 6x−3y=−9.7.用代入法解下列方程组:(1)3x+2y=11,①x=y+3,②(2)4x−3y=36,①y+5x=7,②(3)2x−3y=1,①3x+2y=8,②8.用代入法解下列方程组:(1)5x+2y=15①8x+3y=−1②;(2)3(y−2)=x−172(x−1)=5y−8.9.用代入法解下列方程组:(1)x=6−5y3x−6y=4(2)5x+2y=15x+y=6(3)3x+4y=22x−y=5(4)2x+3y=73x−5y=110.用代入法解下列方程组:(1)2x+y=3x+2y=−6;(2)x+5y=43x−6y=5;(3)2x−y=63x+2y=2;(4)5x+2y=113y−x=−9;1.用加减法解下列方程组:(1)4x−y =143x +y =7 (2x−2y =7x−3y =−82.用加减法解下列方程组:(1)2m +7n =53m +n =−2(2)2u−5v =124u +3v =−2(3y 7=12+y 7=133.用加减法解下列方程组:(1)x−y =52x +y =4;(2)x−2y =33x +4y =−1.4.用加减法解下列方程组:(1)4x−3y =11,2x +y =13;(2)x−y =3,2y +3(x−y)=115.用加减法解下列方程组:(1)3μ+2t =76μ−2t =11 (2)2a +b =33a +b =4.6.(2023•市北区校级开学)用加减法解下列方程组:(1)3y−4x =04x +y =8; (2+y =3x−32y =−1.7.(2022秋•陕西期末)用加减法解下列方程组:(1)x−y =33x−8y =14; (2+2y =10=1+y 13.8.用加减法解下列方程组:(1)x +3=y ,2(x +1)−y =6; (2)x +y =2800,96%x +64%y =2800×92%.9.用加减法解下列方程组:(1)x−y =5,①2x +y =4;②(2)x−2y =1,①x +3y =6;②(3)2x−y =5,①x−1=12(2y−1).②10.用加减法解下列方程组:(1)x +3y =62x−3y =3 (2)7x +8y =−57x−y =4(3)y−1=3(x−2)y+4=2(x+1)(4+y4=1−y3=−1.1.(2022春•新田县期中)用指定的方法解下列方程组:(1)2x−5y=14①y=−x②(代入法);(2)2x+3y=9①3x+5y=16②(加减法).2.(2022春•安岳县校级月考)解下列方程组:(1)3x−y=75x+2y=8(用代入法);(2+n3=10−n4=5(用加减法).3.(2022春•大连期中)用指定的方法解下列方程组:(1)x−3y=42x+y=13(代入法);(2)5x+2y=4x+4y=−6(加减法).4.(2022春•宁远县月考)请用指定的方法解下列方程组(1)5a−b=113a+b=7(代入消元法);(2)2x−5y=245x+2y=31(加减消元法).5.(2021秋•蒲城县期末)请用指定的方法解下列方程组:(1)2x+3y=11①x=y+3②(代入消元法);(2)3x−2y=2①4x+y=10②(加减消元法).6.(2022秋•历下区期中)请用指定的方法解下列方程组:(1)m−n2=22m+3n=12(代入法);(2)6s−5t=36s+t=−15(加减法).7.(2022春•泰安期中)用指定的方法解下列方程组(1)3x+4y=19x−y=4(代入消元法);(2)2x+3y=−53x−2y=12(加减消元法);(35(x−9)=6(y−2)−y13=2.8.(2021秋•历下区期中)请用指定的方法解下列方程组:(1)3x+2y=14x=y+3;(代入法)(2)2x+3y=123x+4y=17.(加减法)9.(2021春•沙河口区期末)用指定的方法解下列方程组:(1)y=2x−33x+2y=8(代入法);(2)3x+4y=165x−6y=33(加减法).10.用指定的方法解下列方程组:(1)3x+4y=19x−y=4(代入法);(2)2x+3y=−53x−2y=12(加减法).1.(2022•苏州模拟)用适当的方法解下列方程组.(1)x+2y=9y−3x=1;(2x−34y=1=4.2.(2022秋•锦江区校级期末)用适当的方法解下列方程组.(1)x=2y−14x+3y=7;(2)3x+2y=22x+3y=28,.3.