【解析版】楚雄州大姚实验中学2015年中考数学模拟试卷(四)
- 格式:doc
- 大小:450.90 KB
- 文档页数:21
2014-2015学年云南省楚雄州大姚实验中学高二(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)设集合U={﹣1,0,1,2},M={x|x2=x},则∁U M=()A.{﹣1,2}B.{﹣1,0,2}C.{2}D.{0,2}2.(5分)下列函数中,既是奇函数又是增函数的是()A.y=﹣x B.y=x3+1C.y=sinx D.y=x|x|3.(5分)设向量=(sinθ,1)与=(1,2sinθ)平行,则cos2θ=()A.B.C.0D.14.(5分)若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(﹣1)=()A.﹣1B.﹣2C.2D.05.(5分)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.(,)B.(﹣,0)C.(0,)D.(,)6.(5分)如果执行如图所示的程序框图,输入x=6,则输出的y值为()A.2B.0C.﹣1D.7.(5分)等比的正数数列{a n}中,若a5a6=9,则log3a1+log3a2+…+log3a10=()A.12B.10C.8D.2+log358.(5分)设sin(+θ)=,则sin2θ=()A.﹣B.﹣C.D.9.(5分)设m、n是平面α内的两条不同直线,l1、l2是平面β内的两条相交直线,则α∥β的一个充分而不必要的条件是()A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l210.(5分)若,若z=x+2y的最大值为3,则a的值是()A.1B.2C.3D.411.(5分)下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”D.命题“若x=y,则sinx=siny”的逆否命题为真命题12.(5分)已知F1、F2分别是双曲线﹣=1(a>b>0)的左、右焦点,以坐标原点O为圆心,OF1为半径的圆与双曲线在第一象限的交点为P,则当△PF1F2的面积等于a2时,双曲线的离心率为()A.B.C.D.2二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为.14.(5分)现有10个数,它们能构成一个以1为首项,﹣3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.15.(5分)已知x>0,y>0,若+>m2+2m恒成立,则实数m的取值范围是.16.(5分)在△ABC中,若,△ABC的面积为2,则角B=.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)在△ABC中,角A、B、C对边分别为a、b、c,且2cos(B﹣C)﹣1=4cosBcosC.(Ⅰ)求角A的大小;(Ⅱ)若a=3,2sinB=sinC,求△ABC的面积.18.(12分)已知数列{a n}的前n项和为S n且S n=2n2+n,n∈N*,数列{b n}满足a n=4log2b n+3,n∈N*.(Ⅰ)求a n和b n的通项公式;(Ⅱ)求数列{a n•b n}的前n项和T n.19.(12分)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.20.(12分)已知函数f(x)=(﹣2ax+a+1)e x.(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)若0≤a≤1,求函数f(x)在[0,1]上的最大值和最小值.21.(12分)已知椭圆C:+=1(a>b>0)的离心率为,F 1,F2分别是椭圆的左、右焦点,直线l过点F2与椭圆交于A、B两点,且△F1AB的周长为4.(Ⅰ)求椭圆C的标准方程;(Ⅱ)是否存在直线l使△F1AB的面积为?若存在,求出直线l的方程;若不存在,请说明理由.22.(12分)如图,建立平面直角坐标系xoy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(Ⅰ)求炮的最大射程;(Ⅱ)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.2014-2015学年云南省楚雄州大姚实验中学高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)设集合U={﹣1,0,1,2},M={x|x2=x},则∁U M=()A.{﹣1,2}B.{﹣1,0,2}C.{2}D.{0,2}【解答】解:M={x|x2=x}={0,1},∵U={﹣1,0,1,2},∴∁U M={﹣1,2},故选:A.2.(5分)下列函数中,既是奇函数又是增函数的是()A.y=﹣x B.y=x3+1C.y=sinx D.y=x|x|【解答】解:对于A.则为奇函数,且为减函数,故A不满足条件;对于B.f(﹣x)=﹣x3+1≠﹣f(x),则不为奇函数,故B不满足条件;对于C.则为奇函数,在[2k,2k](k∈Z)上递增,在[2k,2k](k∈Z)上递减,故C不满足条件;对于D.定义域为R,f(﹣x)=﹣x|﹣x|=﹣f(x),为奇函数,当x>0时,f(x)=x2递增,当x<0时,f(x)=﹣x2递增,且f(0)=0,则f(x)在R上递增,故D满足条件.故选:D.3.(5分)设向量=(sinθ,1)与=(1,2sinθ)平行,则cos2θ=()A.B.C.0D.1【解答】解:∵向量=(sinθ,1)与=(1,2sinθ)平行,∴2sin2θ=1,即sin2θ=,则cos2θ=1﹣2sin2θ=0.故选:C.4.(5分)若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(﹣1)=()A.﹣1B.﹣2C.2D.0【解答】解:∵f(x)=ax4+bx2+c,∴f′(x)=4ax3+2bx,∴f′(﹣x)=﹣4ax3﹣2bx=﹣f′(x),∴f′(﹣1)=﹣f′(1)=﹣2,故选:B.5.(5分)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.(,)B.(﹣,0)C.(0,)D.(,)【解答】解:∵函数f(x)=e x+4x﹣3∴f′(x)=e x+4当x>0时,f′(x)=e x+4>0∴函数f(x)=e x+4x﹣3在(﹣∞,+∞)上为f(0)=e0﹣3=﹣2<0f()=﹣1>0f()=﹣2=﹣<0∵f()•f()<0,∴函数f(x)=e x+4x﹣3的零点所在的区间为(,)故选:A.6.(5分)如果执行如图所示的程序框图,输入x=6,则输出的y值为()A.2B.0C.﹣1D.【解答】解:执行程序框图,可得x=6y=2不满足条件|y﹣x|<1,x=2,y=0不满足条件|y﹣x|<1,x=0,y=﹣1不满足条件|y﹣x|<1,x=﹣1,y=﹣满足条件|y﹣x|<1,退出循环,输出y的值为﹣.故选:D.7.(5分)等比的正数数列{a n}中,若a5a6=9,则log3a1+log3a2+…+log3a10=()A.12B.10C.8D.2+log35【解答】解:取特殊数列a n=3,则log3a1+log3a2+…+log3a10==10,故选:B.8.(5分)设sin(+θ)=,则sin2θ=()A.﹣B.﹣C.D.【解答】解:由sin(+θ)=sin cosθ+cos sinθ=(sinθ+cosθ)=,两边平方得:1+2sinθcosθ=,即2sinθcosθ=﹣,则sin2θ=2sinθcosθ=﹣.故选:A.9.(5分)设m、n是平面α内的两条不同直线,l1、l2是平面β内的两条相交直线,则α∥β的一个充分而不必要的条件是()A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2【解答】解:∵m∥l1,且n∥l2,又l1与l2是平面β内的两条相交直线,∴α∥β,而当α∥β时不一定推出m∥l1且n∥l2,可能异面.故m∥l1且n∥l2是α∥β的一个充分而不必要的条件,故选:B.10.(5分)若,若z=x+2y的最大值为3,则a的值是()A.1B.2C.3D.4【解答】解:作出不等式表示的平面区域,如图z=x+2y的几何意义是直线纵截距的一半由,可得x=y=a,根据图形可知在(a,a)处,z=x+2y的最大值为3∴a+2a=3∴a=1故选:A.11.(5分)下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”D.命题“若x=y,则sinx=siny”的逆否命题为真命题【解答】解:对于A:命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”.因为否命题应为“若x2≠1,则x≠1”,故错误.对于B:“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件.因为x=﹣1⇒x2﹣5x﹣6=0,应为充分条件,故错误.对于C:命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”.因为命题的否定应为∀x∈R,均有x2+x+1≥0.故错误.由排除法得到D正确.故选:D.12.(5分)已知F1、F2分别是双曲线﹣=1(a>b>0)的左、右焦点,以坐标原点O为圆心,OF1为半径的圆与双曲线在第一象限的交点为P,则当△PF1F2的面积等于a2时,双曲线的离心率为()A.B.C.D.2【解答】解:设F1F2=2c,由题意知△F1F2P是直角三角形,∴F1P2+F2P2=F1F22,又根据曲线的定义得:F1P﹣F2P=2a,平方得:F1P2+F2P2﹣2F1P×F2P=4a2从而得出F1F22﹣2F1P×F2P=4a2∴F1P×F2P=2(c2﹣a2)又当△PF1F2的面积等于a2即F1P×F2P=a22(c2﹣a2)=a2∴c=a,∴双曲线的离心率e==.故选:A.二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为9.【解答】解;此几何体为三棱锥,底面面积S==9,体高为3,则此几何体的体积为==9.故答案为9.14.(5分)现有10个数,它们能构成一个以1为首项,﹣3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.【解答】解:由题意成等比数列的10个数为:1,﹣3,(﹣3)2,(﹣3)3…(﹣3)9其中小于8的项有:1,﹣3,(﹣3)3,(﹣3)5,(﹣3)7,(﹣3)9共6个数这10个数中随机抽取一个数,则它小于8的概率是P=故答案为:15.(5分)已知x>0,y>0,若+>m2+2m恒成立,则实数m的取值范围是﹣4<m<2.【解答】解:根据题意,x>0,y>0,则>0,>0,则+≥2=8,即+的最小值为8,若+>m2+2m恒成立,必有m2+2m<8恒成立,m2+2m<8⇔m2+2m﹣8<0,解可得,﹣4<m<2,故答案为﹣4<m<2.16.(5分)在△ABC中,若,△ABC的面积为2,则角B=45°.【解答】解:由数量积的定义可得,==2,而S△ABC两式相除可得:tanB=1,又B∈[0,π],所以B=45°故答案为:=45°三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)在△ABC中,角A、B、C对边分别为a、b、c,且2cos(B﹣C)﹣1=4cosBcosC.(Ⅰ)求角A的大小;(Ⅱ)若a=3,2sinB=sinC,求△ABC的面积.【解答】解:(Ⅰ)因为2cos(B﹣C)﹣1=4cosBcosC,所以2(cosBcosC+sinBsinC)﹣1=4cosBcosC,即2(cosBcosC﹣sinBsinC)=﹣1,可得2cos(B+C)=﹣1,则cos(B+C)=﹣.由0<B+C<π,可得B+C=,所以A=π﹣(B+C)=;(Ⅱ)因为2sinB=sinC,所以由正弦定理得2b=c,又a=3,由余弦定理得,a2=b2+c2﹣2bccosA,则9=b2+4b2﹣4b2cos,解得b2=3,所以△ABC的面积s==b2sinA=3×=.18.(12分)已知数列{a n}的前n项和为S n且S n=2n2+n,n∈N*,数列{b n}满足a n=4log2b n+3,n∈N*.(Ⅰ)求a n和b n的通项公式;(Ⅱ)求数列{a n•b n}的前n项和T n.【解答】解:(Ⅰ)数列{a n}的前n项和为S n且S n=2n2+n,n∈N*,则:a n=S n﹣S n﹣1(n≥2),=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1,当n=1时,a1=3符合通项公式,所以:a n=4n﹣1.由于:数列{b n}满足a n=4log2b n+3,n∈N*.则:4n﹣1=4log2b n+3,所以:,(Ⅱ)由(Ⅰ)得:设c n=,则:T n=c1+c2+…+c n=3•20+7•21+…+(4n﹣1)2n﹣1①②①﹣②得:﹣(4n﹣1)2n﹣1,整理得:.19.(12分)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.【解答】(Ⅰ)证明:∵PA⊥平面ABCD,∴PA⊥BD,∵PC⊥平面BDE,∴PC⊥BD,又PA∩PC=P,∴BD⊥平面PAC,(Ⅱ)解:设AC与BD交点为O,连OE,∵PC⊥平面BDE,∴PC⊥平面BOE,∴PC⊥BE.∴∠BEO为二面角B﹣PC﹣A的平面角,∵BD⊥平面PAC,∴BD⊥AC,∴四边形ABCD为正方形,又PA=1,AD=2,可得BD=AC=2,PC=3,∴OC=BO=.在△PAC∽△OEC中,=⇒=⇒OE=.又BD⊥OE,∴tan∠BEO==3.∴二面角B﹣PC﹣A的平面角的正切值为:3.20.(12分)已知函数f(x)=(﹣2ax+a+1)e x.(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)若0≤a≤1,求函数f(x)在[0,1]上的最大值和最小值.【解答】解:(Ⅰ)由已知,f'(x)=﹣2ae x+(﹣2ax+a+1)e x=(﹣2ax﹣a+1)e x,①当a=0时,f'(x)=e x>0,所以原函数在R上为增函数;②当a≠0时,令f'(x)=(﹣2ax﹣a+1)e x=0,解得x=,a>0时,f(x)的递增区间是(﹣∞,),递减区间是(,+∞);a<0时,f(x)的递减区间是(﹣∞,),递增区间是(,+∞);(Ⅱ)当0≤a≤1时,并且时,即<a<1时,函数f(x)在[0,]上递增,在[,1]上递减,所以函数f(x)在[0,1]上的最大值为f()=2a,又f(0)=a+1,f(1)=(1﹣a)e,所以最小值为a+1.当时,即0≤a≤时,数f(x)在[0,1]上单调递增,所以其最大值为分f(1)=(1﹣a)e,最小值为f(0)=a+1;21.(12分)已知椭圆C:+=1(a>b>0)的离心率为,F1,F2分别是椭圆的左、右焦点,直线l过点F2与椭圆交于A、B两点,且△F1AB的周长为4.(Ⅰ)求椭圆C的标准方程;(Ⅱ)是否存在直线l使△F1AB的面积为?若存在,求出直线l的方程;若不存在,请说明理由.【解答】解:(Ⅰ)由题意可得,e==,由△F1AB的周长为4,根据椭圆的定义可得4a=4,解得a=,即有c=1,b=1,则椭圆C的标准方程为+y2=1;(Ⅱ)假设存在直线l,使△F1AB的面积为.由椭圆+y2=1的焦点为F1(﹣1,0),F2(1,0),设直线l:x=1或y=k(x﹣1),当x=1时,y=±,|AB|=,△F1AB的面积为=,不成立;由y=k(x﹣1)代入椭圆方程得,(1+2k2)x2﹣4k2x﹣2+2k2=0,设A(x1,y1),B(x2,y2),x1+x2=,x1x2=,即有|x1﹣x2|2=()2﹣4×则|y1﹣y2|=|k|•|x1﹣x2|=|k|•,即有△F1AB的面积为×2×|y1﹣y2|=,解得k2=1或﹣2(舍去).即有k=±1.故存在直线l:y=±(x﹣1),使△F1AB的面积为.22.(12分)如图,建立平面直角坐标系xoy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(Ⅰ)求炮的最大射程;(Ⅱ)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.【解答】解:(1)在y=kx﹣(1+k2)x2(k>0)中,令y=0,得kx﹣(1+k2)x2=0.由实际意义和题设条件知x>0,k>0.∴当且仅当k=1时取等号.∴炮的最大射程是10千米.(2)∵a>0,∴炮弹可以击中目标等价于存在k>0,使ka﹣(1+k2)a2=3.2成立,即关于k的方程a2k2﹣20ak+a2+64=0有正根.由韦达定理满足两根之和大于0,两根之积大于0,故只需△=400a2﹣4a2(a2+64)≥0得a≤6.此时,k=.∴当a不超过6千米时,炮弹可以击中目标赠送—高中数学知识点【1.3.1】单调性与最大(小)值(1)函数的单调性②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x=,令()u g x=,若()y f u=为增,()u g x=为增,则[()]y f g x=为增;若()y f u=为减,()u g x=为减,则[()]y f g x=为增;若()y f u=为增,()u g x=为减,则[()]y f g x=为减;若()y f u=为减,()u g x=为增,则[()]y f g x=为减.(2)打“√”函数()(0)af x x ax=+>的图象与性质()f x分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.(3)最大(小)值定义yxo①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。
