第3章材料的连接成形
- 格式:pdf
- 大小:6.90 MB
- 文档页数:50
第三章 母材熔化和焊缝成形熔化焊时,被焊金属(母材)和填充金属在热源作用下熔融在一起,并形成具有一定几何形状的液体金属叫熔池,冷却凝固后则称谓焊缝。
焊缝成形的好坏是衡量焊接质量的主要指标之一。
本章将讨论在电弧热和力作用下母材的熔化、熔池和焊缝的形成、对接接头焊缝成形的基本规律及对焊缝成形的控制。
第一节 焊缝和熔池的形状及尺寸焊接接头的形式很多,不同的接头形式其焊缝形状亦有所不同。
一、 焊缝形状尺寸及其影响焊缝的形状通常是指熔化焊缝区横截、熔宽面和余高来表的形状,一般以熔深H 、熔宽B 和余高a 来表示,如图3-1所示。
其中熔深是对接接头焊缝最重要的尺寸,它直接影响到接头的承载能力。
熔宽和余高则应与熔深具有恰当的比例,因而采用焊缝成形系数(/)B H φφ=和余高系数(/)B a ψψ=来表征焊缝的成形特点。
焊缝成形系数φ的大小影响到熔池中气体逸出的难易、熔池的结晶方向、焊缝中心偏析的严重程度等。
φ的大小要受到焊接方法及材料对焊缝产生裂纹和气孔的敏感性,即熔池合理冶金条件的制约。
一般而言,对于裂纹和气孔敏感的材料,其焊缝的φ值应取大一些。
此外,φ值的大小还受到电弧功率密度的限制。
对于常用的电弧焊方法,焊缝的φ值一般取1.3~2 。
堆焊时为了保证堆焊层材料的成分和高的生产率,要求熔深浅,焊缝宽度大,此时φ值可达10左右。
焊缝余高可避免熔池金属凝固收缩时形成缺陷,也可增加焊缝截面,提高结构承受静载荷能力。
但余高太大将引起应力集中,从而降低承受动载荷能力,因此要限制余高的尺寸。
通常对接接头的余高应控制在3mm 以下,或者余高系数ψ大于4~8。
对重要的承受动载荷的结构,焊后应将余高去除。
理想的角焊缝表面最好是凹形的(图3-1),对对于重要结构,可在焊后除去余高,磨成凹形。
焊缝的熔深、熔宽和余高确定后,基本确定了焊缝横截面的轮廓。
焊缝准确的横截面形状及面积可由焊缝断面的粗晶腐蚀确定,从而可确定母材金属在焊缝中所占的比例,即焊缝的熔合比。
教案(理论课)2010~2011学年第2学期课程名称工程材料与成形技术基础教学系机械工程系授课班级焊接091主讲教师晏丽琴职称讲师培黎工程技术学院二○一一年二月课程基本情况系主任:年月日目录第一章绪论第一节材料加工概述一、材料加工概述二、材料加工的基本要素和流程第二节材料成形的一些基本问题和发展概况一、凝固成形的基本问题和发展概况二、塑性成形的基本问题和发展概况三、焊接成形的基本问题和发展概况四、表面成形的基本问题和发展概况第三节本课程的性质和任务绪论学习思考问题·材料加工的基本要素和流程是什么?·材料成形存在的基本问题是什么?·本课程的性质和基本任务是什么?一、材料加工概述任何机器或设备,都是由许许多多的零件装配而成的。
这些零件所用材料有金属材料,也有非金属材料。
零件或材料的加工方法多种多样,归纳起来有以下4类:(1)成形加工:用来改变材料的形状尺寸,或兼有改变材料的性能。
主要有凝固成形、塑性成形、焊接成形、粉末压制和塑料成形等。
(2)切除加工:用于改变材料的形状尺寸,主要有车、铣、刨、钻、磨等传统的切削加工,以及直接利用电能、化学能、声能、光能进行的特殊加工,如电火花加:[、电解加工、超声加工和激光加工等。
(3)表面成形加工:用来改变零件的表面状态和(或)性能,如表面形变及淬火强化、化学热处理、表面涂(镀)层和气相沉积镀膜等。
(4)热处理加工:用来改变材料或零件的性能,如退火、正火、淬火和回火等。
根据零件的形状尺寸特征、工作条件及使用要求、生产批量和制造成本等多种因素,选择零件的加工方法,以达到技术上可行、质量可靠和经济上合理。
零件制成后再经过检验、装配、调试,最终得到整机产品。
二、材料加工的基本要素和流程材料加工方法的种类虽然繁多,但通过对每种材料加工方法的过程分析表明,它们都可以用建立在少数几个基本参数基础上的统一模式来描述。
该模式便于对各种加工方法进行综合分析和横向比较。
第一章金属液态成形1. ①液态合金的充型能力是指熔融合金充满型腔,获得轮廓清晰、形状完整的优质铸件的能力。
②流动性好,熔融合金充填铸型的能力强,易于获得尺寸准确、外形完整的铸件。
流动性不好,则充型能力差,铸件容易产生冷隔、气孔等缺陷。
③成分不同的合金具有不同的结晶特性,共晶成分合金的流动性最好,纯金属次之,最后是固溶体合金。
