2013--2-1培优方程与不等式培优
- 格式:doc
- 大小:225.12 KB
- 文档页数:6
方程与不等式的应用大题专练(真题6道模拟30道)【方法归纳】题型概述,方法小结,有的放矢考点考查年份考查频率方程与不等式的应用(大题)2012、2013、2014、2015、2016/2019 十年5考方程与不等式的应用是北京中考以前常考的内容,主要考查分式方程的应用,同时也有可能会考查一元二次方程的应用、方程组的应用、不等式的应用.1、列方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.2、要掌握常见问题中的基本关系,如行程问题:速度=路程/时间,工作量问题:工作效率=工作量/工作时间,销售问题:利润=售价-进阶=进件×(1+利润率),总利润=单件利润×销售量等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.【典例剖析】典例精讲,方法提炼,精准提分【例1】(2015·北京·中考真题)为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25000辆,租赁点600个.预计到2015年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2013年成平均每个租赁点的公租自行车数量的1.2倍.预计2015年底,全市将租赁点多少个?【例2】(2019·北京·中考真题)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i =1,2,3,4;①对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组第4组x4x4x4①每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为______;(3)7天后,小云背诵的诗词最多为______首.【真题再现】必刷真题,关注素养,把握核心1.(2012·北京·中考真题)列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.2.(2014·北京·中考真题)列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.3.(2013·北京·中考真题)列方程或方程组解应用题:某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务.若每人每小时绿化面积相同,求每人每小时的绿化面积.4.(2016·北京·中考真题)阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011-2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约_____________亿元,你的预估理由_____________.【模拟精练】押题必刷,巅峰冲刺,提分培优一、解答题1.(2022·北京十一学校一分校模拟预测)列分式方程解应用题:截止到2020年11月23日,全国832个国家级贫困县全部脱贫摘帽.某单位党支部在“精准扶贫”活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗.已知每棵乙种树苗的价格比甲种树苗的价格贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,求甲、乙两种树苗每棵的价格.2.(2020·北京朝阳·三模)通过使用手机app购票,智能闸机、手持验票机验票的方式,能够大大缩短游客排队购票、验票的等待时间,且操作极其简单,已知某公园采用新的售票、验票方式后,平均每分钟接待游客的人数是原来的10倍,且接待5000名游客的入园时间比原来接待600名游客的入园时间还少5分钟,求该公园原来平均每分钟接待游客的人数.3.(2021·北京·101中学三模)在“新冠”期间,某小区物管为预防业主感染传播购买A型和B型两种3M口罩,购买A型3M口罩花费了2500元,购买B型3M口罩花费了2000元,且购买A型3M口罩数量是购买B型3M口罩数量的2倍,已知购买一个B型3M口罩比购买一个A型3M口罩多花3元.则该物业购买A、B两种3M口罩的单价为多少元?4.(2022·北京四中九年级开学考试)今年通州区在老旧小区改造方面取得了巨大成就,人居环境得到了很大改善.如图,某小区规划在长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中的小路分别与AB和AD平行,其余部分种草.通过测量可知草坪的总面积为112m2,求小路的宽.5.(2022·北京丰台·九年级期末)某校举办了“冰雪运动进校园”活动,计划在校园一块矩形的空地上铺设两块完全相同的矩形冰场.如下图所示,已知空地长27m,宽12m,矩形冰场的长与宽的比为4:3,如果要,并且预留的上、下通道的宽度相等,左、中、右通道的宽度相等,那么预使冰场的面积是原空地面积的23留的上、下通道的宽度和左、中、右通道的宽度分别是多少米?6.(2022·北京东城·九年级期末)为了改善小区环境,某小区决定在一块一边靠墙(墙长25m)的空地上修建一个矩形小花园ABCD,小花园一边靠墙,另三边用总长40m的栅栏围住,如下图所示.若设矩形小花园AB边的长为x m,面积为ym2.(1)求y与x之间的函数关系式;(2)当x为何值时,小花园的面积最大?最大面积是多少?7.