用适当的方法解下列方程组:(1)x+2y=0,3x+4y=6;(2=2y1)−y=11(3)x+0.4y=40,0.5x+0.7y=35;(4+n−m4=−14,5(n1)12=2.4.(2022•天津模拟)用适当的方法解下列方程组:(1)x +y =52x−y =4; (2=y 24−y−33=112.5.(2021•越城区校级开学)用适当的方法解下列方程组:(1)2x−3y =7x−3y =7. (2)0.3p +0.4q =40.2p +2=0.9q .6.(2022春•东城区校级月考)用适当的方法解下列方程组(1)x +y =52x +y =8; (2)2x +3y =73x−2y =4.7.(2021春•哈尔滨期末)用适当的方法解下列方程组(1)x +2y =93x−2y =−1 (2)2x−y =53x +4y =28.(2022春•椒江区校级期中)用适当的方法解下列方程组:(1)2x +3y =16①x +4y =13②; (2)2s t 3=3s−2t 8=3.9.(2022春•诸暨市期中)用适当的方法解下列方程组:(1)y=2x−1x+2y=−7(2+y3=7+y2=810.(2021春•南湖区校级期中)用适当的方法解下列方程组:(1)3x+2y=9x−y=8;(2=x y2=7.1.先阅读材料,然后解方程组:材料:解方程组x+y=4①3(x+y)+y=14②在本题中,先将x+y看作一个整体,将①整体代入②,得3×4+y=14,解得y=2.把y=2代入①得x=2,所以x=2 y=2这种解法称为“整体代入法”,你若留心观察,有很多方程组可采用此法解答,请用这种方法解方程组x−y−1=0①4(x−y)−y=5②.2.(2021秋•乐平市期末)解方程组3x−2y=8⋯⋯⋯①3(3x−2y)+4y=20⋯.②时,可把①代入②得:3×8+4y=20,求得y=﹣1,从而进一步求得x=2y=−1这种解法为“整体代入法“,请用这样的方法解下列方程组2x−3y=123(2x−3y)+5y=26.3.先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1.③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x=0y=−1这种方法被称为“整体代入法”,请用这样的方法解下列方程组:=0=2y+1.4.(2022春•太和县期末)先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1,③然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x=0①y=−1②这种方法被称为“整体代入法”,+2y=9.5.先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x这种方法被称为“整体代入法”,请用这样的方法解下列方程组:2x−3y−2=03(2x−3y)+y=7.1.用换元法解下列方程组+2y=12−1y=342.用换元法解下列方程组:(1)3(x+y)+2(x−y)=36(x+y)−4(x−y)=−16(2+x5y3=2−(x+5y)=5.3.(2022春•云阳县期中)阅读探索:解方程组(a−1)+2(b+2)=62(a−1)+(b+2)=6解:设a﹣1=x,b+2=y原方程组可以化为x+2y=62x+y=6,解得x=2y=2,即:a−1=2b+2=2∴a=3b=0,此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组(a4−1)+2(b5+2)=102(a4−1)+(b5+2)=11;(2)能力运用已知关于x,y的方程组a1x+b1y=c1a2x+b2y=c2的解为x=6y=7,求关于m、n的方程组a1(m−2)+b1(n+3)=c1a2(m−2)+b2(n+3)=c2的解.4+x−y10=3①−x−y10=−1②,你会解这个方程组吗?小明、小刚、小芳争论了一会儿,他们分别写出了一种方法:小明:把原方程组整理得8x+2y=90③2x+8y=−30④④×4﹣③得30y=﹣210,所以y=﹣7把y=﹣7代入③得8x=104,所以x=13,即x=13y=−7小刚:设x y6=m,x−y10=n,则m+n=3③m−n=−1④③+④得m=1,③﹣④得m=2,=1=2,所以x+y=6x−y=20,所以x=13y=−7.小芳:①+②得2(x y)6=2,即x+y=6.③①﹣②得2(x−y)10=4,即x﹣y=20.