山东省师大附中2018届高三下学期第八次模拟考试数学文
- 格式:doc
- 大小:699.75 KB
- 文档页数:13
2025届湖北省黄冈、华师大附中高三第四次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在棱长均相等的正三棱柱111ABC A B C =中,D 为1BB 的中点,F 在1AC 上,且1DF AC ⊥,则下述结论:①1AC BC ⊥;②1AF FC =;③平面1DAC ⊥平面11ACC A :④异面直线1AC 与CD 所成角为60︒其中正确命题的个数为( )A .1B .2C .3D .42.已知实数x ,y 满足10260x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩,则22z x y =+的最大值等于( )A .2B .22C .4D .83.已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是A .2()(2)3-∞+∞,, B .2(2)3, C .22()33-, D .22()()33-∞-+∞,, 4.已知集合(){}*,|4,M x y x y x y N =+<∈、,则集合M 的非空子集个数是( ) A .2 B .3 C .7 D .85.已知不重合的平面,,αβγ 和直线l ,则“//αβ ”的充分不必要条件是( )A .α内有无数条直线与β平行B .l α⊥ 且l β⊥C .αγ⊥ 且γβ⊥D .α内的任何直线都与β平行6.若0a b <<,则下列不等式不能成立的是( )A .11a b >B .11a b a >-C .|a|>|b|D .22a b >7.已知等差数列{}n a 的前n 项和为n S ,37a =,39S =,则10a =( )A .25B .32C .35D .408.设函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 在[0,2]π上有且仅有5个零点,则ω的取值范围为( ) A .1229,510⎡⎫⎪⎢⎣⎭ B .1229,510⎛⎤ ⎥⎝⎦ C .1229,510⎛⎫ ⎪⎝⎭ D .1229,510⎡⎤⎢⎥⎣⎦9.已知正项等比数列{}n a 的前n 项和为2317,,927n S S S ==,则12n a a a 的最小值为( ) A .24()27 B .34()27 C .44()27 D .54()2710.《易经》包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深,对今天 的几何学和其它学科仍有深刻的影响.下图就是易经中记载的几何图形——八卦田,图中正八 边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田.已知正八边 形的边长为10m ,阴阳太极图的半径为4m ,则每块八卦田的面积约为( )A .247.79mB .254.07mC .257.21mD .2114.43m11.过抛物线22(0)y px p =>的焦点作直线交抛物线于A B ,两点,若线段AB 中点的横坐标为3,且8AB =,则抛物线的方程是( )A .22y x =B .24y x =C .28y x =D .210y x = 12.在ABC 中,已知9AB AC ⋅=,sin cos sin B A C =,6ABC S =,P 为线段AB 上的一点,且CACB CP x y CA CB=⋅+⋅,则11x y +的最小值为( )A .73123+B .12C .43D .53124+ 二、填空题:本题共4小题,每小题5分,共20分。
哈尔滨师大附中 东北师大附中 辽宁省实验中学2024年高三第一次联合模拟考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,定在.本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四选项中,只有一项是符合题目要求的.1.已知集合{}1,2M =,(){}2log 212x N x −≤=∈R ,则M N = ( ) A .{}1B .{}2C .{}1,2D .∅2.已知复数z 的共轭复数是z ,若i 1i z ⋅=−,则z =( ) A .1i −+B .1i −−C .1i −D .1i +3.已知函数()y f x =是定义在R 上的奇函数,且当0x <时,()2af x x x=+,若()38f =−,则a =( ) A .3−B .3C .13D .13−4.已知平面直角坐标系xOy 中,椭圆C :22221x y a b+=(0a b >>)的左顶点和上顶点分别为A ,B ,过左焦点F 且平行于直线AB 的直线交y 轴于点D ,若2OD DB =,则椭圆C 的离心率为( )A .12B C .13D .235.()521x x y y −−的展开式中32x y 的系数为( ) A .55B .70−C .30D .25−6.已知正四棱锥P ABCD −各顶点都在同一球面上,且正四棱锥底面边长为4,体积为643,则该球表面积为( ) A .9πB .36πC .4πD .4π37.已知函数()22e e xx f x ax −=−−,若0x ≥时,恒有()0f x ≥,则a 的取值范围是( )A .(],2−∞B .(],4−∞C .[)2,+∞D .[)4,+∞8.设1033e a =,11ln 10b =,ln 2.210c =,则( ) A .a b c <<B .c b a <<C .b c a <<D .a c b <<二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.等差数列{}n a 中,10a >,则下列命题正确的是( ) A .若374a a +=,则918S =B .若150S >,160S <,则2289a a > C .若211a a +=,349a a +=,则7825a a += D .若810a S =,则90S >,100S <10.在平面直角坐标系xOy 中,抛物线C :24y x =的焦点为F ,点P 在抛物线C 上,点Q 在抛物线C 的准线上,则以下命题正确的是( ) A .PQ PF +的最小值是2 B .PQ PF ≥C .当点P 的纵坐标为4时,存在点Q ,使得3QF FP =D .若PQF △是等边三角形,则点P 的橫坐标是311.在一个只有一条环形道路的小镇上,有2家酒馆A ,一个酒鬼家住在D ,其相对位置关系如图所示.小镇的环形道路可以视为8段小路,每段小路需要步行3分钟时间.某天晚上酒鬼从酒馆喝完酒后离开,因为醉酒,所以酒鬼在每段小路的起点都等可能的选择顺时针或者逆时针的走完这段小路。
{正文}2018届山东省师范大学附属中学第二学期高三年级第八次模拟考试英语试题(考试时间:120分钟试卷满分:150分)第一部分听力(共两节,满分30分)第一节(共5小题,每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
l.Who did the woman want to call?A.James. B.Sophia. C.John Brown. 2.What is the man probably going to do?A.Scold his staff and cut their bonus.B.Tell his staff to work to a deadline.C.Encourage his staff never to give up.3.What are the speakers mainly talking about?A.A space travel.B.A beautiful dream.C.A wonderful film.4.What does the man mean?A.He didn't clean the room since his mother left.B.He forgot when his mother last came overC.He hoped to see his mother quite soon.5.Where is Susan most probably?A.In her office.B.In the meeting room.C.In the reference room.第二节(共15小题,每小题1.5分,满分22.5分)听下面5段对话。