2015年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第11题图)(第7题图)A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分) 3121--+x x≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌(第21题图)(第23题图)(第24题图)凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2015年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ=21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x%)201(2400+ = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m n m ++-n m n +)·mn m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、 数1,5,0,2-中最大的数是()A 、1-B 、5C 、0D 、2 2、9的立方根是()A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2014-2015学年云南省楚雄州大姚实验中学初三上学期期末数学模拟试卷(一)一、选择题(每题3分共30分)1.(3分)如图是由5个大小相同的正方体组成的几何体,它的俯视图为()A.B.C.D.2.(3分)方程x2=4x的解是()A.x=4B.x=2C.x=4或x=0D.x=03.(3分)两个相似三角形的面积比是9:16,则这两个三角形的相似比是()A.9:16B.3:4C.9:4D.3:164.(3分)在反比例函数y=的图象的每一条曲线上,y都随x的增大而增大,则k的值可以是()A.﹣1B.0C.1D.25.(3分)如果矩形的面积为6cm2,那么它的长ycm与宽xcm之间的函数关系用图象表示大致是()A.B.C.D.6.(3分)在一个不透明的口袋中,有大小、形状完全相同,颜色不同的球15个,从中摸出红球的概率为,则袋中红球的个数为()A.10B.15C.5D.37.(3分)已知一矩形的两邻边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6cm和9cm B.5cm和10cm C.4cm和11cm D.7cm和8cm 8.(3分)已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是()A.k>2B.k≥2C.k≤2D.k<29.(3分)目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389B.389(1+x)2=438C.389(1+2x)2=438D.438(1+2x)2=38910.(3分)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.二、填空题:(每题3分,共18分)11.(3分)已知x=2是方程x2+mx+2=0的一个根,则m的值是.12.(3分)已知一元二次方程:x2﹣3x﹣1=0的两个根分别是x1、x2,则x12x2+x1x22=.13.(3分)反比例函,x>0时,y随着x的增大而增大,则m的值是.14.(3分)如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC 落在DA上,点C的对应点为点F,若BE=6cm,则CD=.15.(3分)如图,在△ABC中,点D在AB上,请再添一个适当的条件,使△ADC ∽△ACB,那么可添加的条件是.16.(3分)已知菱形的周长为30cm,两个相邻内角的度数之比为1:2,则较短对角线的长为.三、解答题:(52分)第17题图17.(6分)如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.18.(6分)如图,已知菱形BEDF,内接于△ABC,点E,D,F分别在AB,AC 和BC上.若AB=15cm,BC=12cm,求菱形边长.19.(6分)如图,等边三角形ABC的边长为6cm,点P自点B出发,以1cm/s 的速度向终点C运动;点Q自点C出发,以1cm/s的速度向终点A运动.若P,Q两点分别同时从B,C两点出发,问经过多少时间△PCQ的面积是2cm2?20.(6分)已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.21.(6分)如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.(1)求证:△ABC≌△CDA;(2)若∠B=60°,求证:四边形ABCD是菱形.22.(7分)小莉的爸爸买了去看中国篮球职业联赛总决赛的一张门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.(1)请用列表的方法求小莉去看中国篮球职业联赛总决赛的概率;(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.23.(7分)某商场礼品柜台元旦期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?24.(8分)已知一次函数y1=kx+b的图象与反比例函数的图象交于A、B 两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积.2014-2015学年云南省楚雄州大姚实验中学初三上学期期末数学模拟试卷(一)参考答案与试题解析一、选择题(每题3分共30分)1.(3分)如图是由5个大小相同的正方体组成的几何体,它的俯视图为()A.B.C.D.【解答】解:此几何体的俯视图有2列,从左往右小正方形的个数分别是2,2,故选:A.2.(3分)方程x2=4x的解是()A.x=4B.x=2C.x=4或x=0D.x=0【解答】解:原方程可化为:x2﹣4x=0,提取公因式:x(x﹣4)=0,∴x=0或x=4.故选:C.3.(3分)两个相似三角形的面积比是9:16,则这两个三角形的相似比是()A.9:16B.3:4C.9:4D.3:16【解答】解:∵两个相似三角形的面积比为9:16,∴它们对应的相似比是3:4.故选:B.4.(3分)在反比例函数y=的图象的每一条曲线上,y都随x的增大而增大,则k的值可以是()A.﹣1B.0C.1D.2【解答】解:反比例函数的图象上的每一条曲线上,y随x的增大而增大,∴1﹣k<0,∴k>1.故选:D.5.(3分)如果矩形的面积为6cm2,那么它的长ycm与宽xcm之间的函数关系用图象表示大致是()A.B.C.D.【解答】解:由矩形的面积公式可得xy=6,∴y=(x>0,y>0).图象在第一象限.故选:C.6.(3分)在一个不透明的口袋中,有大小、形状完全相同,颜色不同的球15个,从中摸出红球的概率为,则袋中红球的个数为()A.10B.15C.5D.3【解答】解:设红球有x个,根据题意得:,解得:x=5.故选:C.7.(3分)已知一矩形的两邻边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6cm和9cm B.5cm和10cm C.4cm和11cm D.7cm和8cm【解答】解:∵矩形ABCD中,BE是角平分线.∴∠ABE=∠EBC.∵AD∥BC.∴∠AEB=∠EBC.∴∠AEB=∠ABE∴AB=AE.当AB=15cm时:则AE=15cm,不满足题意.当AB=10cm时:AE=10cm,则DE=5cm.故选:B.8.(3分)已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是()A.k>2B.k≥2C.k≤2D.k<2【解答】解:∵y=的图象位于第一、第三象限,∴k﹣2>0,k>2.故选:A.9.(3分)目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389B.389(1+x)2=438C.389(1+2x)2=438D.438(1+2x)2=389【解答】解:设每半年发放的资助金额的平均增长率为x,则去年下半年发放给每个经济困难学生389(1+x)元,今年上半年发放给每个经济困难学生389(1+x)2元,由题意,得:389(1+x)2=438.故选:B.10.(3分)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选:C.二、填空题:(每题3分,共18分)11.(3分)已知x=2是方程x2+mx+2=0的一个根,则m的值是﹣3.【解答】解:把x=2代入方程可得:4+2m+2=0,解得m=﹣3.故答案为﹣3.12.(3分)已知一元二次方程:x2﹣3x﹣1=0的两个根分别是x1、x2,则x12x2+x1x22=﹣3.【解答】解:根据题意得x1+x2=3,x1•x2=﹣1,所以x12x2+x1x22=x1•x2•(x1+x2)=﹣1×3=﹣3.故答案为﹣313.(3分)反比例函,x>0时,y随着x的增大而增大,则m的值是﹣1.【解答】解:∵反比例函,x>0时,y随着x的增大而增大,∴m2﹣2=﹣1,∴m2=1,m=±1,∵2m﹣1<0,∴m<,∴m=﹣1.故答案为:﹣1.14.(3分)如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC 落在DA上,点C的对应点为点F,若BE=6cm,则CD=4cm.【解答】解:∵四边形CEFD是正方形,AD=BC=10,BE=6∴CE=EF=CD=10﹣6=4cm.故答案为:4cm.15.(3分)如图,在△ABC中,点D在AB上,请再添一个适当的条件,使△ADC ∽△ACB,那么可添加的条件是∠ADC=∠ACB或∠ACD=∠B或AC2=AD•AB.【解答】解:∵∠DAC=∠CAB,∴当∠ADC=∠ACB或∠ACD=∠B或AC2=AD•AB时,均可得出△ADC∽△ACB.故答案为:∠ADC=∠ACB或∠ACD=∠B或AC2=AD•AB16.(3分)已知菱形的周长为30cm,两个相邻内角的度数之比为1:2,则较短对角线的长为7.5cm.【解答】解:相邻两个内角的度数之比是1:2,∴两个相邻角度分别为60°、120°,∵较长的对角线所对的角为120°,∴较短的对角线所对的角为60°,较短的对角线与菱形的一组邻边构成的是等边三角形,那么较短的对角线长为30÷4=7.5(cm).故答案为:7.5cm.三、解答题:(52分)第17题图17.(6分)如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.【解答】解:设小正方形的边长为xcm,由题意得10×8﹣4x2=80%×10×8,80﹣4x2=64,4x2=16,x2=4.解得:x1=2,x2=﹣2,经检验x1=2符合题意,x2=﹣2不符合题意,舍去;所以x=2.答:截去的小正方形的边长为2cm.18.(6分)如图,已知菱形BEDF,内接于△ABC,点E,D,F分别在AB,AC 和BC上.若AB=15cm,BC=12cm,求菱形边长.【解答】解:设菱形的边长为xcm,则DE=DF=BF=BE=xcm,∵四边形BEDF是菱形,∴DE∥BC,DF∥AB,∴∠ADE=∠C,∠A=∠CDF,∴△AED∽△DFC,∴=,∴=,x=,即菱形的边长是cm.19.(6分)如图,等边三角形ABC的边长为6cm,点P自点B出发,以1cm/s 的速度向终点C运动;点Q自点C出发,以1cm/s的速度向终点A运动.若P,Q两点分别同时从B,C两点出发,问经过多少时间△PCQ的面积是2cm2?【解答】解:设经过xs△PCQ的面积是2cm2,由题意得(6﹣x)x=2解得:x1=2,x2=4,答:经过2s或4s△PCQ的面积是2cm2.20.(6分)已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.【解答】(1)证明:∵△=(m+2)2﹣4(2m﹣1)=(m﹣2)2+4,∴在实数范围内,m无论取何值,(m﹣2)2+4>0,即△>0,∴关于x的方程x2﹣(m+2)x+(2m﹣1)=0恒有两个不相等的实数根;(2)解:根据题意,得12﹣1×(m+2)+(2m﹣1)=0,解得,m=2,则方程的另一根为:m+2﹣1=2+1=3;①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为:;该直角三角形的周长为1+3+=4+;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为2;则该直角三角形的周长为1+3+2=4+2.21.(6分)如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.(1)求证:△ABC≌△CDA;(2)若∠B=60°,求证:四边形ABCD是菱形.【解答】证明:(1)∵AB=AC,∴∠B=∠ACB,∵∠FAC=∠B+∠ACB=2∠ACB,∵AD平分∠FAC,∴∠FAC=2∠CAD,∴∠CAD=∠ACB,∵在△ABC和△CDA中∴△ABC≌△CDA(ASA);(2)∵∠FAC=2∠ACB,∠FAC=2∠DAC,∴∠DAC=∠ACB,∴AD∥BC,∵∠BAC=∠ACD,∴AB∥CD,∴四边形ABCD是平行四边形,∵∠B=60°,AB=AC,∴△ABC是等边三角形,∴AB=BC,∴平行四边形ABCD是菱形.22.(7分)小莉的爸爸买了去看中国篮球职业联赛总决赛的一张门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.(1)请用列表的方法求小莉去看中国篮球职业联赛总决赛的概率;(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.【解答】解:(1)列表如下和123545679678911789101289101113共有16 种等可能的结果,和为偶数的有6种,故P(小莉去)=.(2)不公平,因为P(哥哥去)=,P(小莉去)=,哥哥去的可能性大,所以不公平.可以修改为:和大于9,哥哥去,小于9,小莉去,等于9,重新开始.23.(7分)某商场礼品柜台元旦期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?【解答】解:设每张贺年卡应降价x元,现在的利润是(0.3﹣x)元,则商城多售出100x÷0.1=1000x张.(0.3﹣x)(500+1000x)=120,解得x1=﹣0.3(降价不能为负数,不合题意,舍去),x2=0.1.答:每张贺年卡应降价0.1元.24.(8分)已知一次函数y1=kx+b的图象与反比例函数的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积.【解答】解:(1)把x=﹣2代入y2=﹣得y=4,把y=﹣2代入y2=﹣得x=4,∴点A的坐标为(﹣2,4),B点坐标为(4,﹣2),把A(﹣2,4),B(4,﹣2)分别代入y1=kx+b得,解得,∴一次函数的解析式为y=﹣x+2;(2)如图,直线AB交y轴于点C,对于y=﹣x+2,令x=0,则y=2,则C点坐标为(0,2),=S△AOC+S△BOC=×2×2+×2×4=6.∴S△AOB。