④③④组成方程组得x=13③﹣④得y =﹣7,即x =13y =−7.老师看过后,非常高兴,特别是小刚的方法独特,像小刚的这种方法叫做换元法,你能用换元法解下列方程组吗?+2x 3y 7=1−2x 3y 7=5.5.(2022春•卧龙区校级月考)阅读探索(1)知识积累解方程组(a−1)+2(b +2)=62(a−1)+(b +2)=6.解:设a ﹣1=x ,b +2=y .原方程组可变为x +2y =62x +y =6,解这个方程组得x =2y =2,即a−1=2b +2=2,所以a =3b =0,这种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(m 3−1)+2(n 5+2)=43(m 3−1)−(n 5+2)=5.(3)能力运用已知关于x ,y 的方程组a 1x +b 1y =c 1a 2x +b 2y =c 2的解为x =3y =4,请直接写出关于m 、n 的方程组a 1(m +2)−b 1n =c 1a 2(m +2)−b 2n =c 2的解是 .。
用加减消元法解二元一次方程组 同步练习认真预习教材,尝试完成下列各题:1.方程组231534m n m n +=⎧⎨+=⎩中,n 的系数的特别是_______,所以我们只要将两式________,•就可以消去未知数,化成一个一元一次方程,达到消元的目的.2.方程组532534m n m n -+=⎧⎨+=⎩中,m 的系数的特别是________,所以我们只要将两式________,就可以消去未知数m ,化成一个一元一次方程,进而求得方程组的解.3.•用加减法解二元一次方程组时,••两个方程中同一个未知数的系数必须________•或_______,•即它们的绝对值______.•当未知数的系数的符号相同时,•用_______;当未知数的系数的符号相反时,用_______.•当方程组里两个方程的同一个未知数的系数成整数倍时,可以利用________性质,将方程经过简单变形,•使这个未知数的系数的绝对值________,再用加减法消元,进一步求得方程组的解.例1 用加减法解方程组2931x y x y +=⎧⎨-=-⎩思路分析:用加减法解二元一次方程组时,必须使方程组中①②两方程所含同一个未知数的系数相同或互为相反数.现在该方程组不具备这个条件,所以我们要想办法转化成这样的条件.方法一:观察x 的系数:②中x 的系数是①中的3倍,•所以可得①×3,使x 的系数相等,然后减去②,可消去x ;方程二:观察y 的系数:①中y•的系数是②中的2倍,所以可将②×2,便y 的系数互为相反数,再与①相加可消去y ,两种方法皆可达到消元的目的.解:②×2,得6x-2y=-2 ③③+①得,7x=7,x=1把x=1代入①,得1+2y=9,2y=8,y=4所以14x y =⎧⎨=⎩是原方程组的解. 方法点拨:用加减法解二元一次方程组时应当注意:①当方程组比较复杂时,应先化简,如去分母、去括号、合并同类项等,将两方程化成ax+by=c 的形式; ②当需将一未知数的系数扩大时,要根据等式的性质,一定要两边同乘以某一个倍数;③在求出一未知数的值之后,可以将它代入化简后的方程组的任意一个方程中,求出第二个未知数的值; ④要想知道解是否正确,可将求得的解代入原方程组的两个方程加以检验.例2 选择适合的方法解下列方程组:2(2)4379:2:5(1)(2)(3)2247550025022500000x x y x y x y x y x y x y ++=+==⎧⎧⎧⎨⎨⎨+=-=+=⎩⎩⎩思路分析:(1)方程组中,方程①中含有(x+2y ),因此,只需将方程②x+2y=2•整体代入①即可化“二元”为“一元”.(2)方程组里两个方程中未知数y 的系数互为相反数,因此只要两方程相加即可化“二元”为“一元”.(3)方程组中的第1个方程中两个未知数之间是比值关系,可化成x=25y ,然后代入②,用代入法求解;•还可设x=2a ,y=5a ,将x=2a ,y=5a 代入②中,求得a 的值,然后再分别代入x=2a ,y=5a 中,•求得x 、y 的值,这样求解,可避免分数.解:(1)把②代入①得x+2×2=4,解之,得x=0把x=0代入②,得2y=2,解之,得y=1所以原方程组的解是01x y =⎧⎨=⎩(2)①+②,得7x=14,解之,得x=2把x=2代入②得,8-7y=5,解之,得y=37所以原方程组的解是237x y =⎧⎪⎨=⎪⎩. (3)设x=2a ,y=5a ,并把它们代入②,得500×2a+250×5a=22 500 000解之,得a=10 000,把a=10000分别代入x=2a ,y=5a 中,得x=20 000,y=50 000所以原方程组的解是2000050000x y =⎧⎨=⎩.