④相比于铸钢,铸铁更接近更接近共晶成分,结晶温度区间较小,因而流动性较好。
2. 浇铸温度过高会使合金的收缩量增加,吸气增多,氧化严重,反而是铸件容易产生缩孔、缩松、粘砂、夹杂等缺陷。
3. 缩孔和缩松的存在会减小铸件的有效承载面积,并会引起应力集中,导致铸件的力学性能下降。
缩孔大而集中,更容易被发现,可以通过一定的工艺将其移出铸件体外,缩松小而分散,在铸件中或多或少都存在着,对于一般铸件来说,往往不把它作为一种缺陷来看,只有要求铸件的气密性高的时候才会防止。
4 液态合金充满型腔后,在冷却凝固过程中,若液态收缩和凝固收缩缩减的体积得不到补足,便会在铸件的最后凝固部位形成一些空洞,大而集中的空洞成为缩孔,小而分散的空洞称为缩松。
浇不足是沙型没有全部充满。
冷隔是铸造后的工件稍受一定力后就出现裂纹或断裂,在断口出现氧化夹杂物,或者没有融合到一起。
出气口目的是在浇铸的过程中使型腔内的气体排出,防止铸件产生气孔,也便于观察浇铸情况。
而冒口是为避免铸件出现缺陷而附加在铸件上方或侧面的补充部分。
逐层凝固过程中其断面上固相和液相由一条界线清楚地分开。
定向凝固中熔融合金沿着与热流相反的方向按照要求的结晶取向进行凝固。
5. 定向凝固原则是在铸件可能出现缩孔的厚大部位安放冒口,并同时采用其他工艺措施,使铸件上远离冒口的部位到冒口之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部位像冒口方向顺序地凝固。
铸件相邻各部位或铸件各处凝固开始及结束的时间相同或相近,甚至是同时完成凝固过程,无先后的差异及明显的方向性,称作同时凝固。
教案(理论课)2010~2011学年第2学期课程名称工程材料与成形技术基础教学系机械工程系授课班级焊接091主讲教师晏丽琴职称讲师培黎工程技术学院二○一一年二月课程基本情况(4)热处理加工:用来改变材料或零件的性能,如退火、正火、淬火和回火等。
根据零件的形状尺寸特征、工作条件及使用要求、生产批量和制造成本等多种因素,选择零件的加工方法,以达到技术上可行、质量可靠和经济上合理。
零件制成后再经过检验、装配、调试,最终得到整机产品。
二、材料加工的基本要素和流程材料加工方法的种类虽然繁多,但通过对每种材料加工方法的过程分析表明,它们都可以用建立在少数几个基本参数基础上的统一模式来描述。
该模式便于对各种加工方法进行综合分析和横向比较。
任何一种材料的加工过程,都是为了达到材料的形状尺寸或性能的变化。
而为了产生这种变化,必须具备三个基本要素:材料、能量和信息(图1.2)。
因而材料的加工过程,可以用相关材料流程、能量流程和信息流程来描述。
三大流程:1.材料流程表征加工过程特点的类型;要改变形状尺寸和性能的材料状态;能够用来实现这种形状尺寸和性能变化的基本过程;2.能量流程包括机械过程的能量流程,热过程能量:电能、化学能、机械能3.信息流程形状信息、性能信息三、自发过程四、界面张力第三节形核一、凝固的热力学条件二、自发形核三、非自发形核四、形核剂第四节生长一、固液界面的结构二、生长方式三、生长速度第五节溶质再分配一、溶质再分配与平衡分配系数二、非平衡凝固时的溶质再分配三、成分过冷判据四、成分过冷与晶体生长形态五、微观偏析六、宏观偏析第六节共晶合金的凝固第七节金属及合金的凝固方式一、凝固区特性与凝固质量的关系二、凝固动态曲线与凝固方式三、凝固方式的影响因素第八节凝固成形的应用一、铸造生产过程中的凝固控制二、焊接生产中的凝固过程控制三、陶瓷与粉末合金制备过程中的凝固现象思考与练习第三章材料成形热过程第一节焊接成形过程一、焊接热过程特点二、焊接过程热效率第二节焊接温度场一、焊接传热形式及传导基本方程二、焊接湿度场的数学表述法数学解析的假定条件三、瞬时热源的热传导过程四、影响焊接温度场的因素第三节焊接热循环一、焊接热循环的主要参数二、多层焊热循环三、影响焊接热循环的因素第四节凝固成形热过程一、凝固成形热过程特点及热效率二、凝固成形热温度场第五节塑性成形热过程特点及温度场一、塑性成形热过程的基本特点二、塑性成形加热过程的热效率三、塑性成形的温度场思考与练习第四章塑性成形理论基础第一节金属冷态下的塑性变形一、冷塑性变形机理二、冷塑性变形特点三、冷塑性变形对金属组织和性能的影响铸造成形2.1概述铸造是液态金属成形的方法铸造过程是熔炼金属,制造铸型,并将熔融金属在重力、压力、离心力、电磁力等处力场的作用下充满铸型,凝固后获得一定形状与性能铸件的生产过程,是生产金属零件和毛坯的主要方式之一。