2015届中考数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列四个数中,最大的数是( )A.3 B.﹣1 C.0 D.2.下列运算正确的是( )A.a3•a2=a6B.a6÷a3=a3C.(a﹣b)2=a2﹣b2D.(﹣a2)3=(﹣a3)2 3.下列四个几何体中,主视图与其它三个不同的是( )A.B.C.D.4.不等式组的解集为( )A.x>3 B.x≤4 C.3<x<4 D.3<x≤45.若一个多边形的内角和等于其外角和,则这个多边形的边数是( )A.6 B.5 C.4 D.36.下列说法中正确的是( )A.“打开电视,正在播放《新闻联播》”是必然事件B.一组数据的波动越大,方差越小C.数据1,1,2,2,3的众数是3D.想了解某种饮料中含色素的情况,宜采用抽样调查7.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径是OA,点P是优弧上的一点,则tan∠APB的值是( )A.1 B.C.D.8.如图,在平面直角坐标系xOy中,Rt△OAC,Rt△OA1C1,Rt△OA2C2,…的斜边都在坐标轴上,∠AOC=∠A1OC1=∠A2OC2=∠A3OC3=…=30°.若点A的坐标为(3,0),OA=OC1,OA1=OC2,OA2=OC3,…则依此规律,点A2015的纵坐标为( )A.0 B.C.D.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.4的算术平方根是__________.10.分解因式:a3﹣9a=__________.11.今年3月底在上海和安徽两地发现的H7N9型禽流感是一种新型禽流感.研究表明,禽流感病毒的颗粒呈球形,杆状或长丝状,其最小直径约为0.00000008m,其最小直径用科学记数法表示约为__________m.12.若在实数范围内有意义,则x的取值范围是__________.13.如图,过∠CDF的一边上DC的点E作直线AB∥DF,若∠AEC=110°,则∠CDF的度数为__________°.14.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5m,水面宽AB为8m,则水的最大深度CD为__________m.15.如图,将一个圆心角为120°,半径为6cm的扇形围成一圆锥侧面(OA、OB重合),则围成的圆锥底面半径是__________cm.16.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是__________.17.已知点A(m,n)是一次函数y=﹣x+3和反比例函数的一个交点,则代数式m2+n2的值为__________.18.如图所示,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y 轴的平行线,与反比例函数的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和为,则k=__________.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)19.计算:|2﹣1|+(﹣1)0﹣()﹣1﹣tan30°.20.先化简,再求值:÷(﹣a﹣2),其中a2+3a﹣1=0.21.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价.图(1)和图(2)是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:(1)此次调查的学生人数为__________;(2)条形统计图中存在错误的是__________(填A、B、C中的一个),并在图中加以改正;(3)在图(2)中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?22.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?23.在一个不透明的口袋里装有分别标有数字﹣3、﹣1、0、2的四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.(1)从中任取一球,求抽取的数字为正数的概率;(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率;(3)从中任取一球,将球上的数字作为点的横坐标,记为x(不放回);再任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.24.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:=1.73,=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.25.如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于点D,延长AO交⊙O于点E,连接CD,CE,若CE是⊙O的切线,解答下列问题:(1)求证:CD是⊙O的切线;(2)若BC=3,CD=4,求平行四边形OABC的面积.26.某仓储系统有12条输入传送带,12条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图(1),每条输出传送带每小时出库的货物流量如图(2),而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图(3).(1)每条输入传送带每小时进库的货物流量为多少吨?每条输出传送带每小时出库的货物流量为多少吨?(2)在0时至5时内,仓库内货物存量y(吨)与时间x(小时)之间的函数关系式,并写出自变量x的取值范围;(3)在4时至5时有多少条输入传送带和输出传送带在工作?27.【情境阅读】在图1中,点A在边OB上,点D在边OC上,且AD∥BC﹒将这样的图形定义为“A型”﹒将△OAD绕着点O旋转α°(0<α<90)得到新的图形(如图2),将图2中的四边形A′B′C′D′称为“准梯形”,A′D′称为上底,B′C′称为下底﹒【新知学习】(1)若情境阅读中的△OBC是等腰直角三角形,OB=OC,∠BOC=90°,其余条件不变﹒①请说明图2中的△O′A′B′≌△O′D′C′﹒②在图1中,S四边形ABCD=S△OBC﹣S△OAD,请探索图2中的S四边形A′B′C′D′与图1中的S四边的大小关系﹒【变式探究】形ABCD(2)如图3,四边形ABCD是由有一个角是60°的“A型”通过旋转变换得到的“准梯形”,AD 是上底,BC是下底,且AB=5,BC=8,CD=5,DA=2﹒求这个“准梯形”的面积.【迁移拓展】(3)如图4是由具有公共直角顶点的“A型”绕着直角定点旋转α°(0<α<90)得到的“准梯形”,斜边AD为上底,斜边BC为下底,且AB=3,BC=4,CD=6,AD=3.求这个“准梯形”的面积.28.如图,在平面直角坐标系中,四边形ABCD为梯形,AD∥BC,∠C=90°,tan∠ABC=2,点D(﹣8,6),将△AOB沿直线AB翻折,点O落在点E处,直线AE交x轴于点F.(1)求点F的坐标;(2)矩形AOCD以每秒1个单位长度的速度沿x轴向右运动,当点C′与点F重合时停止运动,运动后的矩形A′O′C′D′与△AOF重合部分的面积为S,设运动时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,在矩形A′O′C′D′运动过程中,直线A′O′与射线AB交于G,是否存在时间t,使点A关于直线FG的对称点恰好落在x轴上?若存在,求t的值;若不存在,请说明理由.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列四个数中,最大的数是( )A.3 B.﹣1 C.0 D.考点:实数大小比较.分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解答:解:根据实数比较大小的方法,可得﹣1,所以最大的数是3.故选:A.点评:此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.下列运算正确的是( )A.a3•a2=a6B.a6÷a3=a3C.(a﹣b)2=a2﹣b2D.(﹣a2)3=(﹣a3)2考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.专题:计算题.分析:分别根据同底数幂的乘法、同底数幂的除法、完全平方公式及幂的乘方与积的乘方法则对各选项进行逐一判断即可.解答:解:A、a3•a2=a3+2=a5,故本选项错误;B、a6÷a3=a6﹣3=a3,故本选项正确;C、(a﹣b)2=a2+b2﹣2ab,故本选项错误;D、(﹣a2)3=﹣a6,而(﹣a3)2=a6,故本选项错误.故选B.点评:本题考查的是同底数幂的除法及乘法、幂的乘方与积的乘方法则及完全平方公式,熟知以上知识是解答此题的关键.3.下列四个几何体中,主视图与其它三个不同的是( )A.B.C.D.考点:简单组合体的三视图.分析:根据主视图是从正面看得到的图形,可得答案.解答:解:A、的主视图是第一层两个小正方形,第二层左边一个小正方形,B、的主视图是第一层两个小正方形,第二层左边一个小正方形,C、的主视图是第一层两个小正方形,第二层左边一个小正方形,D、的主视图是第一层两个小正方形,第二层左两个小正方形,故选:D.点评:本题考查了简单组合体的三视图,从正面看得到的视图是主视图.4.不等式组的解集为( )A.x>3 B.x≤4 C.3<x<4 D.3<x≤4考点:解一元一次不等式组.专题:计算题.分析:本题可根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.解答:解:依题意得:在数轴上表示为:∴原式的解集为3<x≤4.故选D.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x大于较小的数、小于较大的数,那么解集为x介于两数之间.5.若一个多边形的内角和等于其外角和,则这个多边形的边数是( )A.6 B.5 C.4 D.3考点:多边形内角与外角.分析:任何多边形的外角和是360度,根据n边形的内角和是(n﹣2)•180°,可得方程(n ﹣2)•180=360,解方程就可以求出多边形的边数.解答:解:设多边形的边数为n,根据题意,得(n﹣2)•180=360,解得:n=4,故选C.点评:本题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题来解决.6.下列说法中正确的是( )A.“打开电视,正在播放《新闻联播》”是必然事件B.一组数据的波动越大,方差越小C.数据1,1,2,2,3的众数是3D.想了解某种饮料中含色素的情况,宜采用抽样调查考点:全面调查与抽样调查;众数;方差;随机事件.分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断即可.解答:解:A、“打开电视,正在播放《新闻联播》”是随机事件,故本选项错误;B、一组数据的波动越大,方差越大,故本选项错误;C、数据1,1,2,2,3的众数是1和2,故本选项错误;D、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确.故选D.点评:本题考查了必然事件的定义,方差的性质,众数的定义及抽样调查的定义,知识点较多,但都是基础知识,需牢固掌握.7.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径是OA,点P是优弧上的一点,则tan∠APB的值是( )A.1 B.C.D.考点:圆周角定理;锐角三角函数的定义.专题:压轴题;网格型.分析:由题意可得:∠AOB=90°,然后由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠APB的度数,又由特殊角的三角函数值,求得答案.解答:解:由题意得:∠AOB=90°,∴∠APB=∠AOB=45°,∴tan∠APB=tan45°=1.故选A.点评:此题考查了圆周角定理与特殊角的三角函数值问题.此题难度不大,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.8.如图,在平面直角坐标系xOy中,Rt△OAC,Rt△OA1C1,Rt△OA2C2,…的斜边都在坐标轴上,∠AOC=∠A1OC1=∠A2OC2=∠A3OC3=…=30°.若点A的坐标为(3,0),OA=OC1,OA1=OC2,OA2=OC3,…则依此规律,点A2015的纵坐标为( )A.0 B.C.D.考点:规律型:点的坐标.分析:根据题意确定出A1,A2,A3,A4…纵坐标,归纳总结得到点A2015的纵坐标与A3纵坐标相同,即可得到结果.解答:解:∵点A1的坐标为(3,0),OA1=OC2=3,在Rt△OA2C2中,∠A2OC2=30°,设A2C2=x,则有OA2=2x,根据勾股定理得:x2+9=4x2,解得:x=,即OA2=2,∴A2纵坐标为2,由OA2=OC3=2,在Rt△OA3C3中,∠A3OC3=30°,设A3C3=y,则有OA3=2y,根据勾股定理得:y2+12=4y2,解得:y=2,即OA3=4,∴A3纵坐标为0,∵2015÷4=503…3,∴点A2015的纵坐标与A3纵坐标相同,为0.故选:A.点评:此题考查了规律型:点的坐标,判断出点A2015的纵坐标与A3纵坐标相同是解本题的关键.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.4的算术平方根是2.考点:算术平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:∵22=4,∴4算术平方根为2.故答案为:2.点评:此题主要考查了算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.10.分解因式:a3﹣9a=a(a+3)(a﹣3).考点:提公因式法与公式法的综合运用.分析:本题应先提出公因式a,再运用平方差公式分解.解答:解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11.今年3月底在上海和安徽两地发现的H7N9型禽流感是一种新型禽流感.研究表明,禽流感病毒的颗粒呈球形,杆状或长丝状,其最小直径约为0.00000008m,其最小直径用科学记数法表示约为8×10﹣8m.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00000008m=8×10﹣8;故答案为:8×10﹣8.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.若在实数范围内有意义,则x的取值范围是x≤.考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,1﹣2x≥0,解得x≤.故答案为:x≤.点评:本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.13.如图,过∠CDF的一边上DC的点E作直线AB∥DF,若∠AEC=110°,则∠CDF的度数为70°.考点:平行线的性质.专题:探究型.分析:先根据平角的定义求出∠CEB的度数,再由平行线的性质即可得出结论.解答:解:∵∠AEC=110°,∠AEC+∠CEB=180°,∴∠CEB=180°﹣110°=70°,∵AB∥DF,∴∠CDF=∠CEB=70°.故答案为:70.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.14.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5m,水面宽AB为8m,则水的最大深度CD为2m.考点:垂径定理的应用;勾股定理.分析:根据题意可得出AO=5cm,AC=4cm,由勾股定理得出CO的长,则CD=OD﹣OC=AO ﹣OC.解答:解:如图所示:∵输水管的半径为5m,水面宽AB为8m,水的最大深度为CD,∴DO⊥AB,∴AO=5m,AC=4m,∴CO==3(m),∴水的最大深度CD为:CD=OD﹣OC=AO﹣OC=2m.故答案是:2.点评:本题考查的是垂径定理的应用及勾股定理,根据题意构造出直角三角形是解答此题的关键.15.如图,将一个圆心角为120°,半径为6cm的扇形围成一圆锥侧面(OA、OB重合),则围成的圆锥底面半径是2cm.考点:圆锥的计算.专题:计算题.分析:把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.解答:解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,r=2cm.故答案为2.点评:主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.16.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是10.考点:利用频率估计概率.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解答:解:由题意可得,=0.2,解得,n=10.故估计n大约有10个.故答案为:10.点评:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.17.已知点A(m,n)是一次函数y=﹣x+3和反比例函数的一个交点,则代数式m2+n2的值为7.考点:反比例函数与一次函数的交点问题.分析:先解两函数式组成的方程组,得出一个一元二次方程,根据根与系数的关系得出m+n=3,mn=1,再根据完全平方公式变形后代入求出即可.解答:解:方程组得:=﹣x+3,即x2﹣3x+1=0,∵点A(m,n)是一次函数y=﹣x+3和反比例函数的一个交点,∴m+n=3,mn=1,∴m2+n2=(m+n)2﹣2mn=32﹣2×1=7,故答案为:7.点评:本题考查了反比例函数和一次函数的交点问题,一元二次方程的根与系数的关系,完全平方公式的应用,主要考查学生的理解能力和计算能力.18.如图所示,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y 轴的平行线,与反比例函数的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和为,则k=8.考点:反比例函数综合题.分析:先根据反比例函数比例系数k的几何意义得到S△OB1C1=S△OB2C2=S△OB3C3=|k|=k,再根据相似三角形的面积比等于相似比的平方,得到用含k的代数式表示3个阴影部分的面积之和,然后根据三个阴影部分的面积之和为,列出方程,解方程即可求出k的值.解答:解:根据题意可知,S△OB1C1=S△OB2C2=S△OB3C3=|k|=k,∵OA1=A1A2=A2A3,A1B1∥A2B2∥A3B3∥y轴,设图中阴影部分的面积从左向右依次为s1,s2,s3则s1=k,∵OA1=A1A2=A2A3,∴s2:S△OB2C2=1:4,s3:S△OB3C3=1:9,∴s2=k,s3=k,∴k+k+k=,解得k=8.故答案为:8.点评:此题综合考查了反比例函数的性质,此题难度稍大,综合性比较强,注意反比例函数上的点向x轴与y轴引垂线形成的矩形面积等于反比例函数的比例系数|k|.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)19.计算:|2﹣1|+(﹣1)0﹣()﹣1﹣tan30°.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=2﹣1+1﹣﹣=.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:÷(﹣a﹣2),其中a2+3a﹣1=0.考点:分式的化简求值.专题:计算题.分析:先把括号内通分,再把分子分母因式分解,接着把除法运算化为乘法运算,则约分后得到原式=﹣,然后把a2+3a﹣1=0变形得到a2+3a=1,再利用整体代入的方法计算.解答:解:原式=÷=•=﹣=﹣,∵a2+3a﹣1=0,∴a2+3a=1,∴原式=﹣=﹣.点评:分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.21.