方法点拨:代入法和加减法是解二元一次方程组的基本方法.以后解这种类型的题时,如果没有提出具体要求,应根据方程组的特别,•选择其中一种比较简单的方法.选用解法时,一般是当其中某个未知数的系数为1(更特别的,像x=…)时,•选用代入法较为简便;当两个方程中某个未知数的系数的绝对值相等或成整数倍时,选用加减法比较简便;其他情况,自己灵活运用.4.方程组421721x y x y +=⎧⎨-=⎩里两个方程只要两边________,就可以消去未知数________. 5.方程组3133131x y x y +=⎧⎨-=-⎩的两个方程只要两边_______,就可以消去未知数_______. 6.用加减法解二元一次方程组21349x y x y -=⎧⎨+=⎩时,你能让两个方程中x 的系数相等吗?•你的办法是_________. 7.用加减法解方程组326231x y x y +=⎧⎨+=⎩时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是( )966961896186412(1)(2)(3)(4)462462462693x y x y x y x y x y x y x y x y +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨+=-=+=+=⎩⎩⎩⎩A .(1)(2)B .(2)(3)C .(3)(4)D .(4)(1)8.用加减法解二元一次方程组2931x y x y +=⎧⎨-=-⎩. 9.用加减法解二元一次方程组的关键是使方程组里两个方程中同一个未知数系数的绝对值_______,然后把方程两边分别相______或____,实现化二元为______,从而解出它的解.二.自己总结出用加减法解二元一次方程组的一般步骤.10.判断正误:(1)已知方程组238329x y x y +=⎧⎨+=⎩则x 、y 的值都是负值 ( ) (2)方程组373272282383x x x y x x y y -⎧=⎪-=⎧⎪⎨⎨+-=⎩⎪=⎪⎩与有相同的解 ( )(老师提示:相同的解指的是2个方程解出来x 和y 值相同,你只需把2个方程解出来)(3)方程组606030%60%10%60220x y x y x y x y +=+=⎧⎧⎨⎨+=⨯+=⎩⎩与解相同 ( )【基础能力训练】1.对于方程组2353433x y x y -=⎧⎨+=⎩而言,你能设法让两个方程中x 的系数相等吗?你的方法是_______;若让两个方程中y 的系数互为相反数,你的方法是________.2.用加减消元法解方程组358752x y x y -=⎧⎨+=⎩ 将两个方程相加,得( )A .3x=8B .7x=2C .10x=8D .10x=10 3.用加减消元法解方程组231354y x x y +=⎧⎨-=-⎩,①-②得( ) A .2y=1 B .5y=4 C .7y=5 D .-3y=-34.用加减消元法解方程组23537x y x y -=⎧⎨=+⎩正确的方法是( ) A .①+②得2x=5 B .①+②得3x=12C .①+②得3x+7=5D .先将②变为x-3y=7③,再①-③得x=-25.已知方程组5112mx n x my n y +==⎧⎧⎨⎨-==⎩⎩的解是,则m=_______,n=_______.6.在方程组341236x y x y +=⎧⎨-=⎩中,若要消x 项,则①式乘以_______得______③;•②式可乘以______得________④;然后再③④两式_______即可.7.在341236x y x y +=⎧⎨-=⎩中,①×③得________③;②×4得_____④,这种变形主要是消________.8.•用加减法解0.70.31725x y x y +=⎧⎨-+=⎩时,•将方程①两边乘以________,•再把得到的方程与②相________,可以比较简便地消去未知数________.9.方程组356234x y x y -=⎧⎨-=⎩,②×3-①×2得( )A .-3y=2B .4y+1=0C .y=0D .7y=-810.