每段对话后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷相应位置。
山东师大附中第八次模拟考试语文试题本试卷共150分,考试时间150分钟。
考生作答时,请将答案写在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.答题时使用0.5毫米黑色签字笔或碳素笔书写,字体工整、笔迹清楚。
3.请按题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,无破损。
一、现代文阅读(35分)(一)论述类文本阅读阅读下面的文字,完成1-3题(9分,每小题3分)文学作品的外在形态历来多种多样,划分方式也难以归一。
在这里,根据文学创造的主客体关系和文学作为意识形态对现实的不同反应方式,我们把文学作品分为现实型、理想型和象征型三种类型。
在中国,《诗经》可以说是现实型文学的源头。
《诗经》以赋、比、兴为基本艺术表现方法。
比兴中含有一定的象征因素。
但就总的倾向看,《诗经》具有突出的写实精神。
其后,《史记》、杜甫的诗作、白居易的诗作、明清小说等等,体现出现实型文学的基本特征。
班固认为《史记》‚其文直,其事核,不虚美,不隐恶‛,是‚实录‛之作;白居易主张‚以似为工,以真为师‛,‚文章合为时而著,歌诗合为事而作‛;‛曹雪芹也强调‚实录其事‛。
这些观点说明了现实型文学的基本创作原则。
从理想型文学来看,《楚辞》最早体现了其基本倾向。
《楚辞》既有现实的抒写,也有寓意象征,但更主要的是奇异的幻想,表现出一种超现实的理想精神。
其后,李白诗作狂放奇幻,超然于生活之上,纵横于仙境之中。
《西游记》、《聊斋志异》、《牡丹亭》等都体现出幻想奇异、超越现实的特征。
再看看象征型文学,《庄子》中的寓言与神话,以幻想形象暗示难以捉摸的人生哲理、哲学精神,带有突出的象征意味。
在以后的体现禅趣的山水诗作中,通过水光山色、阴晴变幻写出自然、人生意境,追求‚韵外之致‛、‚味外之旨‛,暗示耐人寻味的哲理禅意。
绝密 ★ 启用前 试卷类型A山东师大附中2015级高三第二次模拟考试数学(文科)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共22题,共150分。
考试用时120分钟。
注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、考试科目填写在规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4. 作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5. 保持答题卡卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液,修正带、刮纸刀。
第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合}082|{2≤--=x x x M ,集合}1|{≥=x x N ,则=N M I(A )}42|{≤≤-x x (B )}1|{≥x x (C )}41|{≤≤x x (D )}2|{-≥x x (2)设R ∈θ,则“6πθ=”是“21sin =θ”的 (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件(3)函数⎩⎨⎧>-≤=1,41,)(2x x x e x f x ,则=)]2([f f (A )e1(B )0 (C )e (D )1(4)函数xx x f 2)1ln()(-+=的一个零点所在的区间是(A ))1,0( (B ))2,1((C ))3,2((D ))4,3((5)已知函数113)(22+++=x x x x f ,若32)(=a f ,则=-)(a f(A )32 (B )32-(C )34 (D )34- (6)已知02<<-απ,51cos sin =+αα,则αα22sin cos 1-的值为(A )57 (B )257(C )725 (D )2524(7)函数)(x f 是定义在),(+∞-∞上的偶函数,且在),0[+∞单调递增,若)2()(log 2-<f a f ,则实数a 的取值范围是(A ))4,0( (B ))41,0((C ))4,41((D )),4(+∞(8)设角θ的终边过点)(2,1,则=-)4tan(πθ(A )31 (B )23(C )32-(D )31-(9)已知命题“R ∈∃x ,使021)1(22≤+-+x a x ”是假命题,则实数a 的取值范围是(A ))1,(--∞ (B ))3,1(- (C )),3(+∞- (D ))1,3(- (10)将函数)62sin(π-=x y 的图象向左平移4π个单位,所得函数图象的一条对称轴的方程为 (A )3π=x (B )6π=x (C )12π=x (D )12π-=x(11)函数)2sin(41)(2π--=x x x f ,)(x f '是)(x f 的导函数,则)(x f '的图象大致是(A ) (B ) (C ) (D )(12)设函数)(x f '是函数)R )((∈x x f 的导函数,3)1(=-f ,若对任意的R ∈x ,都有2)(>'x f ,则52)(+>x x f 的解集为(A ))1,1(- (B )),1(+∞- (C ))1,(--∞ (D ))1,(-∞第Ⅱ卷二、填空题:本题共4小题,每小题5分。
湖南师大附中2025届高三月考试卷(二)数学命题人、审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数11i z =+的虚部是( ) A. 1 B. 12 C. 12− D. 1−2. 已知a 是单位向量,向量b 满足3a b −=,则b 的最大值为( ) A. 2 B. 4 C. 3 D. 13. 已知角θ的终边在直线2y x =上,则cos sin cos θθθ+的值为( ) A. 23− B. 13− C. 23 D. 134. 已知函数()2e 33,0,x a x f x x a x +−<= +≥ 对任意的12,x x ∈R ,且12x x ≠,总满足以下不等关系:()()12120f x f x x x −>−,则实数a 的取值范围为( ) A 34a ≤ B. 34a ≥ C. 1a ≤ D. 1a ≥ 5. 如图,圆柱的母线长为4,,AB CD 分别为该圆柱的上底面和下底面直径,且AB CD ⊥,三棱锥A BCD −的体积为83,则圆柱的表面积为().A. 10πB. 9π2C. 4πD. 8π 6. 已知抛物线()2:20C y px p =>的焦点F 到准线的距离为2,过焦点F 的直线l 与抛物线交于,A B 两点,则23AF BF +的最小值为( )A. 52+B. 5+C. 10+D. 117. 设函数()()cos f x x ϕ=+,其中π2ϕ<.若R x ∀∈,都有ππ44f x f x +=−.则()y f x =的图象与直线114y x =−的交点个数为( ) A. 1 B. 2 C. 3 D. 48. 已知定义域为R 的函数()(),f x g x 满足:()()()()()()00,g f x g y f y g x f x y ≠−⋅=−,且()()()()()g x g y f x f y g x y −=−,则下列说法正确的是( )A. ()01f =B. ()f x 是偶函数C. 若()()1112f g +=,则()()2024202420242f g −=− D. 若()()111g f −=,则()()202420242f g += 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列说法中正确的是( )A. 一个样本的方差()()()22221220133320s x x x =−+−++−,则这组样本数据的总和等于60 B. 