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价.图(1)和图(2)是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:(1)此次调查的学生人数为200;(2)条形统计图中存在错误的是C(填A、B、C中的一个),并在图中加以改正;(3)在图(2)中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据A、B的人数和所占的百分比求出抽取的学生人数,并判断出条形统计图A、B长方形是正确的;(2)根据(1)的计算判断出C的条形高度错误,用调查的学生人数乘以C所占的百分比计算即可得解;(3)求出D的人数,然后补全统计图即可;(4)用总人数乘以A、B所占的百分比计算即可得解.解答:解:(1)∵40÷20%=200,80÷40%=200,∴此次调查的学生人数为200;(2)由(1)可知C条形高度错误,应为:200×(1﹣20%﹣40%﹣15%)=200×25%=50,即C的条形高度改为50;故答案为:200;C;(3)D的人数为:200×15%=30;(4)600×=360(人).答:该校对此活动“非常喜欢”和“比较喜欢”的学生有360人.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBF E是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?考点:三角形中位线定理;平行四边形的判定;菱形的判定.专题:几何图形问题.分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.解答:(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;(2)解:当AB=BC时,四边形DBFE是菱形.理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.23.在一个不透明的口袋里装有分别标有数字﹣3、﹣1、0、2的四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.(1)从中任取一球,求抽取的数字为正数的概率;(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率;(3)从中任取一球,将球上的数字作为点的横坐标,记为x(不放回);再任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.考点:列表法与树状图法;根的判别式;点的坐标;概率公式.专题:计算题.分析:(1)四个数字中正数有一个,求出所求概率即可;(2)表示出已知方程根的判别式,根据方程有实数根求出a的范围,即可求出所求概率;(3)列表得出所有等可能的情况数,找出点(x,y)落在第二象限内的情况数,即可求出所求的概率.解答:解:(1)根据题意得:抽取的数字为正数的情况有1个,则P=;(2)∵方程ax2﹣2ax+a+3=0有实数根,∴△=4a2﹣4a(a+3)=﹣12a≥0,且a≠0,解得:a<0,则关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率为;(3)列表如下:﹣3 ﹣1 0 2﹣3 ﹣﹣﹣(﹣1,﹣3)(0,﹣3)(2,﹣3)﹣1 (﹣3,﹣1)﹣﹣﹣(0,﹣1)(2,﹣1)0 (﹣3,0)(﹣1,0)﹣﹣﹣(2,0)2 (﹣3,2)(﹣1,2)(0,2)﹣﹣﹣所有等可能的情况有12种,其中点(x,y)落在第二象限内的情况有2种,则P==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.24.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:=1.73,=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.解答:解:(1)由題意得,在Rt△ADC中,AD==≈36.33(米),…2分在Rt△BDC中,BD=≈12.11(米),…4分则AB=AD﹣BD=36.33﹣12.11=24.22≈24.2(米)…6分(2)超速.理由:∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1×3600=43560(米/时),∴该车速度为43.56千米/小时,…9分∵大于40千米/小时,∴此校车在AB路段超速.…10分点评:此题考查了解直角三角形的应用问题.此题难度适中,解题的关键是把实际问题转化为数学问题求解,注意数形结合思想的应用.25.如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于点D,延长AO交⊙O于点E,连接CD,CE,若CE是⊙O的切线,解答下列问题:(1)求证:CD是⊙O的切线;(2)若BC=3,CD=4,求平行四边形OABC的面积.考点:切线的判定与性质;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:(1)连接OD,求出∠EOC=∠DOC,根据SAS推出△EOC≌△DOC,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;(2)根据全等三角形的性质求出CE=CD=4,根据平行四边形性质求出OA=3,根据平行四边形的面积公式求出即可.解答:(1)证明:连接OD,∵OD=OA,∴∠ODA=∠A,∵四边形OABC是平行四边形,。
2015年初中数学中考模拟试卷(含详细解答)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2015年初中数学中考模拟试卷(含详细解答))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2015年初中数学中考模拟试卷(含详细解答)的全部内容。
2015年初中毕业生数学考试卷考生须知:1. 全卷共4页,有3大题,24小题。
满分为120分。
考试时间120分钟。
2. 本卷答案必须做在答题纸的对应位置上,做在试题卷上无效。
3. 请考生将姓名、准考证号填写在答题纸对应位置上,并认真核准条形码姓名、准考证号.4。
作图时,可先使用2B 铅笔,确定后必须使用0.5毫米及以上的黑色签字笔涂黑。
5. 本次考试不能使用计算器.参考公式:二次函数y =ax 2+bx +c (a ≠0)图象的顶点坐标是.)442(2ab ac a b --,卷 Ⅰ说明:本卷共有1大题,10小题,每小题3分,共30分.一、选择题(请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)2015-A .6a -5a=1B .(a 2)3=a 5C .a 6÷a 3=a 2D .a 2·a 3=a 53.钓鱼岛自古以来就是中国的固有领土,在“百度”搜索引擎中输入“钓鱼岛最新消息”,能搜索到与之相关的结果个数约为4640000,这个数用科学记数法表示为A . 464×104B .46。
4×106C .4.64×106D .0.464×1074.下图中几何体的左视图是5。
如果分式12-x 与33+x 的值相等,则的值是x A .9B .7C .5 D .36.一个正多边形的每个内角都为140°,那么这个正多边形的边数为 A. 11 B 。
O E D CBA 九年级-模拟试卷1数 学(全卷三个大题,含23个小题,共4页。
满分120分,考试时间120分钟)提示:请将答案作答在答题卷上一、选择题(本大题含8个小题,每小题只有一个正确选项,每小题3分,满分24分)1. 2的相反数是A .2B .2-C .12-D .122. 右图是几何体的三视图,该几何体是 A.圆锥B .圆柱C .正三棱柱D .正三棱锥3、下列运算正确的是( )A. 532)(a a =B. 222)(b a b a -=-C. 3553=-D. 3273-=-4.在数据1、3、5、5、7中,中位数是( ) A . 3 B . 4 C . 5 D . 75. 下列各点在反比例函数 y=x6-的图像上的是( )A 、(3,2)B 、(-3,-2)C 、(21,-3)D 、(21,-12)6、已知1x 、2x 是一元二次方程0142=+-x x 的两个根,则等于( ) A. 4- B. 1- C. 1 D. 47.将二次函数y=x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )A .y=(x ﹣1)2+2B .y=(x+1)2+2C 。
y=(x ﹣1)2﹣2D . y=(x+1)2﹣28.如图.圆O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD 的长为( )A .22B .4C .42D .8二、填空题(本大题含6个小题,每小题3分,满分18分)9. 小星同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数约为61 700 000,这个数用科学记数法表示为 10. 若扇形的圆心角为60°,弧长为2π,则扇形的半径为 .11. 若点A(3-m,2)在函数y=2x -3的图象上,则点A 关于原点对称的点的坐标是 . 12. 要使式子aa 2+有意义,则a 的取值范围是 . 13. 如果23=b a ,那么=+a b a 14. 观察下列一组数:32,54,76,98,1110,……,它们是按一定规律排列的,那么这一组数的第n 个数是 .三、解答题(本大题含9个小题,满分78分) 15. (7分)计算:(﹣2)0+()﹣1+4cos30°﹣|﹣|DCBA16.(8分)如图,点B 在线段AD 上,BC DE ∥,AB ED =,BC DB =.求证:A E ∠=∠.17. (8分) 甲、乙两座城市的中心火车站A ,B 两站相距360km .一列动车与一列特快列车分别从A ,B 两站同时出发相向而行,动车的平均速度比特快列车快54km/h ,当动车到达B 站时,特快列车恰好到达距离A 站135km 处的C 站.求动车和特快列车的平均速度各是多少?18、(本小题6分)某校计划开设4门选修课:音乐、绘画、体育、舞蹈。
2015年初中毕业班学业水平考试暨高中招生模拟测试数学 全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至6页.满分120分,考试时间共120分钟.注意事项:1.答题前,考生务必将自己的姓名、座位号、报名号(考号)写在答题卡上,并将条形码贴在答题卡上对应的虚线框内.同时在答题卡背面第3页顶端用2B 铅笔涂好自己的座位号.2.第Ⅰ卷每小题选出的答案不能答在试卷上,必须用2B 铅笔在答题卡上把对应题目....的答案标号涂黑,如需改动,用橡皮擦擦净后,再选涂其它答案.第Ⅱ卷必须用0.5mm 黑色墨水签字笔书写在答题卡上的指定位置.不在指定区域作答的将无效.3.考试结束,监考人员只将答题卡收回.第Ⅰ卷(选择题 共30分)一、选择题:(每题3分,共30分)1、9的算术平方根是( )A .±3B .-3C .3D .±812、下列各式计算正确的是( )A .222)(x y x y -=- B .32-x x x = C .235()x x = D .54x x x ÷=3、右图是由四个相同的小长方体组成的立体图形,这个立体图形的正视图是( )4、下列说法正确的是 ( )A .为了了解我市今年夏季冷饮市场冰淇淋的质量,可采用普查的调查方式B .打开电视机,正在播广告是必然事件C .销售某种鞋,销售商最感兴趣的是所销售的鞋的尺码的平均数D .当我市考查人口年龄结构时,符合这一条件的所有资阳市的公民的年龄就是一个样本5、如图1,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=32°,则∠2的度数是( );A .32°B .58°C .68°D .60° 6、一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x ,根据题意,下面列出的方程正确的是( )A .100(1)121x +=B .100(1)121x -=图数学第1页C .2100(1)121x +=D .2100(1)121x -=7、如图2,A 、B 两点在数轴上表示的数分别为a 、b ,下列式子成立的是( )A .ab >0B .a +b <0C .(b ﹣1)(a +1)>0D .(b ﹣1)(a ﹣1)>08、如图3,⊙O 是△ABC 的外接圆,∠BAC =60°,若⊙O 的半径0C 为2,则弦BC 的长为( )A .1 BC .2 D.9、如图4,△ABD 是等边三角形,以AD 为边向外作△ADE ,使∠AED=30°,且AE =3,DE =2,连接BE ,则BE 的长为( )A .4 BC .5 D10、如图5,二次函数y=ax 2+bx+c (a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于C 点,且对称轴为直线x =1,点B 坐标为(-1,0).则下面的四个结论:①2a +b =0;②8a +c <0;③abc >0;④当y <0时,x <-1或x >2,⑤对任意实数m ,()m am b a b +≤+.其中正确的结论有( )个A .2B .3C .4D .5第Ⅱ卷(非选择题 共90分)注意事项:1.请用0.5毫米的黑色签字笔在答题卡相应区域作答,超出答案区域的答案无效.2.试卷中标“▲”及方框处是需要你在第Ⅱ卷答题卡上作答的内容或问题.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(每题3分,共18分)11、PM2.5是指大气中直径小于或等于0.0000025米的颗粒物,0.0000025米用科学记数图 2 图3法表示应为 米;12、有一组数据:5、2、6、5、4,它们的中位数是 ;13、已知:P A 、PB 与⊙O 相切于A 点、B 点,OA =1,P A =3,则图6中阴影部分的面积是 (结果保留π);14、若关于x 的一元二次方程2(1)320m x x -+-=总有两个不相等的实数根,则实数m 的取值范围是 ;15、如图7所示,在三角形ABC 中,点D 、E 分别是边AB 、AC 的中点,DF 过EC 的中点G 并与BC 的延长线交于点F ,BE 与DE 交于点O .若△ADE 的面积为2,则四边形BOGC 的面积为 ;16、如图8,()111P ,x y ,()222P ,x y ,……()P ,n n n x y 在函数()10y x x =>的图象上,△11POA 、△212P A A 、△323P A A 、……△1n n n P A A -都是等腰直角三角形,斜边1OA 、12A A 、23A A 、,……1n n A A -都在x 轴上(n 是大于或等于2的正整数),则点n P 的坐标是 .(用含n 的式子表示).三、解答题:(共72分)17、(7分)解方程:11322x x x-+=-- ;18、(8分)某校开展了以“人生观、价值观”为主题的班队活动,活动结束后,初三(2)班数学兴趣小组提出了5个主要观点并在本班50名学生中进行了调查(要求每位同学只选自己最认可的一项观点),并制成了如图9所示的扇形统计图.(1)该班学生选择“和谐”观点的有 人,在扇形统计图中,“和谐”观点所在扇形区域的圆心角是 度.(2)如果该校有1500名初三学生,利用样本估计选择“感恩”观点的初三学生约有 人. 图6 图7 图8 图9(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查,求恰好选到“和谐”和“感恩”观点的概率(用树状图或列表法分析解答)19.(8分)关于x 的不等式组23(2)24x a x x -≥-⎧⎨-<⎩ (1)若2a =.求这个不等式组的解集.(2)若这个不等式组的整数解有3个,求a 的取值范围.20、(8分)如图10,在⊙O 中,AB =AC ,BD 为直径,弦AD 与BC 相交于点E ,延长DA 到F ,使∠ABF =∠ABC .(1)求证:BF 是⊙O 的切线;(2)若AD=8,tan ∠ABF =34,求DE 的长.21、(9分)如图11,在平面直角坐标系中,直线l 与x 轴相交于点M (3,0),与y 轴相交于点N (0,-4),反比例函数k y x =(x >0)的图象经过线 段MN 的中点A ,(1)求直线l 和反比例函数的解析式;(2)在函数k y x=(x >0)的图象上取异于点A 的一点B , 作BC ⊥x 轴于点C ,连接OB 交直线l 于点P .若△ONP 的 面积是△OBC 面积的3倍,求点P 的坐标.图10图1122、(9分)如图12,一艘船以每小时60海里的速度自A向正北方向航行,船在A处时,灯塔S在船的北偏东30°,航行1小时后到B处,此时灯塔S在船的北偏东75°,(运算结果保留根号)(1)求船在B处时与灯塔S的距离;(2)若船从B处继续向正北方向航行,问经过多长时间船与灯塔S的距离最近.23、(11分)如图13所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD 边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.24、(12分)如图14-1,在直角坐标系中,O是坐标原点,点A在y轴正半轴上,二次函数y=ax2+16x+c的图象F交x轴于B、C两点,交y轴于M点,其中B(﹣3,0),M(0,﹣1).已知AM=BC.(1)求二次函数的解析式;(2)证明:在抛物线F上存在点D,使A、B、C、D四点连接而成的四边形恰好是平行四边形,并请求出直线BD的解析式;(3)在(2)的条件下,设直线l过D且分别交直线BA、BC于不同的P、Q两点,AC、BD相交于N.①若直线l⊥BD,如图1,试求11BP BQ的值;图12图13②若l为满足条件的任意直线,如图14-2.①中的结论还成立吗?若成立,证明你的猜想;若不成立,请举出反例。