已知023x y x y -=⎧⎨+=⎩,则xy 的值是( ) A .2 B .1 C .-1 D .211.方程组1325y x x y +=⎧⎨+=⎩的解是( ) A .3333...2422x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨=-===-⎩⎩⎩⎩12.已知2441x x y y =-=⎧⎧⎨⎨==⎩⎩和都是方程y=ax+b 的解,则a 和b 的值是( ) A .1111...22225311a a a a B C D b b b b ⎧⎧⎧⎧==-==-⎪⎪⎪⎪⎨⎨⎨⎨⎪⎪⎪⎪===-=-⎩⎩⎩⎩13.用加减法解下列方程组:(1)383799215(2)(3)274753410x y m n x y x y m n x y +=+=+=⎧⎧⎧⎨⎨⎨-=-=+=⎩⎩⎩152343(1)4(4)(4)(5)(6)3532115(1)3(5)7525x x y x y x y x y y x y x +-⎧+=-=-=⎧⎧⎪⎨⎨⎨-=-=+⎩⎩⎪=+⎩综合创新训练】16.在方程y=kx+b中,当x=2时,y=2;当x=-4时,y=-16,求当x=1时,y=_______.17.已知a、b18.若方程组431(1)3x yax a y+=⎧⎨+-=⎩的解与x与y相等,则a的值等于()A.4 B.10 C.11 D.1219.已知方程组22331x y kx y k+=⎧⎨+=-⎩的解x和y的和等于6,k=_______.20.已知232x y ax y a+=⎧⎨-=⎩,求xy的值.21.甲、乙两位同学一起解方程组2,32ax bycx y+=⎧⎨-=-⎩,甲正确地解得11xy=⎧⎨=-⎩,乙仅因抄错了题中的c,解得26xy=⎧⎨=-⎩,求原方程组中a、b、c的值.【探究学习】皇帝巧算牛马价有一年,康熙皇帝微服南巡,在扬州城一个集市上看见两个公差正和几个卖牛马的伙计争执,只听伙计苦苦央求两公差:“这位大爷,按我们讲好的价钱,您买4•匹马,6头牛,共48两银子;这位大爷,您买3匹、5头牛,共38两银子,加起来,•一共是86两银子,可是你们只给了80两,还少6两,我们可亏不起这么多呀!•”而两位公差不仅不补给银子,反而瞪眼呵斥,强赶牛、马要走.正在这时,身着便服的康熙,走到公差面前说:“买卖公平,这是天经地义的事,一匹马,一头牛都有个价,要想买牛马,该付多少银子,就付多少银子,怎么能仗势欺人!”甲公差见此人竟敢当众管教他们,大怒:“你找死呀!你知道一匹马、一头牛是什么价?”康熙微微一笑,略略思索了一会儿,便说:“我事先不知道,但可以算出来,马每匹6两,牛每头4两!”伙计们和围观的人一听无不惊奇,而公差去恼羞成怒,上前就要抓康熙,此时,康熙从口袋里掏出玉玺,公差一看,方知皇帝驾到,吓得魂飞魄散,连忙跪下求饶.原来,康熙是一位精通数学的皇帝,他当时是用算术的方法求出马和牛的价格的.同学们,你不妨用二元一次方程算一算,看与康熙皇帝求得的结果一样吗?。
二元一次方程组练习题一.解答题(共16小题) 1.解下列方程组(1)(2)(3)(4))(6441125为已知数a a y x ay x ⎩⎨⎧=-=+(5)(6).(7)(8)⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x (9)(10) ⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x 2.求适合的x ,y 的值.3.已知关于x ,y 的二元一次方程y=kx+b 的解有和.(1)求k ,b 的值.(2)当x=2时,y 的值.(3)当x 为何值时,y=3?1.解下列方程组(1)(2);(3);(4)(5).(6)(7)(8)(9)(10);2.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解. a t a nd Al l th i ng si nh ei r be i ng a 二元一次方程组解法练习题精选参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:t h i n gt a t i mA l lt h in gs inh ei r be i ng ar ef o rs om et h②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评:;二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点:解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.