若样本数据1210,,,x x x 标准差为8,则数据1221,21,x x −− ,1021x −的标准差为16C. 数据13,27,24,12,14,30,15,17,19,23的第70百分位数是23D. 若一个样本容量为8的样本的平均数为5,方差为2,现样本中又加入一个新数据5,此时样本容量为9,平均数不变,方差变小10. 已知函数()32f x ax bx =−+,则( ) A. ()f x 的值域为RB. ()f x 图象的对称中心为()0,2的C. 当30b a −>时,()f x 在区间()1,1−内单调递减D. 当0ab >时,()f x 有两个极值点11. 我国古代太极图是一种优美的对称图.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,则下列命题中正确的是( )A. 函数()sin 1f x x =+是圆22:(1)1O x y +−=的一个太极函数B. 对于圆22:1O x y +=的所有非常数函数的太极函数中,都不能为偶函数C. 对于圆22:1O x y +=的所有非常数函数的太极函数中,均为中心对称图形D. 若函数()()3f x kx kx k =−∈R 是圆22:1O x y +=的太极函数,则()2,2k ∈− 三、填空题:本题共3小题,每小题5分,共15分.12. 曲线2ln y x x =−在点()1,2处的切线与抛物线22y ax ax =−+相切,则a =__________. 13. 已知椭圆CC :xx 2aa 2+yy 2bb 2=1(aa >bb >0)的左、右焦点分别为12,F F ,若P 为椭圆C 上一点,11212,PF F F PF F ⊥ 的内切圆的半径为3c ,则椭圆C 的离心率为______. 14. 设函数()()44x f x ax x x =+>−,若a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则()f x b >恒成立的概率为__________. 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15. 在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +−=−. (1)求B ;(2)若ABC ,且2AD DC = ,求BD 的最小值.16. 已知双曲线E 的焦点在x (在双曲线E 上,点12,F F 分别为双曲线的左、右焦点.(1)求E 的方程;(2)过2F 作两条相互垂直直线1l 和2l ,与双曲线的右支分别交于A ,C 两点和,B D 两点,求四边形ABCD 面积的最小值.17. 如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B −==P 为棱11A B 上的动点.(1)求证:1AA ⊥平面11BCC B ;(2)是否存在点P ,使得平面APC 与平面111A B C?若存在,求出点P ;若不存在,请说明理由.18. 若无穷正项数列{}n a 同时满足下列两个性质:①存在0M >,使得*,n a M n <∈N ;②{}n a 为单调数列,则称数列{}n a 具有性质P .(1)若121,3n n n a n b =−=, (i )判断数列{}{},n n a b 是否具有性质P ,并说明理由; (ii )记1122n n n S a b a b a b =+++ ,判断数列{}n S 是否具有性质P ,并说明理由; (2)已知离散型随机变量X 服从二项分布()1,,02B n p p <<,记X 为奇数的概率为n c .证明:数列{}n c 具有性质P .19 已知函数()24e 2x f x x x−=−,()2233g x x ax a a =−+−−(a ∈R 且2a <). (1)令()()()(),x f x g x h x ϕ=−是()x ϕ的导函数,判断()h x 的单调性;的.(2)若()()f x g x ≥对任意()1,x ∈+∞恒成立,求a 的取值范围.的。
湖南师大附中2025届高三月考试卷(三)数学时量:120分钟满分:150分得分:________________一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合的真子集个数是( )A.7B.8C.15D.162.“”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知角的终边上有一点的坐标是,其中,则( )A.B.C.D.4.设向量,满足,等于( )A. B.2C.5D.85.若无论为何值,直线与双曲线总有公共点,则的取值范围是( )A. B.C.,且 D.,且6.已知函数的图象关于原点对称,且满足,且当时,,若,则等于( )A.B.C. D.7.已知正三棱台所有顶点均在半径为5的半球球面上,且棱台的高为( )A.1B.4C.7D.1或78.北宋数学家沈括博学多才、善于观察.据说有一天,他走进一家酒馆,看见一层层垒起的酒坛,不禁想到:{}0,1,2,311x -<240x x -<αP ()3,4a a 0a ≠sin2α=4372524252425-a b a b += a b -=a b ⋅ θsin cos 10y x θθ⋅+⋅+=2215x y m -=m 1m ≥01m <≤05m <<1m ≠1m ≥5m ≠()2f x ()()130f x f x ++-=()2,4x ∈()()12log 2f x x m =--+()()2025112f f -=-m 132323-13-111ABC A B C -AB =11A B =“怎么求这些酒坛的总数呢?”经过反复尝试,沈括提出对于上底有个,下底有个,共层的堆积物(如图所示),可以用公式求出物体的总数,这就是所谓的“隙积术”,相当于求数列,的和.若由小球堆成的上述垛积共7层,小球总个数为238,则该垛积最上层的小球个数为()A.2B.6C.12D.20二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若,则下列正确的是()A. B.C. D.10.对于函数和,下列说法中正确的有()A.与有相同的零点B.与有相同的最大值点C.与有相同的最小正周期D.与的图象有相同的对称轴11.过点的直线与抛物线交于,两点,抛物线在点处的切线与直线交于点,作交于点,则()A.B.直线恒过定点C.点的轨迹方程是D.的最小值为选择题答题卡题号1234567891011得分ab cd n()()()2266n nS b d a b d c c a⎡⎤=++++-⎣⎦ab()()()()()()11,22,,11a b a b a n b n cd+++⋅++-+-=2024220240122024(12)x a a x a x a x+=++++2024a=20240120243a a a+++=012320241a a a a a-+-++=12320242320242024a a a a-+--=-()sin cosf x x x=+()sin cos22g x x xππ⎛⎫⎛⎫=---⎪ ⎪⎝⎭⎝⎭()f x()g x()f x()g x()f x()g x()f x()g x()0,2P2:4C x y=()11,A x y()22,B x yC A2y=-N NM AP⊥AB M5OA OB⋅=-MNM()22(1)10y x y-+=≠ABMN答案三、填空题:本题共3小题,每小题5分,共15分.12.已知复数,的模长为1,且,则________.13.在中,角,,所对的边分别为,,已知,,,则________.14.若正实数是函数的一个零点,是函数的一个大于e 的零点,则的值为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)现有某企业计划用10年的时间进行技术革新,有两种方案:贷款利润A 方案一次性向银行贷款10万元第1年利润1万元,以后每年比前一年增加的利润B 方案每年初向银行贷款1万元第1年利润1万元,以后每年比前一年增加利润3000元两方案使用期都是10年,贷款10年后一次性还本付息(年末结息),若银行贷款利息均按的复利计算.