(2021·北京市三帆中学九年级期中)刘师傅开了一家商店,今年2月份盈利2500元,4月份的盈利达到3600元,且从2月到4月,每个月盈利的增长率相同.(1)求每个月盈利的增长率;(2)按照这个增长率,请你估计这家商店5月份的盈利将达到多少元?8.(2021·北京师范大学第二附属中学西城实验学校九年级期中)学生会要组织“西实杯”篮球赛,赛制为单循环形式(每两队之间都赛一场).(1)如果有4支球队参加比赛,那么共进行______场比赛;(2)如果全校一共进行36场比赛,那么有多少支球队参加比赛?9.(2021·北京市鲁迅中学九年级期中)某水果店出售一种进价为每千克10元的热带水果,原售价为每千克20元.(1)连续两次降价后,每千克售价16.2元,若每次下降的百分率相同,求每次下降的百分率.(2)这种水果每月的销售量y(千克)与销售单价x(元)之间存在着一次函数关系:y=-10x+200,当销售单价为多少元时,每月可获得最大利润?10.(2022·北京昌平·模拟预测)佳佳果品店刚试营业,就在批发市场购买某种水果销售,第一次用1200元购进若干千克水果,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用1500元所购买的数量比第一次多10千克.求第一次该种水果的进价是每千克多少元?11.(2022·北京四中九年级阶段练习)某单位党支部在“精准扶贫”活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗.已知每棵乙种树苗的价格比甲种树苗的价格贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,求甲、乙两种树苗每棵的价格.12.(2021·北京西城·一模)奥林匹克森林公园南园(奥森南园)是深受北京长跑爱好者追捧的跑步地点.小华和小萱相约去奥森南园跑步踏青,奥森南园有5千米和3千米的两条跑道(如图所示).小华选择了5千米的路线,小萱选择了3千米的路线,已知小华平均每分钟比小萱平均每分钟多跑100米,两人同时出发,结果同时到达终点.求小萱的速度.13.(2021·北京·九年级专题练习)列方程解应用题开展“光盘行动”,拒绝“舌尖上的浪费”,已成为一种时尚.某学校食堂为了激励同学们做到光盘不浪费,提出如果学生每餐做到光盘不浪费,那么餐后奖励香蕉或橘子一份.近日,学校食堂花了2800元和2500元分别采购了香蕉和橘子,采购的香蕉比橘子多150千克,香蕉每千克的价格比橘子每千克的价格低30%,求橘子每千克的价格.14.(2021·北京·九年级专题练习)国家实施高效节能电器的财政补贴政策,某款空调在政策实施后,客户每购买一台可获得补贴500元,若同样用6万元购买此款空调,补贴后可购买的台数比补贴前多20%.该款空调补贴前的售价为每台多少元?15.(2021·北京·九年级专题练习)列方程解应用题为了提高学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,某校开展了“阳光体育天天跑活动”,初中男生、女生分别进行1000米和800米的计时跑步.在一次计时跑步中,某班一名女生和一名男生的平均速度相同,且这名女生跑完800米所用时间比这名男生跑完1000米所用时间少56秒,求这名女生跑完800米所用时间是多少秒.16.(2021·北京·九年级专题练习)某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请直接写出该公司的采购方案.17.(2012·北京海淀·中考模拟)某商场计划经销A、B两种新型节能台灯共50盏,这两种台灯的进价、售价如表所示:A型B型进价(元/盏)4065售价(元/盏)60100(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少购进B 种台灯多少盏?18.(2021·北京·九年级专题练习)列方程组或不等式解决实际问题某汽车专卖店销售A,B两种型号的新能源汽车,上周和本周的销售情况如下表:时间A型B型销售额型号上周1辆2辆70万元本周3辆1辆80万元(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?19.(2021·北京·九年级专题练习)某道路规划为城市主干路,全长7.6千米.如果该任务由甲、乙两工程队先后接力完成.甲工程队每天修建道路0.02千米,乙工程队每天修建道路0.01千米,两工程队共需修建560天,求甲、乙两工程队分别修建道路多少千米?根据题意,小刚同学列出了一个尚不完整的方程组{x+y= (x)0.02+y0.01=...(1)根据小刚同学列的方程组,请你分别指出未知数x,y表示的意义:x表示,y表示.(2)小红同学“设甲工程队的工作时间为x天,乙工程队的工作时间为y天”,请你利用小红同学设的未知数求甲、乙两工程队分别修建道路的长度.20.(2021·北京·九年级专题练习)商场正在销售帐篷和棉被两种防寒商品,已知购买1顶帐篷和2床棉被共需300元,购买2顶帐篷和3床棉被共需510元.(1)求1顶帐篷和1床棉被的价格各是多少元?(2)某部门准备购买这两种防寒商品共80件,要求每种商品都要购买,且帐篷的数量多于40顶,但因为资金不足,购买总金额不能超过8500元,请问共有几种购买方案?(要求写出具体的购买方案).21.(2022·北京·九年级单元测试)小志从甲、乙两超市分别购买了10瓶和6瓶cc饮料,共花费51元;小云从甲、乙两超市分别购买了8瓶和12瓶cc饮料,且小云在乙超市比在甲超市多花18元,在小志和小云购买cc饮料时,甲、乙两超市cc饮料价格不一样,若只考虑价格因素,到哪家超市购买这种cc饮料便宜?请说明理由.22.