云南省楚雄州2015年中考数学模拟试卷一、选择题(每题只有一个正确答案,每小题3分,共24分)1.﹣5的相反数是()A. 5 B.﹣5 C.D.考点:相反数.分析:根据只有符号不同两个数互为相反数,可得﹣5的相反数.解答:解:﹣5的相反数是5,故选:A.点评:本题考查了相反数,理解只有符号不同的数是相反数是解题关键.2.如图所示的几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有3个正方形,第二层最中间有一个正方形.故选B.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图,难度适中.3.据了解,单个禽流感H7N9病毒粒子的直径为0.0000001m,把10万个左右的病毒粒子排列起来才可能用肉眼勉强看得到.用科学记数法来表示该粒子的直径正确的是()A.10﹣9m B.10﹣8m C.10﹣7m D. 10﹣6m考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.0000001m=1×10﹣7m.故选:C.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.某射击队从四名队员中选拨一名参赛,选拨赛中,每名队员平均成绩与方差S2如表,要选一个平均成绩高且发挥稳定的人参赛,应是()甲乙丙丁8 9 9 8S2 1 1 1.2 1.3A.甲B.乙C.丙D.丁考点:方差;算术平均数.分析:先根据平均数的大小找出成绩高的同学,再根据方差的意义找出发挥稳定的学生即可.解答:解:∵甲的平均数是8,乙的平均数是9,丙的平均数是9,丁的平均数是8,∴成绩高的是乙和丙,∵S乙2=1,S丙2=1.2,∴S乙2<S丙2,∴乙的平均成绩高且发挥稳定;故选:B.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.也考查了平均数.5.已知点A(x1,y1),B(x2,y2)是反比例函数y=的图象上的两点,若x1<0<x2,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D. y2<y1<0考点:反比例函数图象上点的坐标特征.分析:根据反比例函数图象上点的坐标特点,横纵坐标的积=5,再根据条件x1<0<x2,可判断出y1<0,y2>0,从而得到答案.解答:解:∵A(x1,y1),B(x2,y2)是反比例函数y=的图象上,∴x1•y1=5,x2•y2=5,∵x1<0<x2,∴y1<0,y2>0,∴y1<0<y2,故选:A.点评:此题主要考查了比例函数图象上点的坐标特点,凡是图象经过的点,都满足关系式,横纵坐标的积=k.6.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O直径BD交AC于E,连结DC,则∠BEC等于()A.50° B.60° C.70°D. 110°考点:圆周角定理.分析:利用圆周角定理得出∠D=50°,进而得出∠ACB=70°,再求出∠DBC=40°再利用三角形内角和定理即可得出答案.解答:解:∵∠A=50°,∴∠D=50°,∵∠A=50°,∠ABC=60°,∴∠ACB=70°,∵BD是⊙O直径BD,∴∠BCD=90°,∴∠DBC=40°,∴∠BEC=180°﹣40°﹣70°=70°.故选:C.点评:此题主要考查了圆周角定理以及三角形内角和定理,得出∠DBC的度数是解题关键.7.抛物线y=﹣x2+bx+c的部分图象如图所示,要使y>0,则x的取值范围是()A.﹣4<x<1 B.﹣3<x<1 C.x<﹣4或x>1 D.x<﹣3或x>1考点:二次函数的图象.分析:根据抛物线的对称性可知,图象与x轴的另一个交点是﹣3,y>0反映到图象上是指x轴上方的部分,对应的x值即为x的取值范围.解答:解:∵抛物线与x轴的一个交点是(1,0),对称轴是x=﹣1,根据抛物线的对称性可知,抛物线与x轴的另一交点是(﹣3,0),又图象开口向下,∴当﹣3<x<1时,y>0.故选:B.点评:主要考查了二次函数图象的对称性.要会利用对称轴和与x轴的一个交点坐标求与x轴的另一个交点坐标.8.如图,边长为1和2的两个正方形的一边在同一水平线上,小正方形沿水平线自左向右匀速穿过大正方形,下图反映了这个运动的全过程.设小正方形的运动时间为t,两正方形重叠部分面积为S,则S与t的函数图象大致为()A.B.C.D.考点:动点问题的函数图象.专题:计算题.分析:小正方形运动过程中,S与t的函数关系为分段函数,即当0≤t<1时,函数为s=t,当1≤t≤2时,函数为s=1,当2<t≤3时,s=3﹣t,即按照自变量t:0→1→2→3分为三段.解答:解:依题意,重叠部分的面积函数关系式是分段函数,面积由“小→大→小”变化,每一段对应的自变量变化范围相等,故选C.点评:本题考查了动点问题的函数图象.关键是理解图形运动过程中的几个分界点.二、填空题(把正确的答案填在答题卡相应的横线上,每小题3分,共24分)9.比较大小:<3(填写“<”或“>”).考点:实数大小比较.分析:首先把两个数分别平方,然后比较平方的结果即可比较大小.解答:解:∵7<9,∴<3.故答案为:<.点评:此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法等.实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.10.(2011•衡阳)若m﹣n=2,m+n=5,则m2﹣n2的值为10.考点:平方差公式;有理数的乘法.专题:计算题.分析:首先把多项式m2﹣n2利用平方差公式分解因式,然后代入已知条件即可求出其值.解答:解:∵m2﹣n2=(m+n)(m﹣n),而m+n=5,m﹣n=2,∴m2﹣n2=5×2=10.故答案为10.点评:本题主要考查了公式法分解因式.先利用平方差公式把多项式分解因式,然后代入已知数据计算即可解决问题.11.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.考点:平行线的性质;三角形的外角性质.专题:计算题.分析:本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.解答:解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.点评:本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.12.不等式组的解集是2<x≤4.考点:解一元一次不等式组.专题:计算题.分析:此题可通过对不等式组里的两个一元一次不等式求解,再写出两个不等式的公共解集.解答:解:由题意解不等式组得:,则不等式组的解集为:2<x≤4.故答案为:2<x≤4.点评:本题考查了不等式组解集的求法,可通过解每一个不等式后再求公共解得出.求不等式组的解集要根据以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.如图所示的电路图中,在开关全部断开的情况下,闭合其中任意一个开关,灯泡发亮的概率是.考点:列表法与树状图法.专题:计算题;压轴题.分析:根据概率公式知,共有3个开关,只闭一个开关时,只有闭合K3时才发光,所以小灯泡发光的概率等于.解答:解:根据题意,三个开关,只有闭合K3小灯泡才发光,所以小灯泡发光的概率等于.故答案为.点评:本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.如果菱形两对角线的长是关于x的一元二次方程x2+mx+12=0的两实数根,那么菱形的面积是6.考点:菱形的性质;根与系数的关系.分析:由一元二次方程的根与系数的关系得出菱形两对角线长的乘积,即可求出菱形的面积.解答:解:设菱形两条对角线的长分别为a、b;∵菱形两对角线的长是方程x2+mx+12=0的两实数根,∴ab=12,∴菱形的面积=ab=×12=6;故答案为:6.点评:本题考查了菱形面积的计算公式、一元二次方程的根与系数的关系;熟记菱形面积的计算公式,由根与系数的关系求出菱形两对角线长的乘积是解决问题的关键.15.如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm),则该圆的半径为cm.考点:切线的性质;勾股定理;垂径定理.分析:根据垂径定理得BE的长,再根据勾股定理列方程求解即可.解答:解:作OE垂直AB于E,交⊙O于D,设OB=r,根据垂径定理,BE=AB=×6=3cm,根据题意列方程得:(r﹣2)2+9=r2,解得r=,∴该圆的半径为cm.点评:本题考查了垂径定理的应用及勾股定理,根据题意得出BC=3是解答此题的关键.16.如图,自行车的链条每节长为2.5cm,每两节链条相连接部分重叠的圆的直径为0.8cm,如果某种型号的自行车链条共有60节,则这根链条没有安装时的总长度为102.8cm.考点:规律型:图形的变化类.分析:根据已知可得两节链条的长度为:2.5×2﹣0.8,3节链条的长度为:2.5×3﹣0.8×2,以及60节链条的长度为:2.5×60﹣0.8×59,得出答案即可.解答:解:∵根据图形可得出:两节链条的长度为:2.5×2﹣0.8,3节链条的长度为:2.5×3﹣0.8×2,4节链条的长度为:2.5×4﹣0.8×3,∴60节链条的长度为:2.5×60﹣0.8×59=102.8cm.故答案为:102.8.点评:此题主要考查了图形的变化类,根据题意得出60节链条的长度与每节长度之间的关系是解决问题的关键.三、解答题(本大题共8小题,共52分,需要有必要的解答过程与步骤)17.计算:.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:根据0次幂、负整数指数幂、特殊角的三角函数,即可解答.解答:解:=1+4﹣3=2.点评:本题考查了0次幂、负整数指数幂、特殊角的三角函数,解决本题的关键是熟记相关法则.18.先化简,再求值:,其中x=﹣2.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:原式=•=•=•=x+2,当x=﹣2时,原式=﹣2+2=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.如图,四边形ABCD是平行四边形,△AB′C和△ABC关于AC所在的直线对称,AD和B′C 相交于点O,连接BB′.(1)请直接写出图中所有的等腰三角形(不添加字母);(2)求证:△AB′O≌△CDO.考点:等腰三角形的判定;全等三角形的判定;平行四边形的性质.专题:证明题.分析:(1)根据题意,结合图形可知等腰三角形有△ABB′,△AOC和△BB′C;(2)因为四边形ABCD是平行四边形,所以AB=DC,∠ABC=∠D,又因为,△AB’C和△ABC关于AC所在的直线对称,故AB′=AB,∠ABC=∠AB′C,则可证△AB’O≌△CDO.解答:解:(1)△ABB′,△AOC和△BB′C;(2)在▱ABCD中,AB=DC,∠ABC=∠D,由轴对称知AB′=AB,∠ABC=∠AB′C,∴AB′=CD,∠AB′O=∠D.在△AB′O和△CDO中,∴△AB′O≌△CDO(AAS).点评:此题是一道把等腰三角形的判定、平行四边形的性质和全等三角形的判定结合求解的综合题.考查学生综合运用数学知识的能力.20.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)小英家3月份用水24吨,她家应交水费多少元?考点:二元一次方程组的应用.专题:应用题.分析:(1)设每吨水的政府补贴优惠价为x元,市场调节价为y元,题中有两个等量关系:①用水20吨,交水费29元;②2月份用水18吨,交水费24元.据此列出方程组,求解此方程组即可;(2)小英家3应交水费=14x+(24﹣14)y,将(1)中所求值代入计算即可.解答:解:(1)设每吨水的政府补贴优惠价为x元,市场调节价为y元.由题意,有,解得:.答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元;(2)∵每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费,∴当用水24吨时,应交水费:14×1+(24﹣14)×2.5=39(元).答:小英家三月份应交水费39元.补:设每月用水量为a吨,应缴水费为b元,则b与a的函数关系式为:b=(a﹣14)×2.5+14,当a=24吨时,b=39元.点评:本题考查二元一次方程组的应用.正确理解收费标准是解决本题的关键.21.喜欢数学的小伟沿笔直的河岸BC进行数学实践活动,如图,河对岸有一水文站A,小伟在河岸B处测得∠ABD=45°,沿河岸行走300米后到达C处,在C处测得∠ACD=30°,求河宽AD.(最后结果精确到1米.已知:≈1.414,≈1.732,≈2.449,供选用)考点:解直角三角形的应用-方向角问题.专题:压轴题.分析:根据由图可知AD⊥BC,于是∠ABD=∠BAD=45°,以及∠ACD=30°,利用BD=x,CD=x,即可得出x+x=300,求出即可.解答:解:如图,由图可知AD⊥BC,于是∠ABD=∠BAD=45°,∠ACD=30°.在Rt△ABD中,BD=AD.在Rt△ACD中,CD=AD.设AD=x,则有BD=x,CD=x.依题意,得BD+CD=300,即x+x=300,∴(1+)x=300,∴x=≈110(米).答:河宽AD约为110米.点评:此题主要考查了解直角三角形主要是方向角问题,正确记忆三角函数的定义表示出BD=x,CD=x是解决本题的关键.22.“校园手机”现象越来越受到社会的关注.“寒假”期间,记者小刘随机调查了某区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)若该区共有中学生8000人,请根据以上图表信息估算出该区中学生中对“校园手机”持“无所谓”态度的人数是多少?考点:条形统计图;用样本估计总体;扇形统计图.专题:应用题.分析:(1)根据条形统计图,无所谓的家长有80人,根据扇形统计图,无所谓的家长占20%,据此即可求出家长总人数,减掉赞成和无所谓的家长人数,即为反对的人数;从而可补全直方图;(2)根据赞成人数和(1)中求出的家长总人数,算出表示“赞成”家长的百分比,即可得到表示家长“赞成”的圆心角的度数;(3)由样本知,持“无所谓”态度的学生人数有30人,占被调查人数的,又知若该区共有中学生8000人,故求出该区学生中持“无所谓”态度的学生人数约有8000×=1200人.解答:解:(1)∵由条形统计图,无所谓的家长有80人,根据扇形统计图,无所谓的家长占20%,∴家长总人数为80÷20%=400人;反对的人数为400﹣40﹣80=280人.如图所示:(2)表示“赞成”所占圆心角的度数为:×360°=36°;(3)由样本知,持“无所谓”态度的学生人数有30人,占被调查人数的=,故该区学生中持“无所谓”态度的学生人数约有8000×=1200人.点评:此题考查了扇形统计图和条形统计图以及用样本估计总体的知识,是一道综合题,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.如图AB是⊙O的直径,∠A=30°,延长OB到D使BD=OB.(1)△OBC是否是等边三角形?说明理由;(2)求证:DC是⊙O的切线.考点:切线的判定;等边三角形的判定;圆周角定理.专题:证明题;探究型.分析:(1)根据同弧所对的圆周角等于它所对的圆心角的一半,可知∠BOC=60°,又OB=OC,依此可以证明△OBC是否是等边三角形.(2)要证PC是⊙O的切线,只要证明∠DCO=90°即可.解答:(1)解:△OBC是等边三角形.理由如下:∵∠A=30°,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形.(2)证明:∵BD=OB,△OBC是等边三角形.∴∠OCB=∠OBC=60°,BD=BC.∴∠BCD=30°.∴∠OCD=90°.∴DC是⊙O的切线.点评:本题考查了等边三角形的判定和切线的判定.注意:有一个角是60°的等腰三角形是等边三角形;要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.24.如图,直线OA与反比例函数的图象交于点A(3,3),向下平移直线OA,与反比例函数的图象交于点B(6,m)与y轴交于点C,(1)求直线BC的解析式;(2)求经过A、B、C三点的二次函数的解析式;(3)设经过A、B、C三点的二次函数图象的顶点为D,对称轴与x轴的交点为E.问:在二次函数的对称轴上是否存在一点P,使以O、E、P为顶点的三角形与△BCD相似?若存在,请求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题;待定系数法求一次函数解析式;相似多边形的性质.专题:综合题;分类讨论.分析:(1)根据点A的坐标,即可确定直线OA以及反比例函数的解析式,根据所得反比例函数解析式即可确定点B的坐标,而OA、BC平行,那么它们的斜率相同,由此可确定直线BC的解析式;(2)根据直线BC的解析式可求得C点坐标,然后可利用待定系数法求得该抛物线的解析式;(3)根据(2)所得抛物线的解析式,可求得顶点D的坐标,即可得到BD、BC、CD的长,利用勾股定理逆定理即可判定△BCD是直角三角形,且∠BDC=90°,根据抛物线对称轴方程可得到E点坐标,进而可求得OE的长,若以O、E、P为顶点的三角形与△BCD相似,已知∠BDC=∠PEO=90°,那么有两种情况需要考虑:①△PEO∽△BDC,②△OEP∽△BDC.根据上面两组不同的相似三角形所得不同的比例线段,即可得到PE的长,进而求出P点的坐标.(需要注意的是P点可能在E点上方也可能在E点下方)解答:解:(1)由直线OA与反比例函数的图象交于点A(3,3),得直线OA为:y=x,双曲线为:,点B(6,m)代入得,点B(6,),(1分)设直线BC的解析式为y=x+b,由直线BC经过点B,将x=6,,代入y=x+b得:,(1分)所以,直线BC的解析式为;(1分)(2)由直线得点C(0,),设经过A、B、C三点的二次函数的解析式为将A、B两点的坐标代入,得:,(1分)解得(1分)所以,抛物线的解析式为;(1分)(3)存在.把配方得,所以得点D(4,),对称轴为直线x=4(1分)得对称轴与x轴交点的坐标为E(4,0).(1分)由BD=,BC=,CD=,得CD2=BC2+BD2,所以,∠DBC=90°(1分)又∠PEO=90°,若以O、E、P为顶点的三角形与△BCD相似,则有:①,即,得,有P1(4,),P2(4,)②,即,得PE=12,有P3(4,12),P4(4,﹣12)(3分)所以,点P的坐标为(4,),(4,),(4,12),(4,﹣12).点评:此题考查了用待定系数法确定函数解析式的方法、函数图象上点的坐标意义、直角三角形的判定、相似三角形的判定和性质等知识.要注意的是(3)题中,在相似三角形的对应边和对应角不确定的情况下需要分类讨论,以免漏解.。