专题:计算题.h i ng at h i n ga ta ti m分析:(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.t h i n ga ta ti n gs inh ei r be i ng ar eg oo df o rs om e点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.t h i n ga ta ti me an dA lh ei ro od fo rs om e解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;i n g a ta ti me an dA l lt h in gs inh ei r be i ng ar eg oo df o rs om et h in g(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程. 16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解. 。
解二元一次方程组(加减法)练习题一、基础过关1、用加、减法解方程组,若先求x得值,应先将两个方程组相_______;若先求y得值,应先将两个方程组相________、2、解方程组用加减法消去y,需要( )A、①×2-②B、①×3-②×2 C、①×2+② D、①×3+②×23、已知两数之与就就是36,两数之差就就是12,则这两数之积就就是( )A、266 B、288 C、-288 D、-1244、已知x、y满足方程组,则x:y得值就就是( )A、11:9B、12:7C、11:8D、-11:85、已知x、y互为相反数,且(x+y+4)(x-y)=4,则x、y得值分别为()A、 B、 C、 D、6、已知a+2b=3-m且2a+b=-m+4,则a-b得值为()A、1B、-1C、0D、m-17、若x5m+2n+2y3与-x6y3m-2n-1得与就就是单项式,则m=_______,n=________、8、用加减法解下列方程组:(1) (2)(3) (4)二、综合创新9、(综合题)已知关于x、y得方程组得解满足x+y=-10,求代数m2-2m+1得值、10、(应用题)(1)今有牛三头、羊二只共1900元,牛一头、羊五只共850元,•问每头牛与每只羊各多少元?(2)将若干只鸡放入若干个鸡笼中,若每个鸡笼放4只,则有一只鸡无笼可放;•若每个鸡笼放5只,则有一个笼无鸡可放,那么有鸡多少只?有鸡笼多少个?11、(创新题)在解方程组时,哥哥正确地解得,弟弟因把c写错而解得,求a+b+c得值、12、(1)(2005年,苏州)解方程组(2)(2005年,绵阳)已知等式(2A-7B)x+(3A-8B)=8x+10对一切实数x都成立,•求A、B得值、三、培优训练13、(探究题)解方程组14、(开放题)试在9□8□7□6□5□4□3□2□1=23得八个方框中,•适当填入“+”或“-”号,使等式成立,那么不同得填法共有多少种?四、数学世界到底有哪些硬币?“请帮我把1美元得钞票换成硬币”、一位顾客提出这样得要求、“很抱歉”,出纳员琼斯小组仔细查瞧了钱柜后答道:“我这里得硬币换不开”、“那么,把这50美分得硬币换成小币值得硬币行吗?”琼斯小组摇摇头,她说,实际上连25美分、10美分、5美分得硬币都换不开、“您到底有没有硬币呢?”顾客问、“噢,有!”琼斯小组说,“我得硬币共有1、15美元、”钱柜中到底有哪些硬币?