(2020·北京·首都师范大学附属中学九年级阶段练习)2018年9月17日世界人工智能大会在.上海召开,人工智能的变革力在教育、制造等领域加速落地.在某市举办的一次中学生机器人足球赛中,有四个代表队进入决赛,决赛中,每个队分别与其它三个队进行主客场比赛各一场(即每个队要进行6场比赛),以下是积分表的一-部分.(说明:积分=胜场积分十平场积分+负场积分)(1)D代表队的净胜球数m=______;(2)本次决赛中,胜一场积______分,平一场积______分,负一场积_______分;(3)此次竞赛的奖金分配方案为:进入决赛的每支代表队都可以获得参赛奖金6000元;另外,在决赛期间,每胜一场可以再获得奖金2000元,每平一场再获得奖金1000元.请根据表格提供的信息,求出冠军A 队一共能获得多少奖金.23.(2021·北京·九年级专题练习)某校举办初中生数学素养大赛,比赛共设四个项目:七巧拼图、趣题巧解、数学应用和魔方复原,每个项目得分都按一定百分比折算后记入总分,并规定总分在85分以上(含85分)设为一等奖.如表为甲、乙、丙三位同学的得分情况(单位:分),其中甲的部分信息不小心被涂黑了. 项目得分项目 学生 七巧拼图趣题巧解数学应用魔方复原折算后总分甲 66 95 68乙 66 80 60 68 70 丙 6690806880据悉,甲、乙、丙三位同学的七巧拼图和魔方复原两项得分折算后的分数之和均为20分.设趣题巧解和数学应用两个项目的折算百分比分别为x 和y ,请用含x 和y 的二元一次方程表示乙同学“趣题巧解和数学应用”两项得分折算后的分数之和为 ;如果甲获得了大赛一等奖,那么甲的“数学应用”项目至少获得 分. 24.(2020·北京市第一六一中学模拟预测)在抗击新冠肺炎疫情期间,老百姓越来越依赖电商渠道获取必要的生活资料.石经营的水果店也适时加入了某电商平台,并对销售的水果中的部分(如下表)进行 促销:参与促销的水果免配送费且一次购买水果的总价满 128 元减 x 元.每笔订单顾客网上支付成功后,小石会得到支付款的80%.(1)当x=8时,某顾客一次购买苹果和车厘子各 1 箱,小石会得到 ______________元;(2)在促销活动中,为保障小石每笔订单所得到的金额不低于促销前总价的七折,则 x 的最大值为_____ . 参入促销水果水果 促销单价 苹果 58元/箱 粑粑柑70元/箱车厘子100元/箱火龙果48元/箱25.(2020·北京·101中学九年级阶段练习)我国的传统佳节端午节,历来有吃“粽子”的习俗,某食品加工厂拥有A、B两条不同的粽子生产线,原计划A生产线每小时加工粽子400个,B生产线每小时加工粽子500个.(1)若生产线A,B一共加工12小时,且生产粽子总数量不少于5500个,则B生产线至少加工多少小时?(2)原计划A,B生产线每天均工作8小时,由于受其它原因影响,在实际生产过程中,A生产线每小时比原计划少生产100a个(a>0),B生产线每小时比原计划少生产100个,为了尽快将粽子投放到市场,A生产线每天比原计划多工作2a小时,B生产线每天比原计划多工作a小时,这样一天恰好生产粽子6400个,求a的值.26.(2020·北京石景山·二模)在抗击新冠肺炎疫情期间,老百姓越来越依赖电商渠道获取必要的生活资料.小石经营的水果店也适时加入了某电商平台,并对销售的水果中的部分(如下表)进行促销:参与促销的水果免配送费且一次购买水果的总价满128元减x元.每笔订单顾客网上支付成功后,小石会得到支付款的80%.参与促销水果水果促销前单价苹果58元/箱耙耙柑70元/箱车厘子100元/箱火龙果48元/箱(1)当x=8时,某顾客一次购买苹果和车厘子各1箱,需要支付_____元,小石会得到______元;(2)在促销活动中,为保障小石每笔订单所得到的金额不低于促销前总价的七折,则x的最大值为_____.27.(2021·北京·101中学九年级开学考试)在我市“青山绿水”行动中,某社区计划对面积为3600m2的区域进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,如果两队各自独立完成面积为600m2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天各能完成多少面积的绿化;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,社区要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?28.(2022·北京·景山学校九年级阶段练习)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i =1,2,3,4;①对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组第4组x4x4x4①每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为______;(3)7天后,小云背诵的诗词最多为______首.29.(2021·北京·九年级专题练习)某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆12万元,面包车每辆8万元,公司可投入的购车款不超过100万元;(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为250元,每辆面包车的日租金为150元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于2000元,那么应选择以上哪种购买方案?30.(2021·北京·九年级专题练习)小宜跟几位同学在某快餐厅吃饭,如图为此快餐厅的菜单.若他们所点的餐食总共为10份盖饭,x杯饮料,y份凉拌菜.11(1)他们点了 份A 套餐, 份B 套餐, 份C 套餐(均用含x 或y 的代数式表示); (2)若x =6,且A 、B 、C 套餐均至少点了1份,则最多有几种点餐方案.12。