云南省楚雄州大姚实验中学2015年中考数学模拟试题五一、选择题(共8小题,每小题3分,共24分)1.将一个正方体沿某些棱展开后,能够得到的平面图形是( )A .B .C .D .2.如图,AB 是⊙O 的直径,C ,D 为圆上两点,∠AOC=130°,则∠D 等于( )A .25°B .30°C .35°D .50°100元.捐款情况如下表: 2 3 2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组( )A .B .C .D .4.下列运算正确的是( )A .+=B .×=C .(﹣1)2=3﹣1 D .=5﹣35.如图,王虎使一长为4cm ,宽为3cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A 位置变化为A→A 1→A 2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A 翻滚到A 2位置时共走过的路径长为( )A .10cmB .4πcmC .D . 6.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB=65°,则∠AED ′等于( )A .50°B .55°C .60°D .65°7.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是( )A .①②B .②③C .②④D .③④8.如图(1)是一个水平摆放的小正方体木块,图(2),(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是( )个.A .25B .66C .91D .120二、填空题(共7小题,每小题3分,共21分)9.计算:a•a 2+a 3= .10.如图,在平面直角坐标系中,点A 的坐标为(1,4),将线段OA 绕点O 顺时针旋转90°得到线段OA′,则点A′的坐标是 .11.函数自变量x的取值范围是.12.如图,在四边形ABCD中,已知AB与CD不平行,∠ABD=∠ACD,请你添加一个条件:,使得加上这个条件后能够推出AD∥BC且AB=CD.13.在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x,6,4;若这组数据的平均数是5,则这组数据的中位数是件.14.如图,在△ABC中,若DE∥BC, =,DE=4cm,则BC的长为.三、解答题15.化简:.16.如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内添涂黑二个小正方形,使它们成为轴对称图形.17.如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.18.为迎接国庆60周年,某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整(1)表中m和n所表示的数分别为:m= ,n= ;(2)请在图中,补全频数分布直方图;(3)比赛成绩的中位数落在哪个分数段;(4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?19.如图,反比例函数y=的图象与一次函数y=kx+b的图象交于点A(m,2),点B(﹣2,n),一次函数图象与y轴的交点为C.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOC的面积.20.如图,在一次数学课外活动中,小明同学在点P处测得教学楼A位于北偏东60°方向,办公楼B位于南偏东45°方向.小明沿正东方向前进60米到达C处,此时测得教学楼A恰好位于正北方向,办公楼B正好位于正南方向.求教学楼A与办公楼B之间的距离(结果精确到0.1米).(供选用的数据:≈1.414,≈1.732)21.一只不透明的袋子中,装有2个白球(标有号码1,2)和1个红球,这些球除颜色外其他都相同.(1)搅匀后从中摸出一个球,摸到白球的概率是多少?(2)搅匀后从中一次摸出两个球,请用树状图(或列表法)求这两个球都是白球的概率.22.铜仁某水果店销售公司准备从外地购买西瓜31吨、柚子12吨,现计划租甲、乙两种货车共10辆,将这批水果运到铜仁,已知甲种货车可装西瓜4吨和柚子1吨,乙种货车可装西瓜1吨和柚子2吨.(1)该公司安排甲、乙两种货车时有几种方案?(2)若甲种货车每辆要付运输费用1800元,乙种货车每辆要付运输费用1200元,则该公司选择哪种方案运费最少?最少运费是多少?23.如图所示,已知抛物线y=x2﹣1与x轴交于A、B两点,与y轴交于点C.(1)求A、B、C三点的坐标;(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.2015年云南省楚雄州大姚实验中学中考数学模拟试卷(五)参考答案与试题解析一、选择题(共8小题,每小题3分,共24分)1.将一个正方体沿某些棱展开后,能够得到的平面图形是()A.B.C.D.【考点】几何体的展开图.【分析】本题考查图形的展开与折叠中,正方体的常见的十余种展开图有关内容.可将这四个图折叠后,看能否组成正方形.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A、出现了田字格,故不能;B、D、上底面不可能有两个,故不是正方体的展开图;C、可以拼成一个正方体.故选C.【点评】解题时勿忘记四棱柱的特征及正方体展开图的各种情形.2.如图,AB是⊙O的直径,C,D为圆上两点,∠AOC=130°,则∠D等于()A.25° B.30° C.35° D.50°【考点】圆周角定理.【分析】先根据邻补角定义求出∠BOC,再利用圆周角定理求解即可.【解答】解:∵∠AOC=130°,∴∠BOC=50°,∴∠D=∠BOC=25°.故选A.【点评】考查圆周角定理,明确同弧所对的圆周角和圆心角是解题的关键.100元.捐款情况如下表:2 32元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组()A.B.C. D.【考点】由实际问题抽象出二元一次方程组.【专题】压轴题;图表型.【分析】两个定量为:人数和钱数.等量关系为:捐2元人数+捐3元人数=40﹣6﹣7;捐2元钱数+捐3元钱数=100﹣1×6﹣4×7.【解答】解:根据题意列组得:.故选A.【点评】本题需注意应明确题中捐2元,3元的人数之和;钱数之和.4.下列运算正确的是()A. +=B.×=C.(﹣1)2=3﹣1 D. =5﹣3【考点】实数的运算.【分析】A、B、C、D利用根式的运算顺序及运算法则、公式等计算即可求解.【解答】解:A、不是同类二次根式,不能合并,故选项错误;B、×=,故选项正确;C、是完全平方公式,应等于4﹣2,故选项错误;D、应该等于,故选项错误;故选B.【点评】本题考查的是二次根式的运算能力.注意:要正确掌握运算顺序及运算法则、公式等.5.如图,王虎使一长为4cm,宽为3cm的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A位置变化为A→A1→A2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A翻滚到A2位置时共走过的路径长为()A.10cm B.4πcm C.D.【考点】弧长的计算;旋转的性质.【专题】计算题;压轴题.【分析】根据旋转的定义得到点A以B为旋转中心,以∠ABA1为旋转角,顺时针旋转得到A1;A2是由A1以C为旋转中心,以∠A1CA2为旋转角,顺时针旋转得到,由于∠ABA1=90°,∠A1CA2=60°,AB==5cm,CA1=3cm,然后根据弧长公式计算即可.【解答】解:点A以B为旋转中心,以∠ABA1为旋转角,顺时针旋转得到A1;A2是由A1以C 为旋转中心,以∠A1CA2为旋转角,顺时针旋转得到,∵∠ABA1=90°,∠A1CA2=60°,AB==5cm,CA1=3cm,∴点A翻滚到A2位置时共走过的路径长=+=π(cm).故选:C.【点评】本题考查了弧长公式:l=(n为圆心角,R为半径);也考查了旋转的性质.6.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50° B.55° C.60° D.65°【考点】翻折变换(折叠问题).【专题】数形结合.【分析】首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠FED=∠FED′,最后求得∠AED′的大小.【解答】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠FED=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.故选:A.【点评】本题考查了:1、折叠的性质;2、矩形的性质,平行线的性质,平角的概念求解.7.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①② B.②③ C.②④ D.③④【考点】简单几何体的三视图.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,分别得到每个几何体的三视图,进而得到答案.【解答】解:正方体主视图、左视图、俯视图都是正方形;圆柱主视图和左视图是长方形,俯视图是圆;圆锥主视图和左视图是三角形、俯视图是带圆心的圆;球主视图、左视图、俯视图都是圆,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是掌握三视图所看的位置.8.如图(1)是一个水平摆放的小正方体木块,图(2),(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是()个.A.25 B.66 C.91 D.120【考点】规律型:图形的变化类.【专题】压轴题;规律型.【分析】本题可用逐条分析的方法,从最高的那条开始计数.根据所给图形可知,从上到下逐层条是添加四个小正方体,通过计算得出结果.【解答】解:根据题意可得知:图(1)中有1×1=1个小正方体;图(2)中有1×2+4×1=6个小正方体;图(3)中有1×3+4×2+4×1=15个小正方体;以此类推第七个叠放的图形中,小正方体木块总数应是91个.故选C.【点评】此题考查了学生由特殊到一般的归纳能力.注意此题中第七个叠放的图形中,小正方体木块总数应是1×7+4×6+4×5+4×4+4×3+4×2+4×1=7+4×(6+5+4+3+2+1)=91个.二、填空题(共7小题,每小题3分,共21分)9.计算:a•a2+a3= 2a3.【考点】同底数幂的乘法;合并同类项.【分析】先根据同底数幂的乘法,底数不变,指数相加;再合并同类项即可.【解答】解:由同底数幂的乘法与合并同类项的法则可知,a•a2+a3=a3+a3=2a3.故答案为:2a3.【点评】本题考查合并同类项法则、同底数幂的乘法的性质,熟练掌握性质和法则是解题的关键.10.如图,在平面直角坐标系中,点A的坐标为(1,4),将线段OA绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是(4,﹣1).【考点】坐标与图形变化-旋转.【专题】压轴题.【分析】解题的关键是抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′的坐标.【解答】解:由图知A点的坐标为(1,4),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(4,﹣1).故答案为:(4,﹣1).【点评】本题涉及图形的旋转变换,体现了新课标的精神,抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.11.函数自变量x的取值范围是x>﹣3 .【考点】函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,可知:x+3>0,就可以求出自变量x的取值范围.【解答】解:根据题意得:x+3>0,解得:x>﹣3.故答案为:x>﹣3.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.如图,在四边形ABCD中,已知AB与CD不平行,∠ABD=∠ACD,请你添加一个条件:∠DAC=∠ADB或∠BAD=∠CDA或∠DBC=∠ACB或∠ABC=∠DCB或OB=OC或OA=OD ,使得加上这个条件后能够推出AD∥BC且AB=CD.【考点】等腰梯形的判定.【专题】开放型.【分析】先证四边形AECO是梯形,再说明是等腰梯形.由题意可知,∠ABD=∠ACD,AD是△BAD和△CDA的公共边,则可以再添加一组角∠DAC=∠ADB或∠BAD=∠CDA,同理可添加∠DBC=∠ACB,∠ABC=∠DCB,OB=OC,OA=OD,从而推出AD∥BC且AB=CD.【解答】解:由题意可知,∠ABD=∠ACD,AD是△BAD和△CDA的公共边,则可以再添加一组角∠DAC=∠ADB或∠BAD=∠CDA∴△BAD≌△CDA∴BD=AC,AB=DC,∵∠DAC=∠ADB,∴OA=OD,∴OB=OC,∴∠OBC=∠OCB,∵∠AOD=∠BOC,∴∠DAC=∠ACB=∠ADB=∠DBC,∴AD∥BC同理可添加∠DBC=∠ACB,∠ABC=∠DCB,OB=OC,OA=OD,从而推出AD∥BC且AB=CD.本题答案不唯一,如∠DAC=∠ADB,∠BAD=∠CDA,∠DBC=∠ACB,∠ABC=∠DCB,OB=OC,OA=OD.(任选其一)【点评】这是一道考查等腰梯形的判定方法的开放性的题,答案不唯一.13.在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x,6,4;若这组数据的平均数是5,则这组数据的中位数是 5 件.【考点】中位数;算术平均数.【专题】应用题.【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,根据中位数定义求解.【解答】解:由平均数的定义知,得x=5,将这组数据按从小到大排列为3,4,5,5,6,7,由于有偶数个数,取最中间两个数的平均数,其中位数为.故答案为:5.【点评】本题考查了平均数和中位数的概念.注意找中位数,一定要按从小到大排列,再找中间的数.14.如图,在△ABC 中,若DE∥BC, =,DE=4cm ,则BC 的长为 12cm .【考点】平行线分线段成比例. 【专题】计算题.【分析】因为DE∥BC,可利用平行线分线段成比例定理求出BC 的长. 【解答】解:∵DE∥BC,∴=, 又∵=,∴,∴=, ∴BC=12cm.故答案为:12cm .【点评】本题考查了平行线分线段成比例定理,找出图中的比例关系是解题的关键.三、解答题15.化简:.【考点】分式的混合运算. 【专题】计算题. 【分析】首先把各个分式的分子分母能分解因式的分解因式,然后把除法运算转化成乘法运算,进行约分,最后进行加减运算.【解答】解:原式=•=•===1.【点评】本题主要考查分式的混合运算,注意运算顺序,通分、约分是解题的关键.16.如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内添涂黑二个小正方形,使它们成为轴对称图形.【考点】利用轴对称设计图案.【专题】网格型.【分析】作简单平面图形轴对称后的图形,其依据是轴对称的性质.基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.【解答】解:如图所示:【点评】解答此题要明确轴对称的性质,并据此构造出轴对称图形,然后将对称部分涂黑,即为所求.17.如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)由∠BAD=∠EAC可知∠BAC=∠EAD,所以有可证△ABC≌△AED(SAS);(2)由(1)知∠ABC=∠AED,AB=AE可知∠ABE=∠AEB,所以∠OBE=∠OEB,则OB=OE.【解答】证明:(1)∵∠BAD=∠EAC,∴∠BAD+∠DAC=∠EAC+∠DAC,即∠BAC=∠EAD.在△ABC和△AED中,∴△ABC≌△AED(SAS).(2)∵由(1)知△ABC≌△AED∴∠ABC=∠AED,∵AB=AE,∴∠ABE=∠AEB,∴∠ABE﹣∠ABC=∠AEB﹣∠AED,∴∠OBE=∠OEB.∴OB=OE.【点评】本题考查三角形全等的性质和判定方法,也涉及到等腰三角形的性质,判定两个三角形全等的一般方法有:ASA、SSS、SAS、SSA、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.18.