注:1美元合100美分,小币值得硬币有50美分、25美分、10美分、5美分与1答案:1、加;减2、C3、B点拨:设两数分别为x、y,则解得∴xy=24×12=288、故选B、4、C5、C 点拨:由题意,得解得故选C、6、A 点拨:②-①得a-b=1,故选A、7、1;-点拨:由题意,得解得8、(1) (2) (3) (4)9、解:解关于x、y得方程组得把代入x+y=-10得(2m-6)+(-m+4)=-10、解得m=-8、∴m2-2m+1=(-8)2-2×(-8)+1=81、10、(1)解:设每头牛x元,每只羊y元,依题意,得解这个方程组,得答:每头牛600元,每只羊50元、(2)解:设有鸡x只,有鸡笼y个,依题意,得解这个方程组,得答:有鸡25只,有鸡笼6个、11、解:把代入得把代入ax+by=2 得-2a+2b=2、解方程组得∴a+b+c=4+5-2=7、点拨:弟弟虽瞧错了系数c,但就就是方程ax+by=2得解、12、(1)解:①×6,得3x-2y-2=6,即3x-2y=8、③②+③,得6x=18,即x=3、③-②,得4y=2,即y=、∴(2)、- 点拨:∵(2A-7B)x+(3A-8B)=8x+10对一切实数x都成立、∴对照系数可得2A-7B=8,3A-8B=10、∴解得即A、B得值分别为、-、13、解:①-②,得x-y=1,③③×2006-①,得x=2、把③代入①,得y=1、∴点拨:由于方程组中得数据较大,所以正确解答本题得关键就就是将两方程相减得出14、解:设式中所有加数得与为a,所有减数得与为b,则a-b=23、又∵a+b=9+8+…+1=45,∴b=11、∴若干个减数得与为11、又11=8+3=7+4=6+5=8+2+1=7+3+1=6+4+1=6+3+2=5+4+2=5+3+2+1、∴使等式成立得填法共有9种、点拨:因为只填入“+”或“-”号,所以可以把加数得与,•减数得与瞧作整体数学世界答案:如果琼斯小姐换不了1美元,那么她钱柜中得50美分硬币不会超过1枚、如果她换不了50美分,那么钱柜中得25美分硬币不会超过1枚,10美分硬币不会超过4枚,10•美分换不了,意味着她得5美分硬币不会超过1枚;5美分换不了,由她得1•美分硬币不超过4枚,因此,钱柜中各种硬币数目得上限就就是:50美分1枚$0、5025美分1枚 0、2510美分4枚 0、405美分1枚0、051美分4枚 0、04$1、24这些硬币还够换1美元(例如,50美分与25美分各1枚,10美分2枚,5美分1枚),•但就就是我们毕竟知道了钱柜中各种硬币得数目不可能比上面列出得更多,•上面这些硬币加起来总共有1、24美元,比我们所知道得钱柜中得硬币总值1、15美元正好多出9美分、现在,组成9美分得唯一方式就就是1枚5美分硬币加上4枚1美分,所以必须把这5枚硬币从上面列出得硬币中除去,余下得就就是1枚50美分、1枚25美分与4枚10美分得硬币、•它们既换不了1美元,也无法把50美分或者25美分、10美分、5•美分得硬币换成小币值得硬币,而且它们得总与正就就是1、15美元,于就就是我们便得到了本题得唯一答案、。
湘教版数学七年级下册1.2二元一次方程组的解法.docx初中数学试卷1.2 二元一次方程组的解法第2课时加减消元法核心笔记:加减消元法:两个二元一次方程中同一未知数的系数相同或相反时,把这两个方程相减或相加,就能消去这个未知数,从而得到一个一元一次方程,这种解方程组的方法叫做加减消元法,简称加减法.基础训练1.方程组{x +y =5, ①2x +y =10,②由②-①,得正确的方程是( ) A.3x=10 B.x=5C.3x=-5D.x=-52.二元一次方程组{x +y =5,2x -y =4的解为( ) A.{x =1y =4 B.{x =2y =3 C.{x =3y =2 D.{x =4y =1 3.若方程mx+ny=6的两个解是{x =1,y =1和{x =2,y =?1, 则m,n 的值分别为( ) A.4,2 B.2,4C.-4,-2D.-2,-44.用加减消元法解方程组{3x -5y =6,①2x -5y =7②的具体步骤如下:第一步:①-②,得x=1;第二步:把x=1代入①,得y=-35;第三步:所以{x =1,y =?35.其中开始出现错误的是( )A.第一步B.第二步C.第三步D.没有出错5.已知方程组:①{4x -3y =5,4x +6y =14,②{y =3x +4,3y +5x =0,其中方程组①采用消元法解简单,方程组②采用消元法解简单.6.若a+b=3,a-b=7,则ab=______________.7.用加减法解方程组:(1) {x +y =6,①2x -y =9;②(2) {3x -2y =?1,①x +3y =7.②8.已知-2x m-1y 3与12x n y m+n 是同类项,求m,n 的值.培优提升1.利用加减消元法解方程组{2x +5y =?10,①5x -3y =6,②下列做法正确的是() A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×22.已知x,y 满足方程组{x +6y =12,3x -2y =8,则x+y 的值为( )A.9B.7C.5D.33.