一元一次不等式(组)与方程(组)的结合培优资料考点·方法·破译1.进一步熟悉二元一次方程组的解法,以及一元二次不等式组的解法.2.综合运用一元一次不等式组和二元一次方程组解决一些典型的实际问题.经典·考题·赏析【例1】求方程3x +27=17的正整数解.【解法指导】一般地,一个二元一次方程有无数个解,但它的特殊解是有限个,如一个二元一次方程的正整数解,非负整数解都是有限个.求不定方程的正(非负)整数解时,往往借助不等式,整数的奇偶性等相关知识来帮助求解.解:将方程变形为2y =17-3x 即2317x y -= ∵y >0 ∴2317x ->0 ∴x <317即x <325 又∵y 为正整数(即2317x -为整数) ∴17-3x 为偶数∴x 必为奇数∴x =1,3,5当x =1时,7213172317=⨯-=-=x y 当x =3时,4233172317=⨯-=-=x y 当x =5时,1253172317=⨯-=-=x y故原方程的正整数解为错误! 或错误! 或错误!【变式题组】01.求下列各方程的正整数解:⑴2x +y =10(2) 3x +4y =2102.有10个苹果,要分给两个女孩和一个男孩,要求苹果不得切开,且两个女孩所得的苹果数相等,每个孩子都有苹果吃,问有哪几种分法?【例2】足球联赛得分规定如下:胜1场得3分,平1场得1分,负1场得0分•某队在足球联赛的4场比赛中得6分,这个队胜了几场,平了几场,负了几场?【解法指导】本题中,所有的等量关系只有两个,而未知量有三个•因而所列方程的个数少于未知数的个数,即为不定方程组,但每个未知数量的数目必为非负整数•因此,此题的实质就是滶不定方程的非负整数解的问题.此方程组有两个方和,三个未知数,解法仍然是消元,即消去某一个未知数后,变为二元一次方程,再仿照例1的解法施行.解:设该队胜了x场,平了y场 ,负了z场,依题意可得:错误!②-①得:2x-z=2 ③变形得:z=2x-2∵0≤z≤2∴0≤2x-2≤2即1≤x≤2又x为正整数∴x=1,2相应地,y=3,0 z=0,2答:这个队胜了1场,平了3场,或胜了2,负了2场.【变式题组】01.(佳木斯)为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么可能购买甲种笔().A.11支B.9支C.7支D.5支02.一旅游团50人到一旅舍住宿,旅舍的客户有三人间、二人间、单人间三种•其中三人间的客房每人每晚20元,二人间的客房每人每晚30元,单人间的客房每人每晚50元.(1)若旅游团共住满了20间客房,问三种客房各住了几间?怎样住消费最低?(2)若该旅游团中,夫妻住二人间,单身住三人间,小孩随父母住在一起,现已知有小孩4人(每对夫妻最多只带1个小孩),单身30人,其中男性17人,有两名单身心脏病患者要求住单人间,问这一行人共需多少间客房?【例3】已知:关于x、y的方程组错误!若x>y,求a的取值范围.【解法指导】解本题的指导思想就是构建以a为未知数的不等式•解之即得a的取值范围,构建不等式的依据就是x>y,而解方程组即可用a的代数式分别表示x和y,进而可得不等式.解:解方程组错误!得错误!∵x>y∴2a+1>a-2 解得a>-3故a的取值范围是a>-3.【变式题组】01.已知:关于x的方程3x-(2a-3) =5x+(3a+6)的解是负数,则a的取值范围是_____.02.已知:关于x、y的方程组错误!的解为非负数.(1)求a的取值范围;(2)化简|4a+5|-|a-4|.03.当m 为何值时,关于x 的方程2153166--=--m x m x 的解大于1?4.已知方程组错误! 的解x 、y 都是正数,且x 的值小于y 的值,求m 的取值范围.【例4】(凉州)若不等式{x -a >2,b -2x >0 的解集是-1<x <1,求(a +b )2009的值. 【解法指导】解此不等式组得a +2<x <2b ,而依题意,该不等式的解集又是-1<x <1,而解集是唯一的,因此两解集的边界点分别“吻合”,从而得两等式即得方程组,解之可得a 、b 之值.解:解不等式组错误! 得a +2<x <2b 又∵此不等式组的解集是-1<x <1∴ 错误! 解设错误!∴(a +b )2009=(-1)2009=-1【变式题组】 01.若错误! 的解集为-1<x <2,则a =___________,b =_____________.02.已知:关于x 的不等式组错误!的解集为3≤x <5,则a b 的值为( ) A .-2 B .21- C .-4 D . 41- 03.若关于x 的不等式组错误! 的解集为x <2,则a 的取值范围是___________.04.已知:不等式组错误! 的解庥为-1<x <2,求(a +b )2008的值.【例5】(永春)商场正在销售“福娃"玩具和徽章两种奥运商品,已知购买1盒“福娃”玩具和2盒徽章共需145元;购买2盒“福娃”玩具和3盒徽章共需280元•(1)一盒“福娃"玩具和一盒徽章的价格各是多少元?(2)某公司准备购买这两种奥运商品共20盒送给幼儿园(要求每种商品都要购买),且购买金额不能超过450元,请你帮该公司设计购买方案•【解法指导】本题属材料选择类的方程与不等式结合的实际应用题,但方程组与不等式组是分开的•分析可知:第(1)问只需依照题目主干所提供的两个等量关系即可列出二元一次方程组•第(2)问由题目所给不等关系“购买金额不能超过450元”及第(1)问所求出的数据列出不等式,从而求解•解:(1)设一盒“福娃"玩具和一盒徽章的价格分别为x元和y元.依题意,得错误!解得错误!答:一盒“福娃”玩具和一盒徽章的价格分别是125元和10元.(2)设购买“福娃”玩具m盒,则购买徽章(20-m)盒.由题意,得125m+10(20-m)≤450,解得m≤2。