为迎接国庆60周年,某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整(1)表中m和n所表示的数分别为:m= ,n= ;(2)请在图中,补全频数分布直方图;(3)比赛成绩的中位数落在哪个分数段;(4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?【考点】频数(率)分布直方图;中位数.【专题】图表型.【分析】(1)根据统计表中,频数与频率的比值相等,可得关于m、n的关系式;进而计算可得m、n的值;(2)根据(1)的结果,可以补全直方图;(3)根据中位数的定义判断;(4)读图可得比赛成绩80分以上的人数,除以总人数即可得答案.【解答】解:(1)根据统计表中,频数与频率的比值相等,即有==解可得:m=90,n=0.3;(2)图为:(3)根据中位数的求法,先将数据按从小到大的顺序排列,读图可得:共200人,第100、101名都在70分~80分,故比赛成绩的中位数落在70分~80分;(4)读图可得比赛成绩80分以上的人数为60+20=80,故获奖率为×100%=40%.故答案为:(1)m=90,n=0.3;(2)略;(3)70分~80分;(4)40%.【点评】本题考查条形统计图、图表等知识.结合生活实际,绘制条形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.19.如图,反比例函数y=的图象与一次函数y=kx+b的图象交于点A(m,2),点B(﹣2,n),一次函数图象与y轴的交点为C.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOC的面积.【考点】反比例函数综合题.【专题】综合题;压轴题.【分析】(1)首先由反比例函数的解析式分别求得m、n的值,再进一步根据点A、B的坐标求得一次函数的解析式;(2)根据(1)中求得的解析式,令x=0,即可求得点C的坐标;(3)根据点A、C的坐标即可求得OC=1,OC边上的高是点A的横坐标,进一步求得三角形的面积.【解答】解:(1)由题意,把A(m,2),B(﹣2,n)代入中,得,∴A(1,2),B(﹣2,﹣1)将A、B代入y=kx+b中得:,∴,∴一次函数解析式为:y=x+1;(2)由(1)可知:当x=0时,y=1,∴C(0,1);(3)S△AOC=×1×1=.【点评】本题考查了反比例函数的综合应用,重点是由交点坐标求得函数的解析式,题目较难,同学们要重点掌握.20.如图,在一次数学课外活动中,小明同学在点P处测得教学楼A位于北偏东60°方向,办公楼B位于南偏东45°方向.小明沿正东方向前进60米到达C处,此时测得教学楼A恰好位于正北方向,办公楼B正好位于正南方向.求教学楼A与办公楼B之间的距离(结果精确到0.1米).(供选用的数据:≈1.414,≈1.732)【考点】解直角三角形的应用-方向角问题.【专题】应用题.【分析】由已知可得△ABP中∠A=60°∠B=45°且PC=60m,要求AB的长,可以先求出AC 和BC的长就可转化为运用三角函数解直角三角形.【解答】解:由题意可知:∠ACP=∠BCP=90°,∠APC=30°,∠BPC=45°.在Rt△BPC中,∵∠BCP=90°,∠B=∠BPC=45°,∴BC=PC=60.在Rt△ACP中,∵∠ACP=90°,∠APC=30°,tan30°=,∴AC=PC•tan30°=tan30°×60=60×=20(米).∴AB=AC+BC=60+20≈60+20×1.732=94.64≈94.6(米).答:教学楼A与办公楼B之间的距离大约为94.6米.【点评】解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.21.一只不透明的袋子中,装有2个白球(标有号码1,2)和1个红球,这些球除颜色外其他都相同.(1)搅匀后从中摸出一个球,摸到白球的概率是多少?(2)搅匀后从中一次摸出两个球,请用树状图(或列表法)求这两个球都是白球的概率.【考点】列表法与树状图法;概率公式.【分析】根据概率的求法,找准两点:1,符合条件的情况数目;2全部情况的总数.二者的比值就是其发生的概率.【解答】解:(1)袋子中,装有2个白球,1个红球,共3个球,从中摸出一个球,摸到白球的概率是P(一个球是白球)=;(2)树状图如下(列表略):∴P(两个球都是白球)=.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,互为对立事件的两个事件概率之和为1.22.铜仁某水果店销售公司准备从外地购买西瓜31吨、柚子12吨,现计划租甲、乙两种货车共10辆,将这批水果运到铜仁,已知甲种货车可装西瓜4吨和柚子1吨,乙种货车可装西瓜1吨和柚子2吨.(1)该公司安排甲、乙两种货车时有几种方案?(2)若甲种货车每辆要付运输费用1800元,乙种货车每辆要付运输费用1200元,则该公司选择哪种方案运费最少?最少运费是多少?【考点】一次函数的应用;一元一次不等式组的应用.【分析】(1)先根据两种货车可装的西瓜大于或等于31吨以及可装的柚子大于或等于12吨列出不等式组,再解不等式组即可;(2)设公司安排甲种货车x辆时所需运费为w元,先根据运费w=甲、乙两种货车运费之和,列出w与x的函数关系式,再根据函数的性质即可求解.【解答】解:(1)设公司安排甲种货车x辆,则安排乙种货车(10﹣x)辆,由题意,得,解此不等式组得7≤x≤8.∵x是正整数,∴x可取的值为7,8.因此安排甲、乙两种货车有两种方案:①甲种货车7辆,乙种货车3辆;②甲种货车8辆,乙种货车2辆;(2)设公司安排甲种货车x辆时所需运费为w元,由题意,得w=1800x+1200(10﹣x)=600x+12000,∵600>0,∴w随x的增大而增大,∴当x=7时,w有最小值600×7+12000=16200.所以该公司选择方案①运费最少,最少运费是16200元.【点评】本题主要考查不等式在现实生活中的应用,运用数学模型进行解题,使问题变得简单.注意本题的不等关系为:两种货车可装的西瓜大于或等于31吨以及可装的柚子大于或等于12吨,要会灵活运用函数的思想求得运费的最值问题.23.如图所示,已知抛物线y=x2﹣1与x轴交于A、B两点,与y轴交于点C.(1)求A、B、C三点的坐标;(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.【考点】二次函数综合题.【专题】压轴题;开放型;分类讨论.【分析】(1)抛物线与x轴的交点,即当y=0,C点坐标即当x=0,分别令y以及x为0求出A,B,C坐标的值;(2)四边形ACBP的面积=△ABC+△ABP,由A,B,C三点的坐标,可知△ABC是直角三角形,且AC=BC,则可求出△ABC的面积,根据已知可求出P点坐标,可知点P到直线AB的距离,从而求出△ABP的面积,则就求出四边形ACBP的面积;(3)假设存在这样的点M,两个三角形相似,根据题意以及上两题可知,∠PAC和∠MGA是直角,只需证明或即可.设M点坐标,根据题中所给条件可求出线段AG,CA,MG,CA的长度,然后列等式,分情况讨论,求解.【解答】解:(1)令y=0,得x2﹣1=0解得x=±1,令x=0,得y=﹣1∴A(﹣1,0),B(1,0),C(0,﹣1);(2)∵OA=OB=OC=1,∴∠BAC=∠ACO=∠BCO=∠CBO=45°.∵AP∥CB,∴∠PAB=∠CBO=45°.过点P作PE⊥x轴于E,则△APE为等腰直角三角形,令OE=a,则PE=a+1,∴P(a,a+1).∵点P在抛物线y=x2﹣1上,∴a+1=a2﹣1.解得a1=2,a2=﹣1(不合题意,舍去).∴PE=3.∴四边形ACBP的面积S=AB•OC+AB•PE=×2×1+×2×3=4;(3)假设存在∵∠PAB=∠BAC=45°,∴PA⊥AC∵MG⊥x轴于点G,∴∠MGA=∠PAC=90°在Rt△AOC中,OA=OC=1,∴AC=在Rt△PAE中,AE=PE=3,∴AP=3设M点的横坐标为m,则M(m,m2﹣1)①点M在y轴左侧时,则m<﹣1.(ⅰ)当△AMG∽△PCA时,有.∵AG=﹣m﹣1,MG=m2﹣1.即解得m1=﹣1(舍去)m2=(舍去).(ⅱ)当△MAG∽△PCA时有,即.解得:m=﹣1(舍去)m2=﹣2.∴M(﹣2,3).②点M在y轴右侧时,则m>1(ⅰ)当△AMG∽△PCA时有∵AG=m+1,MG=m2﹣1∴解得m1=﹣1(舍去)m2=.∴M(,).(ⅱ)当△MAG∽△PCA时有,即.解得:m1=﹣1(舍去)m2=4,∴M(4,15).∴存在点M,使以A、M、G三点为顶点的三角形与△PCA相似M点的坐标为(﹣2,3),(,),(4,15).【点评】考查抛物线与数轴交点求解问题,以及抛物线与三角形,四边形之间关系转换问题,相似三角形问题,要特别注意在第三问时要分情况讨论.。
B第7题图大姚县实验中学2015年学业水平考试数学模拟试卷(四)(温馨提示:同学,请您把答案写在答题卡上。
)一、 选择题。
(本大题共8个小题,每小题3分,共24分)1.“厉行节约,反对浪费”势在必行.最新统计数据显示,我国每年浪费食物总量折合粮食大约是210000000人一年的口粮,将210000000用科学计数法表示为( ) A .2.1×109B .0.21×109C .2.1×108D .21×1072.下列运算正确的是( )A .223a a a =+B .623a a a =÷ C= D2= 3.如图所示的几何体的主视图是( )一、A .B .C .D .4.数据4,7,4,8,6,6,9,4的众数和中位数是( ) A .6,9 B .4,6 C .6,8 D .4,85.不等式组112x ⎧⎪⎨⎪≤的解集在数轴上表示为( )6. 分式方程的解为( ).7.如图,在⊙O 中,∠COB=50°,∠B=15°, 则∠C 的度数为( )A .25︒B .10︒C .15︒D .20︒8.直线y = x +1与双曲线1y x=在同一坐标系中的大致位置是( )二、填空题。
(本大题共6个小题,每小题3分,共18分)9.如果32a b =,那么a b b-= .10.当x = 时,分式2233x x x ---的值为零.11.如图,AB∥CD,EF⊥AB 于E ,EF 交CD 于F ,已知∠1=60°, 则∠2 = .12.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是 .13.已知2a b +=,1ab =,则2332a b a b +的值为 .14.如图,已知△ABC 是腰长为1的等腰直角三形,以Rt△ABC 的斜边AC 为直角边,画第二个等腰Rt△ACD,再以Rt△ACD 的斜边AD 为直角边,画第三个等腰Rt△ADE,…,依此类推,则第2015个等腰直角三角形的斜边长是 .三、解答题(本大题共9个小题,满分78分)15.(7分)先化简,再求值:112π)tan 45()4---+︒+封密线姓名班学校学号x CD BAE F12图 第11题图A .B .C .D .BF D C EA 16.(7分)如图,点F 、B 、E 、C 在同一直线上,并且FE=CB ,∠ABC=∠DEF.能否由上面的已知条件证明△ABC≌△DEF?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC≌△DEF,并给出证明. 提供的三个条件是:①AB=DE ;②AC=DF ;③AC ∥DF . 17.(9分)在信息快速发展的社会,“信息消费”已成为人们生活的重要部分.某市的一个社区随机抽取了部分家庭,调查每月用于信息消费的金额,数据整理成如图所示的不完整统计图.已知A 、B 两组户数直方图的高度比为1:5,请结合图中相关数据回答下列问题.月消费额分组统计表(1)A 组的频数是 ,本次调查样本的容量是 ; (2)补全直方图(需标明各组频数);(3)若该社区有1500户住户,请估计月信息消费额不少于300元的户数是多少? 18.(9分)把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张. (1)用画树状图或列表的方法写出所有可能出现的结果; (2)试求取出的两张卡片数字之积不小于5的概率;(3)若取出的两张卡片数字之积为奇数,则甲胜;取出的两张卡片数字之积为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.20.(7分)如图,在数学活动课中,小敏为了测量校园内旗杆AB 的高度,站在教学楼上的C 处测得旗杆底端B 的俯角为45°,测得旗杆顶端A 的仰角为30°.若旗杆与教学楼的水平距离CD 为9m ,则旗杆的高度是多少?(结果保留根号)21.(10分)如图,在平面直角坐标系中,O 为原点,一次函数与反比例函数的图象相交于(2,1)A 、(1,2)B --两点,与x 轴相交于点C . (1)分别求反比例函数和一次函数的解析式(关系式);(2)连接OA ,求AOC ∆的面积.22.(10分)如图,已知⊙O 的半径为1,DE 是⊙O 的直径,过点D 作⊙O 的切线AD ,C 是AD 的中点,AE 交⊙O 于B 点,四边形BCOE 是平行四边形. (1)求AD 的长;(提示:连接BD) (2)求证:BC 是⊙O 的切线.(提示:连接OB)23.(11分)如图,在直角坐标系x Oy 中,二次函数y=x 2+(2k ﹣1)x +k +1的图象与x 轴 相交于O 、A 两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B ,使△AOB 的面积等于6,求点B 的坐标; 3)对于(2)中的点B ,在此抛物线上是否存在点P ,使∠POB=90°?P 的坐标,若不存在,请说明理由.。
2015年云南省楚雄州大姚实验中学中考数学模拟试卷(四)一、选择题(每小题3分,共24分)1.实数(相邻两个1之间依次多一个0),其中无理数是()个.A. 1 B. 2 C. 3 D. 42.下列各式中,正确的是()A.=±4 B.(3a3)2=6a6C. D.(π﹣3.14)0=l3.下列几何体中,同一个几何体的主视图与俯视图不同的是()A. B. C. D.4.估计的值在()之间.A. 1与2之间 B. 2与3之间 C. 3与4之间 D. 4与5之间5.如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为()A. 3 B. 4 C. 5 D. 86.制造一种产品,原来每件成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低的百分率是()A. 8.5% B. 9% C. 9.5% D. 10%7.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()A. B. C. D.8.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A. B. C. D.二.填空题(每小题3分,共21分)9.纳米是一种长度单位,1纳米=10﹣9米,已知某种植物花粉的直径为35000纳米,那么用科学记数法表示为米.10.矩形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,则DE= cm.11.如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.12.式子有意义的x的取值范围是.13.如图,⊙A、⊙B、⊙C两两外切,它们的半径都是a,顺次连接三个圆心,则图中阴影部分的面积是.14.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °.15.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是.三、解答题(共8小题,满分55分)16.解不等式组:.17.如图,E、F是平行四边形ABCD对角线AC上两点,AE=CF.证明(1)△ABE≌△CDF;(2)BE∥DF.18.“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务.王刚同学在本学期开学初对部分同学寒假在家做家务的时间进行了抽样调查(时间取整数小时),所得数据统计如下表:时间分组 0.5~20.5 20.5~40.5 40.5~60.5 60.5~80.5 80.5~100.5频数 20 25 30 15 10(1)抽取样本的容量是;(2)根据表中数据补全图中的频数分布直方图;(3)样本的中位数所在时间段的范围是;(4)若该学校有学生1260人,那么大约有多少学生在寒假做家务的时间在40.5~100.5小时之间?19.如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣2,3)、B(﹣3,2)、C(﹣1,1).(1)若将△ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A1B1C1;(2)画出△A1B1C1绕原点旋转180°后得到的△A2B2C2;(3)△A′B′C′与△ABC是位似图形,请写出位似中心的坐标:;(4)顺次连接C、C1、C′、C2,所得到的图形是轴对称图形吗?20.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.21.国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:=1.732,=1.414)22.已知:如图,△ABC中,以AB为直径的⊙O交AC于点D,且D为AC的中点,过D作DE 丄CB,垂足为E.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)已知CD=4,CE=3,求⊙O的半径.23.如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在y轴上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.2015年云南省楚雄州大姚实验中学中考数学模拟试卷(四)参考答案与试题解析一、选择题(每小题3分,共24分)1.