(1)计算10年后,A 方案到期一次性需要付银行多少本息?(2)试比较A 、B 两方案的优劣.(结果精确到万元,参考数据:,)16.(本小题满分15分)如图,四棱锥中,底面为等腰梯形,.点在底面的射影点在线段上.(1)在图中过作平面的垂线段,为垂足,并给出严谨的作图过程;(2)若.求平面与平面所成锐二面角的余弦值.17.(本小题满分15分)1z 2z 21111z z +=12z z +=ABC ∆A B C a b c 5a =4b =()31cos 32A B -=sin B =1x ()2e e xf x x x =--2x ()()()3e ln 1e g x x x =---()122e ex x -25%10%101.12.594≈101.259.313≈P ABCD -ABCD 222AD AB BC ===P Q AC A PCD H 2PA PD ==PAB PCD已知函数,为的导数.(1)证明:当时,;(2)设,证明:有且仅有2个零点.18.(本小题满分17分)在平面直角坐标系中,已知椭圆的两个焦点为、,为椭圆上一动点,设,当时,.(1)求椭圆的标准方程.(2)过点的直线与椭圆交于不同的两点、(在,之间),若为椭圆上一点,且,①求的取值范围;②求四边形的面积.19.(本小题满分17分)飞行棋是大家熟悉的棋类游戏,玩家通过投掷骰子来决定飞机起飞与飞行的步数.当且仅当玩家投郑出6点时,飞机才能起飞.并且掷得6点的游戏者可以连续投掷骰子,直至显示点数不是6点.飞机起飞后,飞行步数即骰子向上的点数.(1)求甲玩家第一轮投掷中,投郑次数的均值)(2)对于两个离散型随机变量,,我们将其可能出现的结果作为一个有序数对,类似于离散型随机变量的分布列,我们可以用如下表格来表示这个有序数对的概率分布:(记,)()e sin cos x f x x x =+-()f x '()f x 0x ≥()2f x '≥()()21g x f x x =--()g x xOy 2222:1(0)x y C a b a b+=>>1F 2F P C 12F PF θ∠=23πθ=12F PF ∆C ()0,2B l M N M B N Q C OQ OM ON =+ OBMOBNS S OMQN X 11()()lim ()n n k k E X kP k kP k ∞→∞==⎛⎫== ⎪⎝⎭∑∑ξη()()()11,m i i ijj p x p x p x y ξ====∑()()()21,njjiji p y p y p x y η====∑ξη1x 2x ⋯nx 1y ()11,p x y ()21,p x y ⋯()1,n p x y ()21p y 2y ()12,p x y ()22,p x y()2,n p x y ()22p y1若已知,则事件的条件概率为.可以发现依然是一个随机变量,可以对其求期望.(ⅰ)上述期望依旧是一个随机变量(取值不同时,期望也不同),不妨记为,求;(ⅱ)若修改游戏规则,需连续掷出两次6点飞机才能起飞,记表示“甲第一次未能掷出6点”表示“甲第一次掷出6点且第二次未能掷出6点”,表示“甲第一次第二次均掷出6点”,为甲首次使得飞机起飞时抛掷骰子的次数,求.⋯⋯⋯⋯⋯⋯my ()1,m p x y ()2,m p x y ⋯(),n m p x y ()2m p y ()11p x ()12p x()1n p x i x ξ={}j y η={}{}{}()()1,,j i i j jii i P y x p x y Py x P x p x ηξηξξ=======∣i x ηξ=∣{}{}1mi j j i j E x y P y x ηξηξ===⋅==∑∣∣()()111,mj i j i i y p x y p x ==⋅∑ξ{}E ηξ∣{}E E ηξ⎡⎤⎣⎦∣0ξ=1ξ=2ξ=ηE η湖南师大附中2025届高三月考试卷(三)数学参考答案题号1234567891011答案CACBBDABBCACDBC一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 【解析】集合共有(个)真子集.故选C.2.A 【解析】解不等式,得,解不等式,得,所以“”是“”的充分不必要条件.3.C 【解析】根据三角函数的概念,,,故选C.4.B 【解析】.5.B 【解析】易得原点到直线的距离,故直线为单位圆的切线,由于直线与双曲线总有公共点,所以点必在双曲线内或双曲线上,则.6.D 【解析】依题意函数的图象关于原点对称,所以为奇函数,因为,故函数的周期为4,则,而,所以由可得,而,所以,解得.7.A 【解析】上下底面所在外接圆的半径分别为,,过点,,,的截面如图:{}0,1,2,342115-=240x x -<04x <<11x -<02x <<11x -<240x x -<44tan 33y a x a α===22sin cos 2tan 24sin211tan 25ααααα===+()2211()()1911244a b a b a b ⎡⎤⋅=+--=⨯-=⎣⎦ 1d ==2215x y m -=()1,0±01m <≤()f x ()f x ()()()133f x f x f x +=--=-()f x ()()20251f f =()()11f f -=-()()2025112f f -=-()113f =()()13f f =-()121log 323m --=13m =-13r =24r =A 1A 1O 2O,,,故选A.8.B 【解析】由题意,得,,则由得,整理得,所以.因为,为正整数,所以或6.因此有或而无整数解,因此.故选B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.BC 【解析】对于A :令,则,故A 错误;对于B :令,则,故B 正确;对于C :令,则,故C 正确;对于D ,由,两边同时求导得,令,则,故D 错误.故选BC.10.ACD 【解析】,.令,则,;令,则,,两个函数的零点是相同的,故选项A 正确.的最大值点是,,的最大值点是,,两个函数的最大值虽然是相同的,但最大值点是不同的,故选项B 不正确.由正弦型函数的最小正周期为可知与有相同的最小正周期,故选项C 正确.曲线的对称轴为,,曲线的对称轴为,,两个函数的图象有相同的对称轴,故选项D 正确.故选ACD.11.BC 【解析】作图如下:24OO ==13OO ==211h OO OO ∴=-=6c a =+6d b =+()()()772223866b d a b dc c a ⎡⎤++++-=⎣⎦()()()()77262126623866b b a b b a a a ⎡⎤++++++++-=⎣⎦()321ab a b ++=773aba b +=-<a b 3ab =6,3a b ab +=⎧⎨=⎩5,6.a b ab +=⎧⎨=⎩63a b ab +=⎧⎨=⎩6ab =0x =01a =1x =20240120243a a a +++= 1x =-012320241a a a a a -+-++= 2024220240122024(12)x a a x a x a x +=++++ 202322023123202420242(12)232024x a a x a x a x ⨯⨯+=++++ 1x =-12320242320244048a a a a -++-=- ()4f x x π⎛⎫=+ ⎪⎝⎭()3244g x x x πππ⎛⎫⎛⎫=--=-⎪ ⎪⎝⎭⎝⎭()0f x =4x k ππ=-+k ∈Z ()0g x =34x k ππ=+k ∈Z ()f x 24k ππ+k ∈Z ()g x 324k ππ-+k ∈Z 2πω()f x ()g x 2π()y f x =4x k ππ=+k ∈Z ()y g x =54x k ππ=+k ∈Z设直线的方程为(斜率显然存在),,,联立消去整理可得,由韦达定理得,,A.,,故A 错误;B.抛物线在点处的切线为,当时,,即,直线的方程为,整理得,直线恒过定点,故B 正确;C.由选项B 可得点在以线段为直径的圆上,点除外,故点的轨迹方程是,故C 正确;D.,则,,,则,设,,当单调递增,所以,故D 错误.故选BC.