初二年级数学不等式培优一、细心选一选:(每题3分,共18分)1. 若x >y ,则下列不等式中成立的是 ( )(A ) x+a < y+b (B )ax <by (C )a 2x >b 2y (D )a-x <a-y2. 高钙牛奶的包装盒上注明“每100克内含钙≥150毫克”,它的含义是指 ( )A 、每100克内含钙150毫克B 、每100克内含钙不低于150毫克C 、每100克内含钙高于150毫克D 、每100克内含钙不超过150毫克3.由x <y 得到ax >ay ,则a 的取值范围是 ( )A .a >0B .a <0C .a ≥0D .a ≤04.关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是 ((A )0 (B )-3 (C )-2 (D )-15.如果不等式组⎩⎨⎧><m x x 8有解,那么m 的取值范围是 ( ) A m >8 B m≥8 C m <8 D m≤86.已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为3≤x <5,则a b 的值为 ( ) A .-2 B .- 21 C .-4 D .-41 二.仔细填一填:(每题3分,共18分)7.若关于x 的一元一次不等式组0122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( ) 8.若a b ,则2____2a b --(填"","",""= )9.三个连续正整数的和不大于12.这样的正整数有 组.10.不等式组⎪⎩⎪⎨⎧≥->+14125x x 的非负整数解是__ ___。
11.已知不等式:①1x >,②4x >,③2x <,④21x ->-,从这四个不等式中取两个,构成正整数解是2的不等式组是 .(填写序号)12.如果不等式3x -m ≤0的正整数解是1,2,3,那么m 的范围是__ ___。
专题16 不等式(组)阅读与思考客观世界与实际生活既存在许多相等关系,又包含大量的不等关系,方程(组)是研究相等关系的重要手段,不等式(组)是探求不等关系的基本工具,方程与不等式既有相似点,又有不同之处,主要体现在:1. 解一元一次不等式与解一元一次方程类似,但解题时要注意两者之间的重要区别;等式两边都乘(或除)以同一个数时,只要考虑这个数是否为零,而不等式两边都乘以(或除以)同一个数时,不但要考虑这个数是否为零,而且还要考虑这个数的正负性.2. 解不等式组与解方程组的主要区别是:解方程组时,我们可以对几个方程进行“代入”或“加减”式的加工,但在解不等组时,我们只能对某个不等式进行变形,分别求出每个不等式的解集,然后再求公共部分.通俗地说,解方程组时,可以“统一思想”,而解不等式组时只能“分而治之”.例题与求解【例1】已知关于x 的不等式组⎪⎩⎪⎨⎧<-+->-+x t x x x 235352恰好有5个整数解,则t 的取值范围是( ) A 、2116-<<-t B 、2116-<≤-t C 、2116-≤<-t D 、2116-≤≤-t(2013 年全国初中数学竞赛广东省试题)解题思路:把x 的解集用含t 的式子表示,根据题意,结合数轴分析t 的取值范围.【例2】如果关于x 的不等式71005)2(<>---x n m x n m 的解集为那么关于x 的不等式)0(≠>m n mx 的解集为 .(黑龙江省哈尔滨市竞赛试题)解题思路:从已知条件出发,解关于x 的不等式,求出m ,n 的值或m ,n 的关系.【例3】已知方程组⎩⎨⎧=+=-62y mx y x 若方程组有非负整数解,求正整数m 的值.(天津市竞赛试题) 解题思路:解关于x ,y 的方程组,建立关于m 的不等式组,求出m 的取值范围.【例4】已知三个非负数a ,b ,c 满足3a +2b +c =5和2a +b -3c =1,若m=3a +b -7c ,求m 的最大值和最小值.(江苏省竞赛试题)解题思路:本例综合了方程组、不等式(组)的知识,解题的关键是用含一个字母的代数式表示m ,通过解不等式组,确定这个字母的取值范围,在约束条件下,求m 的最大值与最小值.【例6】设765,4321,,,,,x x x x x x x 是自然数,7654321x x x x x x x <<<<<<,654543432321,,,x x x x x x x x x x x x =+=+=+=+,2010,7654321765=++++++=+x x x x x x x x x x 又,求321x x x ++的最大值.(“希望杯”邀请赛试题)解题思路:代入消元,利用不等式和取整的作用,寻找解题突破口.【例6】已知实数a ,b 满足,10,41≤-≤≤+≤b a b a 且a -2b 有最大值,求8a +2003b 的值.解题思路:解法一:已知a -b 的范围,需知-b 的范围,即可知a -2b 的最大值得情形.