实数(相邻两个1之间依次多一个0),其中无理数是()个.A. 1 B. 2 C. 3 D. 4考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:﹣π,0.1010010001….共有2个.故选B.点评:本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列各式中,正确的是()A.=±4 B.(3a3)2=6a6C. D.(π﹣3.14)0=l考点:负整数指数幂;算术平方根;幂的乘方与积的乘方;零指数幂.专题:计算题.分析:分别根据算术平方根、负整数指数幂、积的乘方及0指数幂进行计算即可.解答:解:A、=4,错误;B、(3a3)2=9a6,错误;C、()﹣1﹣()﹣1=﹣1,错误;D、(π﹣3.14)0=1,正确.故选D.点评:本题主要考查了算术平方根和负整数指数幂,正整数指数幂,0指数幂的计算,注意任何非0数的0次幂都是1.3.下列几何体中,同一个几何体的主视图与俯视图不同的是()A. B. C. D.考点:简单几何体的三视图.分析:主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形.解答:解:A、圆柱的主视图与俯视图都是矩形,错误;B、正方体的主视图与俯视图都是正方形,错误;C、圆锥的主视图是等腰三角形,而俯视图是圆和圆心,正确;D、球体主视图与俯视图都是圆,错误;故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图,俯视图是从物体的上面看得到的视图.4.估计的值在()之间.A. 1与2之间 B. 2与3之间 C. 3与4之间 D. 4与5之间考点:估算无理数的大小.分析: 11介于9与16之间,即9<11<16,则利用不等式的性质可以求得介于3与4之间.解答:解:∵9<11<16,∴3<<4,即的值在3与4之间.故选C.点评:此题主要考查了根式的计算和估算无理数的大小,解题需掌握二次根式的基本运算技能,灵活应用.“夹比法”是估算的一般方法,也是常用方法.5.如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为()A. 3 B. 4 C. 5 D. 8考点:圆周角定理;坐标与图形性质;勾股定理.专题:计算题.分析:连接BC,由90度的圆周角所对的弦为直径,得到BC为圆A的直径,在直角三角形BOC中,由OB与OC的长,利用勾股定理求出BC的长,即可确定出圆A的半径.解答:解:连接BC,∵∠BOC=90°,∴BC为圆A的直径,即BC过圆心A,在Rt△BOC中,OB=8,OC=6,根据勾股定理得:BC=10,则圆A的半径为5.故选C.点评:此题考查了圆周角定理,坐标与图形性质,以及勾股定理,熟练掌握圆周角定理是解本题的关键.6.制造一种产品,原来每件成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低的百分率是()A. 8.5% B. 9% C. 9.5% D. 10%考点:一元二次方程的应用.专题:增长率问题.分析:设平均每次降低的百分率为x,则降低一次后的成本为100(1﹣x)元,降低两次后的成本为100(1﹣x)2元,而此时成本又是81元,根据这个等量关系列出方程.解答:解:设平均每次降低的百分率为x,根据题意,得100(1﹣x)2=81解得:x=0.1,x=1.9(舍去).故选D.点评:本题考查求平均变化率的方法.掌握求增长率的等量关系:增长后的量=(1+增长率)增长的次数×增长前的量.7.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()A. B. C. D.考点:动点问题的函数图象.专题:压轴题;动点型.分析:本题考查动点函数图象的问题.解答:解:由图中可知:在开始的时候,阴影部分的面积最大,可以排除B,C.随着圆的穿行开始,阴影部分的面积开始减小,当圆完全进入正方形时,阴影部分的面积开始不再变化.应排除D.故选A.点评:本题应首先看清横轴和纵轴表示的量,然后根据实际情况采用排除法求解.8.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A. B. C. D.考点:二次函数的图象;正比例函数的图象.专题:压轴题.分析:根据正比例函数图象的性质确定m<0,则二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴.解答:解:∵正比例函数y=mx(m≠0),y随x的增大而减小,∴该正比例函数图象经过第二、四象限,且m<0.∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴.综上所述,符合题意的只有A选项.故选A.点评:本题考查了二次函数图象、正比例函数图象.利用正比例函数的性质,推知m<0是解题的突破口.二.填空题(每小题3分,共21分)9.纳米是一种长度单位,1纳米=10﹣9米,已知某种植物花粉的直径为35000纳米,那么用科学记数法表示为 3.5×10﹣5米.考点:科学记数法—表示较小的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:∵1纳米=10﹣9米,∴35 000纳米=0.000 035米=3.5×10﹣5米.故答案为:3.5×10﹣5.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.矩形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,则DE= 5.8 cm.考点:翻折变换(折叠问题).专题:计算题.分析:根据翻折不变性可知,EB=ED.设DE为x,则得到EB为x,于是可知AE=10﹣x;在△AED中,利用勾股定理即可求出DE的长.解答:解:由翻折不变性可知,EB=ED;设DE为xcm,则EB=xcm,∵AB=10,∴AE=AB﹣x=10﹣x,又∵AD=4cm,∴在Rt△ADE中,AD2+AE2=DE2,∴42+(10﹣x)2=x2,∴16+100+x2﹣20x=x2,解得x=5.8故答案为5.8.点评:此题考查了翻折不变性,找到图中的不变量,将未知量转化到直角三角形中,利用勾股定理是解题的关键.11.如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.考点:菱形的性质.分析:根据已知条件解直角三角形ABE可求出AE的长,再由菱形的面积等于底×高计算即可.解答:解:∵菱形ABCD的边长为4,∴AB=BC=4,∵AE⊥BC于E,∠B=60°,∴sinB==,∴AE=2,∴菱形的面积=4×2=8,故答案为8.点评:本题考查了菱形的性质:四边相等以及特殊角的三角函数值和菱形面积公式的运用.12.式子有意义的x的取值范围是x≥﹣且x≠1 .考点:二次根式有意义的条件;分式有意义的条件.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故答案为:x≥﹣且x≠1.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.13.如图,⊙A、⊙B、⊙C两两外切,它们的半径都是a,顺次连接三个圆心,则图中阴影部分的面积是.考点:相切两圆的性质;扇形面积的计算.分析:根据三角形内角和定理以及扇形面积公式直接求出即可.解答:解:∵⊙A、⊙B、⊙C两两外切,它们的半径都是a,∴阴影部分的面积是:=.故答案为:.点评:此题主要考查了扇形面积求法,根据已知得出扇形圆心角的和是解题关键.14.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= 70 °.考点:旋转的性质.专题:探究型.分析:直接根据图形旋转的性质进行解答即可.解答:解:∵将△OAB绕点O逆时针旋转100°得到△OA1B1,∠AOB=30°,∴△OAB≌△OA1B1,∴∠A1OB1=∠AOB=30°.∴∠A1OB=∠A1OA﹣∠AOB=70°.故答案为:70.点评:本题考查的是旋转的性质,熟知图形旋转前后对应边、对应角均相等的性质是解答此题的关键.15.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是10 .考点:勾股定理.分析:根据正方形的面积公式,结合勾股定理,能够导出正方形A,B,C,D的面积和即为最大正方形的面积.解答:解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,于是S3=S1+S2,即S3=2+5+1+2=10.故答案是:10.点评:本题考查了勾股定理的应用.能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.三、解答题(共8小题,满分55分)16.解不等式组:.考点:解一元一次不等式组.分析:先解不等式组中的每一个不等式,再根据“大大取较大,小小取较小,大小小大取中间,大大小小无解”,把它们的解集用一条不等式表示出来.解答:解:解不等式①,得x>;解不等式②,得x≤4.在数轴上表示其解集,如图:∴不等式的解集是<x≤4.点评:本题考查不等式组的解法和解集在数轴上的表示法,如果是表>或<号的点要用空心,如果是表示>等于或<等于号的点用实心.17.如图,E、F是平行四边形ABCD对角线AC上两点,AE=CF.证明(1)△ABE≌△CDF;(2)BE∥DF.考点:平行四边形的性质;全等三角形的判定.分析:(1)由平行四边形的性质可得,AB∥CD,CD=AB,根据两直线平行内错角相等可得∠BAE=∠DCF,已知AE=CF,从而可根据SAS判定△ABE≌△CDF.(2)根据△ABE≌△CDF,可得∠AEB=∠CFD,再根据邻补角的定义和平行线的判定即可证明.解答:证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,CD=AB,∴∠BAE=∠DCF,∵AE=CF,∴△ABE≌△CDF(SAS).(2)∵△ABE≌△CDF,∴∠AEB=∠CFD,∴∠CEB=∠AFD,∴BE∥DF.点评:此题主要考查学生对平行四边形的性质及全等三角形的判定方法的综合运用能力.18.“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务.王刚同学在本学期开学初对部分同学寒假在家做家务的时间进行了抽样调查(时间取整数小时),所得数据统计如下表:时间分组 0.5~20.5 20.5~40.5 40.5~60.5 60.5~80.5 80.5~100.5频数 20 25 30 15 10(1)抽取样本的容量是100 ;(2)根据表中数据补全图中的频数分布直方图;(3)样本的中位数所在时间段的范围是40.5~60.5 ;(4)若该学校有学生1260人,那么大约有多少学生在寒假做家务的时间在40.5~100.5小时之间?考点:频数(率)分布直方图;总体、个体、样本、样本容量;用样本估计总体;中位数.专题:图表型.分析:(1)注意样本容量是数据的个数,但是不带单位;(2)根据绘制直方图的步骤画图;(3)根据中位数的概念计算;(4)用样本估计总体可知,×1260=693.解答:解:(1)样本容量=20+30+15+25+10=100;(2)如图:(3)数据共有100个,中位数是第50,51个数的平均数,中位数落在40.5~60.5内;(4)×1260=693.答:大约有693名学生在寒假做家务的时间在40.5~100.5小时之间.点评:主要考查了统计中的基本概念以及用样本估计总体的能力.求样本容量时注意不带单位,中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.19.如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣2,3)、B(﹣3,2)、C(﹣1,1).(1)若将△ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A1B1C1;(2)画出△A1B1C1绕原点旋转180°后得到的△A2B2C2;(3)△A′B′C′与△ABC是位似图形,请写出位似中心的坐标:(0,0);(4)顺次连接C、C1、C′、C2,所得到的图形是轴对称图形吗?考点:作图-位似变换;作图-轴对称变换;作图-平移变换;作图-旋转变换.专题:作图题.分析:(1)将A、B、C按平移条件找出它的对应点A1、B1、C1,顺次连接A1B1、B1C1、C1A1,即得到平移后的图形△A1B1C1;(2)利用中心对称的性质,作出A1、B1、C1,关于原点的对称点A2、B2、C2,顺次连接A2B2,B2C2、C2A2,即得到关于原点对称的三角形;(3)利用对应点所在直线都经过位似中心,即可解决问题;(4)观察图形,会找到两条对称轴,所以是轴对称图形.解答:解:画出平移后的图形,画出旋转后的图形,写出坐标(0,0),答:“是轴对称图形”.点评:本题的关键是作各个关键点的对应点.20.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.考点:列表法与树状图法;反比例函数图象上点的坐标特征.专题:图表型.分析:(1)画出树状图即可得解;(2)根据反比例函数图象上点的坐标特征判断出在双曲线上y=上的情况数,然后根据概率公式列式计算即可得解.解答:解:(1)根据题意画出树状图如下:;(2)当x=﹣1时,y==﹣2,当x=1时,y==2,当x=2时,y==1,一共有9种等可能的情况,点(x,y)落在双曲线上y=上的有2种情况,所以,P=.点评:本题考查了列表法与树状图法,反比例函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.21.国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:=1.732,=1.414)考点:解直角三角形的应用-仰角俯角问题.分析:设CF=x,在Rt△ACF和Rt△BCF中,分别用CF表示AC、BC的长度,然后根据AC ﹣BC=1200,求得x的值,用h﹣x即可求得最高海拔.解答:解:设CF=x,在Rt△ACF和Rt△BCF中,∵∠BAF=30°,∠CBF=45°,∴BC=CF=x,=tan30°,即AC=x,∵AC﹣BC=1200米,∴x﹣x=1200,解得:x=600(+1),则DF=h﹣x=2001﹣600(+1)≈362(米).答:钓鱼岛的最高海拔高度约362米.点评:本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形求出AC、BC的长度,难度一般.22.已知:如图,△ABC中,以AB为直径的⊙O交AC于点D,且D为AC的中点,过D作DE 丄CB,垂足为E.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)已知CD=4,CE=3,求⊙O的半径.考点:切线的判定;圆周角定理;相似三角形的判定与性质.分析:(1)利用切线的判定得出∠ODE=90°,进而求出DE是⊙O的切线,(2)利用常作的一条辅助线,即“见切点,连半径,得垂直”,然后再把要证的垂直与已有的垂直进行联系,即可得出证法,利用相似三角形的判定与性质求出即可.解答:(1)证明:连接OD,∵D为AC的中点,O为AB的中点,∴DO∥BC,∵DE丄CB,∴DE⊥OD,∴∠ODE=90°,∴直线DE是⊙O的切线;(2)解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴BD⊥AC,∴∠BDC=90°,又∵DE⊥BC,Rt△CDB∽Rt△CED,∴,∴BC=,又∵OD=BC,∴OD=,即⊙O的半径为.点评:此题主要考查了圆的切线的性质、垂直的判定、圆周角的性质、三角形相似等知识,熟练作出正确辅助线是解题关键.23.如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在y轴上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)因为直线y=x+m过点A,将A点坐标直接代入解析式即可求得m的值;设出二次函数的顶点式,将(3,4)代入即可;(2)由于P和E的横坐标相同,将P点横坐标代入直线和抛物线解析式,可得其纵坐标表达式,h即为二者之差;根据P、E在二者之间,所以可知x的取值范围是0<x<3;(3)先假设存在点P,根据四边形DCEP是平行四形的条件进行推理,若能求出P点坐标,则证明存在点P,否则P点不存在.解答:解:(1)∵点A(3,4)在直线y=x+m上,∴4=3+m.∴m=1.设所求二次函数的关系式为y=a(x﹣1)2.∵点A(3,4)在二次函数y=a(x﹣1)2的图象上,∴4=a(3﹣1)2,∴a=1.∴所求二次函数的关系式为y=(x﹣1)2.即y=x2﹣2x+1.(2)设P、E两点的纵坐标分别为y P和y E.∴PE=h=y P﹣y E=(x+1)﹣(x2﹣2x+1)=﹣x2+3x.即h=﹣x2+3x(0<x<3).(3)存在.解法1:要使四边形DCEP是平行四边形,必需有PE=DC.∵点D在直线y=x+1上,∴点D的坐标为(1,2),∴﹣x2+3x=2.即x2﹣3x+2=0.解之,得x1=2,x2=1(不合题意,舍去)∴当P点的坐标为(2,3)时,四边形DCEP是平行四边形.解法2:要使四边形DCEP是平行四边形,必需有BP∥CE.设直线CE的函数关系式为y=x+b.∵直线CE经过点C(1,0),∴0=1+b,∴b=﹣1.∴直线CE的函数关系式为y=x﹣1.∴得x2﹣3x+2=0.解之,得x1=2,x2=1(不合题意,舍去)∴当P点的坐标为(2,3)时,四边形DCEP是平行四边形.点评:此题考查了用待定系数法求函数解析式以及函数图象上点的坐标特征,结合图形有利于解答;(3)是一道存在性问题,有一定的开放性,需要先假设点P存在,然后进行验证计算.第21页(共21页)。