三、填空题:本题共3小题,每小题5分,共15分.AB 2y tx =+211,4x A x ⎛⎫ ⎪⎝⎭222,4x B x ⎛⎫ ⎪⎝⎭22,4,y tx x y =+⎧⎨=⎩x 2480x tx --=124x x t +=128x x =-221212444x x y y =⋅=1212844OA OB x x y y ⋅=+=-+=- C A 21124x x x y ⎛⎫=+ ⎪⎝⎭2y =-11121244282222x x x x x t x x =-=-=+=-()2,2N t -MN ()122y x t t +=--xy t=-MN ()0,0M OP O M ()22(1)10y x y -+=≠2MN AB ===22ABMN ===m =m ≥12ABm MN m ⎛⎫=- ⎪⎝⎭()1f m m m =-m ≥()2110f m m=+>'m ≥()f m min ()f m f==12.1【解析】设,,因为,所以.因为,,所以,所以,所以,,所以.【解析】在中,因为,所以.又,可知为锐角且.由正弦定理,,于是.将及的值代入可得,平方得,故.14.e 【解析】依题意得,,即,,,即,,,,,又,,同构函数:,则,又,,,,又,,单调递增,,.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【解析】(1)A 方案到期时银行贷款本息为(万元).……(3分)()1i ,z a b a b =+∈R ()2i ,z c d cd =+∈R 21111z z +=1222111z z z z z z +=111z z =221z z =121z z +=()()i i i 1a b c d a c b d -+-=+-+=1a c +=0b d +=()()12i 1z z a c b d +=+++=ABC ∆a b >A B >()31cos 32A B -=A B -()sin A B -=sin 5sin 4A aB b ==()()()5sin sin sin sin cos cos sin 4B A A B B A B B A B B ⎡⎤==-+=-+-⎣⎦()cos A B -()sin A B -3sin B B =2229sin 7cos 77sin B B B ==-sin B =1211e e 0xx x --=1211e e xx x -=10x >()()322e ln 1e 0x x ---=()()322e ln 1e x x --=2e x >()()()131122e e e e ln 1x x x x x ∴-==--()()()11122e e ln 1e x x x x +∴-=--()()()21ln 11112e e ln 1e e x x x x -++⎡⎤∴-=--⎣⎦2ln 1x > 2ln 10x ->∴()()1e e ,0x F x x x +=->()()312ln 1e F x F x =-=()()111e e e e e 1e x x x x F x x x +++=-+'=-+0x > 0e e 1x ∴>=e 10x ∴->1e 0x x +>()0F x ∴'>()F x 12ln 1x x ∴=-()()()31222222e ln 1e e e eeex x x x ---∴===()1010110%26⨯+≈(2)A 方案10年共获利:(万元),……(5分)到期时银行贷款本息为(万元),所以A 方案净收益为:(万元),……(7分)B 方案10年共获利:(万元),……(9分)到期时银行贷款本息为(万元),……(11分)所以B 方案净收益为:(万元),……(12分)由比较知A 方案比B 方案更优.……(13分)16.【解析】(1)连接,有平面,所以.在中,.同理,在中,有.又因为,所以,,所以,,故,即.又因为,,平面,所以平面.平面,所以平面平面.……(5分)过作垂直于点,因为平面平面,平面平面,且平面,有平面.……(7分)(2)依题意,.故为,的交点,且.所以过作直线的平行线,则,,,两两垂直,以为原点建立如图所示空间直角坐标系,()1091.2511125%(125%)33.31.251-+++++=≈- 1010(110%)25.9⨯+≈33.325.97-≈()()101010.31 1.3190.310123.52⨯-⨯++++⨯=⨯+= ()()10109 1.11.11(110%)(110%)110%17.51.11-++++++=≈- 23.517.56-≈PQ PQ ⊥ABCD PQ CD ⊥ACD ∆2222cos 54cos AC AD CD AD CD ADC ADC =+-⋅⋅∠=-∠ABC ∆222cos AC ABC =-∠180ABC ADC ∠+∠= 1cos 2ADC ∠=()0,180ADC ∠∈ 60ADC ∠=AC =222AC CD AD +=AC CD ⊥PQ AC Q = PQ AC ⊂PAC CD ⊥PAC CD ⊂PCD PCD ⊥PAC A AH PC H PCD ⊥PAC PCD PAC PC =AH ⊂PAC AH ⊥PCD AQ DQ ==Q AC BD 2AQ ADCQ BC==23AQ AC ==PQ ==C PQ l l AC CD C则:,,,,所以,,,.设平面的法向量为,则取.同理,平面的法向量,,……(14分)故所求锐二面角余弦值为.……(15分)17.【解析】(1)由,设,则,当时,设,,,,和在上单调递增,,,当时,,,则,函数在上单调递增,,即当时,.()1,0,0D P ⎛ ⎝()A 12B ⎛⎫- ⎪ ⎪⎝⎭()1,0,0CD = CP ⎛= ⎝ 0,AP ⎛= ⎝ 1,2BP ⎛= ⎝ PCD (),,m x y z =)0,0,m CD x m CP y ⎧⋅==⎪⎨⋅=+=⎪⎩()0,m =- PAB )1n =-1cos ,3m n m n m n ⋅==13()e cos sin xf x x x =+'+()e cos sin xh x x x =++()e sin cos xh x x x =+'-0x ≥()e 1x p x x =--()sin q x x x =-()e 10x p x ='-≥ ()1cos 0q x x ='-≥()p x ∴()q x [)0,+∞()()00p x p ∴≥=()()00q x q ≥=∴0x ≥e 1x x ≥+sin x x ≥()()()e sin cos 1sin cos sin 1cos 0xh x x x x x x x x x =-+≥+-+=-++≥'∴()e cos sin x h x x x =++[)0,+∞()()02h x h ∴≥=0x ≥()2f x '≥(2)由已知得.①当时,,在上单调递增,又,,由零点存在定理可知,在上仅有一个零点.……(10分)②当时,设,则,在上单调递减,,,,在上单调递减,又,,由零点存在定理可知在上仅有一个零点,综上所述,有且仅有2个零点.……(15分)18.【解析】(1)设,为椭圆的焦半距,,,当时,最大,此时或,不妨设,当时,得,所以,又因为,所以,.从,而椭圆的标准方程为.……(3分)(2)由题意,直线的斜率显然存在.设,.……(4分),同理,..……(6分)联立,……(8分)()e sin cos 21xg x x x x =+---0x ≥()()e cos sin 220x g x x x f x =+='+--'≥ ()g x ∴[)0,+∞()010g =-< ()e 20g πππ=->∴()g x [)0,+∞0x <()2sin cos (0)e x x xm x x --=<()()2sin 10exx m x -=≤'()m x ∴(),0-∞()()01m x m ∴>=e cos sin 20x x x ∴++-<()e cos sin 20x g x x x ∴=++-<'()g x ∴(),0-∞()010g =-< ()e 20g πππ--=+>∴()g x (),0-∞()g x ()00,P x y c C 12122F PF p S c y ∆=⋅⋅00y b <≤ 0y b =12F PF S ∆()0,P b ()0,P b -()0,P b 23πθ=213OPF OPF π∠=∠=c =12F PF S bc ∆==1b =c =2a =∴C 2214x y +=l ()11: 2.,l y kx M x y =+()22,N x y 1112OBM S OB x x ∆∴=⋅=2OBN S x ∆=12OBM OBN S xS x ∆∆∴=()22222,141612044y kx k x kx x y =+⎧⇒+++=⎨+=⎩,.