已知5|x+y-3|+2(x-y)2=0,则( )A.{x =1y =0B.{x =2y =2C.{x =0y =0D.{x =32y =32 4.二元一次方程组{x +2y =1,3x -2y =11的解是______________. 5.对于X,Y 定义一种新运算“@”:X@Y=aX+bY,其中a,b 为常数,等式右边是通常的加法和乘法的运算.已知:3@5=15,4@7=28,那么2@3=_____________.6.已知{x =2,y =1是二元一次方程组{mx +ny =7,nx -my =1的解,则 m+3n=_____________.7.用加减消元法解方程组:(1){4m +5n =460, ①2m +3n =240; ② (2){3x +4y =5, ①4x +3y =9. ②8.在解方程组{ax +by =2,cx -7y =8时,哥哥正确地解得{x =3,y =?2. 弟弟因把c 写错而解得{x =?2,y =2.求a+b+c 的值. 9.阅读理解题特殊的题有特殊的解法,阅读下面的解题过程,我们从中可以得到启发:解方程组{253x +247y =777, ①247x +253y =723. ②解:由①+②得:500x+500y=1 500,即x+y=3, ③由①-②得:6x-6y=54,即x-y=9, ④由③+④得:2x=12,解得:x=6,又由③-④得:2y=-6,解得:y=-3,所以原方程组的解为{x =6,y =?3.【归纳】对于大系数的二元一次方程组,当用代入法和加减法解非常麻烦时,可以通过观察各项系数的特点,寻求特殊解法.根据上述例题的解题方法解下面的方程组:{2 012x +2 013y =8 000, ①2 013x +2 012y =8 100. ②参考答案【基础训练】1.【答案】B解:注意符号问题.2.【答案】C3.【答案】A4.【答案】A5.【答案】加减;代入6.【答案】-10解:两个方程相加,解得a=5,将a=5代入a+b=3,解得b=-2,故ab=-10.7.解:(1)①+②得3x=15,所以x=5.将x=5代入①,得5+y=6,所以y=1,所以方程组的解为{x =5,y =1.(2)②×3,得3x+9y=21,③③-①,得11y=22.所以y=2.把y=2代入②,得x+6=7,所以x=1,所以原方程组的解为{x =1,y =2.8.解:因为-2x m-1y 3与12x n y m+n 是同类项, 所以{m -1=n,3=m +n,经变形可得{m -n =1,m +n =3, 所以{m =2,n =1. 【培优提升】1.【答案】D2.【答案】C解:{x +6y =12,①3x -2y =8,②①+②得4x+4y=20,则x+y=5.故选C.3.【答案】D解:由绝对值和数的平方的性质可以得到{x +y -3=0,x -y =0,解得{x =32,y =32,故选D. 4.【答案】{x =3,y =?15.【答案】2解:因为3@5=15,4@7=28,所以3a+5b=15①,4a+7b=28②,由②-①,得a+2b=13③,由①-③,得2a+3b=2,所以2@3=2a+3b=2.6.【答案】8解:本题运用整体思想解题更简便.把{x =2,y =1代入方程组{mx +ny =7,nx -my =1,得{2m +n =7,2n -m =1.两式相加得m+3n=8. 7.解:(1)②×2-①,得n=20,把n=20代入②,得2m+3×20=240,解得m=90.所以原方程组的解为{m =90,n =20.(2)①×4-②×3得:7y=-7,解得y=-1, 将y=-1代入①得:3x-4=5,解得x=3,所以原方程组的解为{x =3,y =?1.8.解:把x=3,y=-2代入{ax +by =2,cx -7y =8,得{3a -2b =2,3c +14=8.把x=-2,y=2代入ax+by=2.得-2a+2b=2.因为弟弟把c 写错了,所以弟弟的解不满足cx-7y=8.联立方程组:{3a -2b =2,-2a +2b =2. 解得{a =4,b =5,由3c+14=8得c=-2. 故a+b+c=4+5-2=7.9.解:由①+②得:4 025x+4 025y=16 100, 即x+y=4,③由②-①得:x-y=100,④由③+④得:2x=104,解得x=52, 由③-④得:2y=-96,解得y=-48, 则原方程组的解为{x=52, y=?48.。