解法二:设a -2b =m (a +b )+n (a -b )=(m +n )a +(m -n )b能力训练A 级1、已知关于x 的不等式4321432≥-≤+x mx x m 的解集是那么m 的值是 (“希望杯”邀请赛试题)2、不等式组⎩⎨⎧<->+5242b x a x 的解集是20<<x ,那么a +b 的值为(湖北省武汉市竞赛试题)3、若a +b <0,ab <0,a <b ,则b b a a --,,,的大小关系用不等式表示为(湖北省武汉市竞赛试题)4、若方程组⎩⎨⎧+=++=+36542m y x m y x 的解x ,y 都是正数,则m 的取值范围 是(河南省中考试题) 5、关于x 的不等式x a ax +>+33的解集为3-<x ,则a 应满足( ) A 、a >1 B 、a <1 C 、1≥a D 、1≤a(2013年全国初中数学竞赛预赛试题)6、适合不等式21414312-≥+->-x x x 的x 的取值的范围是( )7、已知不等式0)2)(1(>+-x mx 的解集23-<<-x 那么m 等于( ) A 、31B 、31- C 、3 D 、-3 8、已知0≠a ,下面给出4个结论:①012>+a ;②012<-a ;③1112>+a ④1112<-a ,其中,一定成立的结论有( )A 、1个B 、2个C 、3个D 、4个(江苏省竞赛试题)9、当k 为何整数值时,方程组 ⎩⎨⎧-=-=+k y x y x 3962有正整数解? (天津市竞赛试题)10、如果⎩⎨⎧==21y x 是关于x ,y 的方程08)12(2=+-+-+by ax by ax 的解,求不等式组⎪⎩⎪⎨⎧+<-+>-331413x ax bx a x 的解集11、已知关于x 的不等式组⎪⎩⎪⎨⎧<≥-203b x a x 的整数解有且仅有4个:-1,0,1,2那么,适合这个不等式组的所有可能的整数对(a ,b )共有多少个?(江苏省竞赛试题)B 级1、如果关于x 的不等式03≥+ax 的正整数解为1,2,3那么a 的取值范围是(北京市”迎春杯“竞赛试题)2、若不等式组⎩⎨⎧-≥-≥+2210x x a x 有解, 则a 的取值范围是___________.(海南省竞赛试题)3、已知不等式03≤-a x 只有三个正整数解,那么这时正数a 的取值范围为 .(”希望杯“邀请赛试题)4、已知1121<-<-x 则12-x的取值范围为 .(“新知杯”上海市竞赛试题)5、若正数a ,b ,c 满足不等式组 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<<+<<+<b c a b a c b a c b a c 4112535232611,则a ,b ,c 的大小关系是( )A 、a <b <cB 、 b <c <aC 、c <a <bD 、不确定(“祖冲之杯”邀请赛试题)6、一共( )个整数x 适合不等式99992000≤+-x xA 、10000B 、20000C 、9999D 、80000(五羊杯“竞赛试题)7、已知m ,n 是整数,3m +2=5n +3,且3m +2>30,5n +3<40,则mn 的值是( )A 、70B 、72C 、77D 、84 8、不等式5+>x x 的解集为( )A 、25<x B 、25>x C 、25-<x D 、25->x(山东省竞赛试题)9、31,2351312++---≥--x x xx x 求已知的最大值和最小值. (北京市”迎春杯”竞赛试题)10、已知x ,y ,z 是三个非负有理数,且满足3x +2y +z =5,x +y -z =2,若s =2x +y -z ,求s 的取值范围.(天津市竞赛试题)11、求满足下列条件的最小正整数n ,对于n 存在正整数k 使137158<+<k n n 成立.12、已知正整数a ,b ,c 满足a <b <c ,且1111=++cb a ,试求a ,b ,c 的值.。
1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景. 2.一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系. (3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.一、不等关系 1.不等式的概念(1)现实世界与日常生活中,与等量关系一样,不等量关系也是自然界中存在着的基本数量关系. (2)用数学符号“>”“<”“≥”“≤”连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式. 2.两个实数大小的比较(1)作差法:设a ,b ∈R ,则0a b a b >⇔->,a <b ⇔a −b <0. (2)作商法:设a >0,b >0,则a >b ⇔1a b >,a <b ⇔1ab<. 3.不等式的性质(1)实数的大小顺序与运算性质的关系 ①a >b ⇔0a b ->; ②0a b a b =⇔-=; ③a <b ⇔0a b -<. (2)不等式的性质①对称性:a b b a >⇔<;(双向性)②传递性:a >b ,b >c ⇒a c >;(单向性) ③可加性:a >b ⇔a +c >b +c ;(双向性) ④a >b ,c >d ⇒a c b d +>+;(单向性)⑤可乘性:,0a b c ac bc >>⇒>;(单向性) a >b ,c <0⇒ac <bc ;(单向性) ⑥a >b >0,c >d >0⇒ac bd >;(单向性)⑦乘方法则:()0,1n n a b a b n n >>⇒>∈≥N ;(单向性)⑧开方法则:a >b >0>n ∈N ,n ≥2).(单向性)注意:(1)应用传递性时,若两个不等式中有一个带等号而另一个不带等号,则等号无法传递. (2)可乘性中,要特别注意“乘数c ”的符号. 4.