……(9分)又,,,同号..,,.令,则,解得,.……(12分)(3),.且四边形为平行四边形.由(2)知,,.而在椭圆上,.化简得.……(14分)线段,……(15分)到直线的距离……(16分).……(17分)()()222Δ(16)4121416430k k k∴=-⨯⨯+=->234k ∴>1221614k x x k -+=+ 12212014x x k=>+1x ∴2x ()()2222122121212216641421231414k x x x x k k x x x x k k -⎛⎫ ⎪++⎝⎭∴===++++234k > ()2226464164,1331434k k k ⎛⎫∴=∈ ⎪⎛⎫+⎝⎭+ ⎪⎝⎭211216423x x x x ∴<++<()120x x λλ=≠116423λλ<++<()1,11,33λ⎛⎫∈ ⎪⎝⎭()1,11,33OBM OBN S S ∆∆⎛⎫∴∈ ⎪⎝⎭ OQ OM ON =+()1212,Q x x y y ∴++OMQN 1221614k x x k -+=+()121224414y y k x x k ∴+=++=+22164,1414k Q k k -⎛⎫∴ ⎪++⎝⎭Q C 2222164441414k k k -⎛⎫⎛⎫∴+⨯= ⎪ ⎪++⎝⎭⎝⎭2154k =∴MN ====O MN d ==OMQN S MN d ∴=⋅==四边形19.【解析】(1),,2,3,…,所以,,2,3,…,记,则.作差得:,所以,.故.……(6分)(2)(ⅰ)所有可能的取值为:,.且对应的概率,.所以,又,所以.……(12分)(ⅱ),;,;,,,故.……(17分)()11566k P X k -⎛⎫==⨯ ⎪⎝⎭1k =()56k k k P X k ⋅==1k =()21111512666nn k kP k n =⎛⎫=⨯+⨯++⨯ ⎪⎝⎭∑ 211112666n n S n =⨯+⨯++⨯ 2311111126666n n S n +=⨯+⨯++⨯ 1211111511111111661666666556616n n n n n n n S n n ++⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-⨯=-⨯=-+ ⎪⎪⎝⎭⎝⎭- 611155566n n n S ⎡⎤⎛⎫⎛⎫=⋅-+⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦()16615556n nn k kP k S n =⎛⎫⎛⎫==-+ ⎪⎪⎝⎭⎝⎭∑116616()()lim ()lim 5565nn n n k k E X kP k kP k n ∞→∞→∞==⎡⎤⎛⎫⎛⎫⎛⎫===-+=⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∑∑{}E ηξ∣{}i E x ηξ=∣1,2,,i n = {}{}()()()1ii i p E E x p x p x ηξηξξ=====∣∣1,2,,i n = {}()()()()()111111111[{}],,nnm n m i i j i j i j i j i i j i j i E E E x p x y p x y p x y p x y p x ηξηξ=====⎛⎫==⋅=⋅= ⎪ ⎪⎝⎭∑∑∑∑∑∣∣()()()()21111111,,,n m m n mn mj i j j i j j i j j j i j j i j i j y p x y y p x y y p x y y p y E η=======⎛⎫⋅=⋅==⋅= ⎪⎝⎭∑∑∑∑∑∑∑{}E E E ηξη⎡⎤=⎣⎦∣{}01E E ηξη==+∣156p ={}12E E ηξη==+∣2536p ={}22E η==3136p ={}()()5513542122636363636E E E E E E ηηηηηξ⎡⎤==++++⨯=+⎣⎦∣42E η=。
准考证号___________________ 姓名_______________(在此卷上答题无效)绝密★启用并使用完毕前山东师大附中第八次模拟考试理科综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的准考证号、姓名与本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用黑色墨水签字笔在答题卡上规定的答题区域内书写作答,超出答题区域书写的答案无效。
在试题卷上作答,答案无效。
3.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
4.保持卡面清洁,不要折叠、弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
5.考试结束后,监考员将试题卷、答题卡一并收回。
可能用到的相对原子质量:H:1 C:12 N:14 O:16 S:32 Fe:56第Ⅰ卷(选择题共126分)一、选择题:本题共13小题,每小题6分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 下列叙述正确的是( )A. ADP由磷酸、腺嘌呤和脱氧核糖组成,其中含有一个高能磷酸键B.线粒体是胰岛B细胞中唯一产生ATP的细胞器,抑制其功能会影响胰岛素的分泌C. A TP的合成与细胞的吸能反应有关D.维持人体体温的热能主要来自细胞内ATP的水解2. 哺乳动物红细胞的部分生命历程如下图所示,图中除成熟红细胞外,其余细胞中均有核基因转录的RNA。
下列叙述错误的是()A. 成熟红细胞在细胞呼吸过程中不产生二氧化碳B. 网织红细胞仍然能够合成核基因编码的蛋白质C. 造血干细胞与网织红细胞中基因的执行情况不同D. 成熟红细胞衰老后控制其凋亡的基因开始表达3. 下列关于实验的叙述,正确的是()A.“低温诱导植物染色体数目的变化”实验中,经诱导处理的根尖经卡诺氏液浸泡后,用清水冲洗2遍B.将洋葱根尖分生区细胞置于0.3g/ml蔗糖溶液中,将会发生质壁分离C.科学家用同位素标记法证明光合作用的产物是淀粉D.调查人群中某遗传病发病率时,最好选取发病率较高的单基因遗传病4. 2017年诺贝尔生理学或医学奖授予美国的三位科学家,以表彰他们在研究生物钟运行的分子机制方面的成就。
山东省师大附中2018届高三数学下学期第八次模拟考试试题 文本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试用时120分钟. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、考试科目填写在规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知全集}4,3,2,1,0{=U ,集合}3,2,1{=A ,}4,2{=B ,则=B A C U )( ( ) A .}4,2,0{ B .}4,3,2{ C .}4,2,1{ D .}4,3,2,0{2、设i 是虚数单位,如果复数iia ++2的实部与虚部是互为相反数,那么实数a 的值为 ( ) A .31 B .31-C .3D .3- 3、若)//()2(),2,1(),1,2(b m a b a b a-+-==,则=m ( )A . 12-B . 12C .2D .2- 4、已知}{n a 是等比数列,若2518,2a a a ==,数列}{n a 的前n 项和为n S ,则n S 为 ( )A .22-nB .121-+n C .221-+n D .12-n5、已知定义在区间]4,4[-上的函数m x f x+=2)(满足6)2(=f ,在]4,4[-上随机取一个实数x ,则使得)(x f 的值不小于4的概率为 ( ) A .43 B .21 C .83 D .816、将函数3cos sin 2cos 32)(2--=x x x x f 的图象向左平移)0(>m m 个单位,所得图象对应的函数为偶函数,则m 的最小值为 ( ) A .125π B .6π C .3π D .32π 7、函数x x f xx cos 2121)(⋅+-=的图象大致为 ( )A .B .C .D .8、已知三棱锥的三视图如图所示,其中侧视图为直角三角形,俯视图为等腰直角三角形,则此三棱锥的表面积为( ) A. 73+ B. 731++ C. 7321++ D. 7231++9、已知12,F F 是双曲线22221(0,0)x y a b a b -=>>的两焦点,以线段12F F 为边作正三角形12MF F ,若边1MF 的中点在双曲线上,则双曲线的离心率是 ( )A. 423+B. 3+1C.312+ D. 31- 10、右图的框图是一古代数学家的一个算法的程序框图,它输 出的结果S 表示( )A .3210a a a a +++的值 B. 300201023x a x a x a a +++的值C. 303202010x a x a x a a +++的值 D. 以上都不对11、在三棱锥ABC P -中,三条侧棱PC PB PA ,,两两互相垂直,且PBC PAC PAB ∆∆∆,,的面积依次为2,1,1,则三棱锥ABC P -的外接球的半径为 ( )A . 23B .3C .4D .212、已知)(x f 是定义在R 上的偶函数,且)2()2(x f x f -=+,当]0,2[-∈x时,1)22()(-=xx f ,若在区间)6,2(-内关于x 的方程0)2(log )(=+-x x f a (0>a 且 1≠a )有且只有4个不同的根,则实数a 的取值范围是 ( )A .)1,41( B .)4,1( C .)8,1( D .),8(+∞ 第Ⅱ卷二、填空题 :本题共4小题,每小题5分,共20分.13、若数列}{n a 为等差数列,n S 为其前n 项和,且3231-=a a ,则=9S ________.14、曲线xx x y 2ln +=在点)2,1(处的切线方程为 .15、设R ,∈y x 满足约束条件⎪⎩⎪⎨⎧≤-≥-+≥+-030301x y x y x ,则y x z 3-=的最小值为________.16、已知过点)0,2(p M 的直线l 与抛物线)0(22>=p px y 交于B A ,两点,O 为坐标原点,且满足3-=⋅OB OA ,则当BM AM 4+最小时,则=AB ________.三、解答题:本题有6小题,共70分. 解答时应写出必要的文字说明,证明过程或演算步骤. 17、(本题满分12分)已知ABC ∆中,内角C B A ,,的对边分别为,c b a ,,且.0222=--b ab a (1)若6π=B ,求角C ;(2)若14,32==c C π,求ABC ∆的面积.18、(本题满分12分)如图,在底面是正三角形的直三棱柱111C B A ABC -中,21==AB AA ,D 是BC 的中点.(1)求证://1C A 平面D AB 1; (2)求三棱锥D AB A 11-的体积.19、(本题满分12分)某校高三某班的一次月考数学成绩的茎叶图和频率分布直方图都受到不同程度的损坏,但可见部分如图,据此解答如下问题:(1)求分数在)80,70[之间的频数,并计算频率分布直方图中)80,70[间的矩形的高; (2)根据频率分布直方图估计该班学生在这次考试中的平均分(同一组中的数据用该组区间的中点值作代表);(3)若要从分数在)70,50[之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份在)60,50[之间的概率.20、(本题满分12分)已知椭圆)0(1:2222>>=+b a by a x C 的离心率为22,且过点)1,2(.(1)求椭圆C 的方程;(2)设P 是椭圆C 长轴上的一个动点,过点P 作斜率为22的直线l 交椭圆C 于B A ,两点,求证:22PB PA +为定值.21、(本题满分12分)设函数22)1()(x k e x x f x--=(其中R ∈k ). (1)当2=k 时,求函数)(x f 的单调区间和极值; (2)当0>k 时,讨论函数)(x f 的零点个数.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22、[选修4-4:坐标系与参数方程](10分) 在直角坐标系xOy 中,直线2:1-=x l ,曲线⎩⎨⎧+==θθsin 22cos 2:y x C (θ为参数),以坐标原点O为极点,x 轴正半轴为极轴建立极坐标系. (1)求直线1l 及曲线C 的极坐标方程; (2)若直线2l 的极坐标方程为)R (4∈=ρπθ,设2l 与曲线C 的交点为N M ,,曲线C 的对称中心为C ,求CMN ∆的面积及1l 与2l 交点的极坐标. 23、[选修4-5:不等式选讲](10分)设不等式2120<--+<x x 的解集为M ,M ,∈b a . (1)求解集M ;(2)比较14-ab 与a b -2的大小,并说明理由.答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ADBCCACBBCAD二、填空题(13)27; (14)3+-=x y 03=-+y x ; (15)9-; (16)29. 三、解答题17.【解析】(1)由已知0)2)((=-+b a b a 又因为0>+b a ,所以b a 2= 由正弦定理1sin ,21sin 2,sin sin ===A bA bB b A a ,因为π<<A 0,所以2π=A 。
绝密 ★ 启用前 试卷类型A山东师大附中2015级第八次模拟考试数 学 试 卷(文科)命题:高三数学备课组本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试用时120分钟. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、考试科目填写在规定的位置上. 2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号. 3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效. 第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知全集}4,3,2,1,0{=U ,集合}3,2,1{=A ,}4,2{=B ,则=B A C U)( ( )A .}4,2,0{B .}4,3,2{C .}4,2,1{D .}4,3,2,0{2、设i 是虚数单位,如果复数i ia ++2的实部与虚部是互为相反数,那么实数a 的值为 ( )A .31B .31-C .3D .3-3、若)//()2(),2,1(),1,2(b m a b a b a-+-==,则=m ( )A .12-B . 12 C .2 D .2-4、已知}{n a 是等比数列,若2518,2a a a ==,数列}{n a 的前n 项和为n S ,则n S 为 ( )A .22-nB .121-+n C .221-+n D .12-n5、已知定义在区间]4,4[-上的函数m x f x+=2)(满足6)2(=f ,在]4,4[-上随机取一个实数x ,则使得)(x f 的值不小于4的概率为 ( )A .43B .21C .83D .816、将函数3cos sin 2cos 32)(2--=x x x x f 的图象向左平移)0(>m m 个单位,所得图象对应的函数为偶函数,则m 的最小值为 ( )A .125πB .6πC .3πD .32π7、函数x x f xxcos 2121)(⋅+-=的图象大致为 ( )A .B .C .D . 8、已知三棱锥的三视图如图所示,其中侧视图为直角三角形,俯视图为等腰直角三角形,则此三棱锥的表面积为( ) A.73+ B. 731++C. 7321++D. 7231++9、已知12,F F 是双曲线22221(0,0)x y a b a b -=>>的两焦点,以线段12F F 为边作正三角形12MF F ,若边1MF 的中点在双曲线上,则双曲线的离心率是 ( )A. 4+B.C.D.110、右图的框图是一古代数学家的一个算法的程序框图,它输 出的结果S 表示( )A .3210a a a a +++的值 B. 300201023x a x a x a a +++的值 C.303202010x a x a x a a +++的值 D. 