必记结论 (1)a >b ,ab >0⇒11a b<. (2)a <0<b ⇒11a b<. (3)a >b >0,0<c <d ⇒a b c d>. (4)0<a <x <b 或a <x <b <0⇒111b x a<<. (5)若a >b >0,m >0,则b b m a a m +<+;b b m a a m->-(b −m >0); a a m b b m +>+;a a m b b m-<-(b −m >0). 二、一元二次不等式及其解法 1.一元二次不等式的概念我们把只含有一个未知数,并且未知数的最高次数是2的不等式称为一元二次不等式,有下列三种形式:(1)一般式:2(0)y ax bx c a =++≠;(2)顶点式:224()(0)24b ac b y a x a a a-=++≠; (3)两根式:12()()(0)y a x x x x a =--≠.2.三个“二次”之间的关系2(,)x +∞3.一元二次不等式的解法由一元二次不等式与相应的方程、函数之间的关系可知,求一元二次不等式的解集的步骤如下: (1)变形:将不等式的右边化为零,左边化为二次项系数大于零的不等式,即20(0)ax bx c a ++>>或20(0)ax bx c a ++<>;(2)计算:求出相应的一元二次方程(20(0)ax bx c a ++=>)的根,有三种情况:0,0∆,∆∆=0<>; (3)画图:画出对应二次函数的图象的草图;(4)求解:利用二次函数的图象与x 轴的交点确定一元二次不等式的解集. 可用程序框图表示一元二次不等式的求解过程,如图.4.一元二次不等式恒成立问题(1)20(0)ax bx c a ++>≠恒成立的充要条件是:0a >且240()b ac x -<∈R . (2)20(0)ax bx c a ++≥≠恒成立的充要条件是:0a >且240()b ac x -≤∈R .(3)20(0)ax bx c a ++<≠恒成立的充要条件是:0a <且240()b ac x -<∈R . (4)20(0)ax bx c a ++≤≠恒成立的充要条件是:0a <且240()b ac x -≤∈R .(5)20ax bx c ++>恒成立的充要条件是:0a b ==且0c >或0a >且240()b ac x -<∈R . (6)20ax bx c ++<恒成立的充要条件是:0a b ==且0c <或0a <且240()b ac x -<∈R .考向一 比较大小比较大小的常用方法:(1)作差法的一般步骤是:作差,变形,定号,得出结论.注意:只需要判断差的符号,至于差的值究竟是什么无关紧要,通常将差化为完全平方式的形式或者多个因式的积的形式.(2)作商法的一般步骤是:作商,变形,判断商与1的大小,得出结论. 注意:作商时各式的符号为正,若都为负,则结果相反. (3)介值比较法:①介值比较法的理论根据是:若a >b ,b >c ,则a >c ,其中b 是a 与c 的中介值. ②介值比较法的关键是通过不等式的恰当放缩,找出一个比较合适的中介值. (4)利用单调性比较大小.(5)函数法,即把要比较的数值通过构造函数转化为该函数的函数值,然后利用函数的单调性将其进一步转化为自变量的大小问题来解决.典例1 若,,,试比较,,的大小.典例2 已知0<a <b <1,则ba ,logb a ,1log ab 的大小关系是A .1log ab <b a <log b a B .1log ab <log b a <baC .log b a <1log ab <ba D .ba <1log ab <log b a【答案】A【解析】因为0<a <b <1,所以001b a a <<=,log log 1b b a b >=,又1a >1,所以1log ab <1log 1a=0. 综上,得1log ab <ba <logb a .故选A.【名师点睛】在用介值法比较时,中介值一般是通过放缩变形,得到一个中间的参照式(或数),其放缩的手段可能是基本不等式、三角函数的有界性等.1.设a >b >0,求证:2222a b a ba b a b-->++. 考向二 求范围的问题求范围的问题需用到不等式的性质,熟记不等式性质中的条件与结论是基础,灵活运用是关键.在使用不等式的性质时,一定要注意不等式成立的前提条件,特别是不等式两端同时乘以或同时除以一个数、两个不等式相乘、一个不等式两端同时求n 次方时,一定要注意其成立的前提条件,如果忽视前提条件就可能出现错误. 学科¥网 求范围的一般思路是:(1)借助性质,转化为同向不等式相加进行解答; (2)借助所给条件整体使用,切不可随意拆分所给条件; (3)结合不等式的传递性进行求解;(4)要注意不等式同向可乘性的适用条件及整体思想的运用.典例3 设实数x ,y 满足212xy ≤≤,223x y ≤≤,则47x y的取值范围是______.【答案】[]2,27【解析】因为()324272x y x y xy⎛⎫⎪⎝⎭=,()322282714x xy y ⎛⎫≤≤≤≤ ⎪⎝⎭,, 所以47827[,][2,27]41x y ∈=.典例4 若二次函数y =f (x )的图象过原点,且)12(1f -≤≤,()314f ≤≤,求f (-2)的取值范围. 【解析】方法一:∵二次函数y =f (x )的图象过原点,∴可设2(0())f x ax bx a =+≠.易知()()11f a bf a b=+⎧⎪⎨-=-⎪⎩,∴()()()()11121112a f fb f f⎧=+-⎡⎤⎣⎦⎪⎪⎨⎪=--⎡⎤⎣⎦⎪⎩.【名师点睛】同向不等式只能相加,不能相减.2.已知正数满足20350x yx y-≤⎧⎨-+≥⎩,则142yxz-⎛⎫=⋅ ⎪⎝⎭的最小值为A.1 BC.116D.132考向三一元二次不等式的解法1.