以上都不对11、在三棱锥ABC P -中,三条侧棱PC PB PA ,,两两互相垂直,且PBC PAC PAB ∆∆∆,,的面积依次为2,1,1,则三棱锥ABC P -的外接球的半径为 ( )A . 23B .3C .4D .212、已知)(x f 是定义在R 上的偶函数,且)2()2(x f x f -=+,当]0,2[-∈x 时,1)22()(-=xx f ,若在区间)6,2(-内关于x 的方程0)2(log )(=+-x x f a (0>a 且1≠a )有且只有4个不同的根,则实数a 的取值范围是 ( ) A .)1,41( B .)4,1( C .)8,1( D .),8(+∞第Ⅱ卷二、填空题 :本题共4小题,每小题5分,共20分.13、若数列}{n a 为等差数列,n S 为其前n 项和,且3231-=a a ,则=9S ________.14、曲线x x x y 2ln +=在点)2,1(处的切线方程为 .15、设R ,∈y x 满足约束条件⎪⎩⎪⎨⎧≤-≥-+≥+-030301x y x y x ,则y x z 3-=的最小值为________.16、已知过点)0,2(p M 的直线l 与抛物线)0(22>=p px y 交于B A ,两点,O 为坐标原点,且满足3-=⋅,则当BM AM 4+最小时,则=AB ________.三、解答题:本题有6小题,共70分. 解答时应写出必要的文字说明,证明过程或演算步骤.17、(本题满分12分)已知ABC ∆中,内角C B A ,,的对边分别为,c b a ,,且.0222=--b ab a若6π=B ,求角C ;若14,32==c C π,求ABC ∆的面积.18、(本题满分12分)如图,在底面是正三角形的直三棱柱111C B A ABC -中,21==AB AA ,D 是BC 的中点.(1)求证://1C A 平面D AB 1; (2)求三棱锥D AB A 11-的体积.19、(本题满分12分)某校高三某班的一次月考数学成绩的茎叶图和频率分布直方图都受到不同程度的损坏,但可见部分如图,据此解答如下问题:(1)求分数在)80,70[之间的频数,并计算频率分布直方图中)80,70[间的矩形的高;(2)根据频率分布直方图估计该班学生在这次考试中的平均分(同一组中的数据用该组区间的中点值作代表);(3)若要从分数在)70,50[之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份在)60,50[之间的概率.20、(本题满分12分)已知椭圆)0(1:2222>>=+b a b y a x C 的离心率为22,且过点)1,2(.(1)求椭圆C 的方程;(2)设P 是椭圆C 长轴上的一个动点,过点P 作斜率为22的直线l 交椭圆C 于B A ,两点,求证:22PBPA +为定值.21、(本题满分12分)设函数22)1()(xk e x x f x --=(其中R ∈k ).(1)当2=k 时,求函数)(x f 的单调区间和极值; (2)当0>k 时,讨论函数)(x f 的零点个数.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. [选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线2:1-=x l ,曲线⎩⎨⎧+==θθsin 22cos 2:y x C (θ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系. (1)求直线1l 及曲线C 的极坐标方程;(2)若直线2l 的极坐标方程为)R (4∈=ρπθ,设2l 与曲线C 的交点为N M ,,曲线C 的对称中心为C ,求CMN ∆的面积及1l 与2l 交点的极坐标. [选修4-5:不等式选讲](10分) 设不等式2120<--+<x x 的解集为M ,M ,∈b a .(1)求解集M ; (2)比较14-ab 与ab -2的大小,并说明理由.山东师大附中2015级第八次模拟考试答案 数 学 试 卷(文科)填空题(13)27; (14)3+-=x y 03=-+y x ; (15)9-; (16)29.解答题17.【解析】(1)由已知0)2)((=-+b a b a 又因为0>+b a ,所以b a 2=由正弦定理1sin ,21sin 2,sin sin ===A bA bB b A a ,因为π<<A 0,所以2π=A 。
…………6分(2)326ππππ=--=C ,ab c b a C 2cos 222-+=,28,22196421222=⋅⋅-+=-b b b b b3142328sin sin 221sin 212=⨯==⋅⋅=⋅=∆C b C b b C b a S ABC …12分【解析】(1)连接B A 1交1AB于点O 由题意知O 为B A 1的中点,D 为BC 中点,所以C A OD 1//,因为⊂OD 平面D AB 1,⊄C A 1 平面D AB 1,所以 //1C A 平面D AB 1 …………6分(2)3323121311111=⨯⨯⨯⨯===---ACD B D AB C D AB A V V V 。
…………12分 【解析】(1)2510008.02=⨯=n ,04.0102510,1015-25=÷=,2.7625295257852510752546525255=⨯+⨯+⨯+⨯+⨯53【解析】(1)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=2222211222c b a ba ac 解得⎪⎩⎪⎨⎧===224222c b a 所以12422=+y x …………4分证明:m x y l +=22: )0,2(m P -⎪⎪⎩⎪⎪⎨⎧+==+mx y y x 2212422消元得02222=-++m mx x0)2(4)2(22>--=∆m m 得42<m由韦达定理121,,2,22212122121-==+-=-=+m y y m y y m x x m x x2222212122)2()2(y m x y m x PB PA +++++=+222222212121222222y m mx x y m mx x +++++++=21221221212212)(4)(222)(y y y y m x x m x x x x -+++++-+= )121(24)2(22)2(2222222--++-+--=m m m m m m m 6= 所以22PBPA +为定值。
…………………12分【解析】(1)R ,)1()(2∈--=x x e x x f x )2()(-='x e x x f0,2ln 0)(<>⇔>'x x x f所以单增区间为),2][ln 0,(+∞-∞2ln 00)(<<⇔<'x x f所以单减区间为]2ln ,0[22ln 2)2(ln )2(ln )(,1)0()(2-+-==-==f x f f x f 极小值极大值 …………6分)()(k e x x f x -='当10<<k 时,)(x f 在),0(),ln ,(+∞-∞k 上单增,在)0,(ln k 上单减2)2(,0]1)1[(ln 2)(ln ,01)0(22>-=<+--=<-=k e f k kk f f 所以一个零点当1=k 时,)(,0)1()(x f e x x f x>-='在),(+∞-∞上单增 02)2(,01)0(2>-=<-=e f f 所以一个零点当1>k 时,)(x f 在),(ln ),0,(+∞-∞k 上单增,在)ln 0(k ,上单减 ,0]1)1[(ln 2)(ln ,01)0(2<+--=<-=k kk f f1,1)21(2)1)(1(2)1()(222=--=-+-≥--=x x kx k x x x k e x x f x 取等号取2110k x -=01)211)(21()(20=--->k k x f 所以一个零点综上,当0>k 时,一个零点。