解不含参数的一元二次不等式的方法:(1)若不等式对应的一元二次方程能够因式分解,即能够转化为几个代数式的乘积形式,则可以直接由一元二次方程的根及不等号方向得到不等式的解集.(2)若不等式对应的一元二次方程能够化为完全平方式,不论取何值,完全平方式始终大于或等于零,不等式的解集易得.(3)若上述两种方法均不能解决,则应采用求一元二次不等式的解集的通法,即判别式法.2.在解答含有参数的一元二次不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,一般从如下三个方面进行考虑:(1)关于不等式类型的讨论:若二次项系数为参数,则应先考虑二次项系数是否为零,以确定不等式是一次不等式还是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式; (2)关于不等式对应的方程的根的讨论:两根(∆>0),一根(∆=0),无根(∆<0); (3)关于不等式对应的方程根的大小的讨论:121212,,x x x x x x >=<. 学#科网典例5 解下列不等式: (1)2230x x --+≥. (2)24410x x +≤+.典例6 已知函数. (1)当时,解关于的不等式;(2)若,解关于的不等式.【解析】(1)当时,,可得,,的解集为.当时,不等式的解集为;当时,不等式的解集为1{|2}x x a≤≤.3.不等式的解集为A .B .C .D .4.已知是偶函数,是奇函数,且=. (1)求和的解析式;(2)设(其中),解不等式.考向四 一元二次不等式与二次函数、一元二次方程之间关系的应用一元二次不等式与其对应的函数与方程之间存在着密切的联系.在解决具体的数学问题时,要注意三者之间的相互联系,并在一定条件下相互转换.(1)若一元二次不等式的解集为区间的形式,则区间的端点值恰是对应一元二次方程的根,要注意解集的形式与二次项系数的联系.(2)若一元二次不等式的解集为R 或∅,则问题可转化为恒成立问题,此时可以根据二次函数图象与x 轴的交点情况确定对应一元二次方程的判别式的符号,进而求出参数的取值范围. 学#科网典例7 已知函数. (1)当时,解关于a 的不等式;(2)若关于x 的不等式的解集是(-1,4),求实数a ,c 的值.典例8 已知关于的不等式2230kx x k -+<.(1)若不等式的解集为,求的值;(2)若不等式的解集为∅,求实数的取值范围.5.若不等式的解集是11,23⎛⎫-⎪⎝⎭,则的值是 A .B .C .14D .10考向五 一元二次不等式的应用对于分式不等式和高次不等式,它们都可以转化为一元二次不等式或利用一元二次不等式的思想求解. 1.分式不等式的解法若()f x 与()g x 是关于x 的多项式,则不等式()0()f xg x >(或<0,或≥0,或≤0)称为分式不等式.解分式不等式的原则是利用不等式的同解原理将其转化为有理整式不等式(组)求解.即()0()0()0()()0()0()0()f x f x f x f x g x g x g x g x ><⎧⎧>⇒⇒⋅>⎨⎨><⎩⎩或; ()0()0()0()()0()0()0()f x f x f x f x g x g x g x g x ><⎧⎧<⇒⇒⋅<⎨⎨<>⎩⎩或;()()0()0()()0()0()0()f x g x f x f x g x f x g x g x ⋅≥⎧≥⇒⇒⋅>=⎨≠⎩或; ()()0()0()()0()0()0()f x g x f x f x g x f x g x g x ⋅≤⎧≤⇒⇒⋅<=⎨≠⎩或.对于形如()()f xg x >a (或<a )的分式不等式,其中a ≠0,求解的方法是先把不等式的右边化为0,再通过商的符号法则,把它转化为整式不等式求解. 2.高次不等式的解法不等式的最高次项的次数高于2的不等式称为高次不等式.解高次不等式常用的方法有两种:(1)将高次不等式()0(0)f x ><中的多项式()f x 分解成若干个不可约因式的乘积,根据实数运算的符号法则,把它等价转化为两个或多个不等式(组).于是原不等式的解集就是各不等式(组)解集的并集. (2)穿针引线法:①将不等式化为标准形式,一端为0,另一端为一次因式(因式中x 的系数为正)或二次不可约因式的乘积; ②求出各因式的实数根,并在数轴上标出;③自最右端上方起,用曲线自右向左依次由各根穿过数轴,遇奇次重根穿过,遇偶次重根穿而不过(奇过偶不过);④记数轴上方为正,下方为负,根据不等式的符号写出解集.典例9 不等式()()23310x x x --+>的解集为_________. 【答案】()1,0,33⎛⎫-∞ ⎪⎝⎭【解析】不等式()()23310x x x --+>可转化为,且方程()()3310x x x -+=的根为12310,3,3x x x ===-, 则由穿针引线法可得原不等式的解集为()1,0,33⎛⎫-∞ ⎪⎝⎭.典例10 解关于x 的不等式:2x ax a -- <0(a ∈R ). 【解析】原不等式等价于:(x -a )(x -a 2)<0,其对应方程的两根为x 1=a ,x 2=a 2.6.不等式102xx-≥+的解集为 A .[]2,1- B .(]2,1- C .()(),21,-∞-+∞ D .(](),21,-∞-+∞7.求下列不等式的解集: (1)25123x x x -≥--; (2)()()()3212110x x x --+<.考向六 含参不等式恒成立问题的求解策略解决含参不等式恒成立问题的关键是转化与化归思想的运用,从解题策略的角度看,一般而言,针对不等式的表现形式,有如下四种策略:(1)变换主元,转化为一次函数问题. 解决恒成立问题一定要搞清谁是主元,谁是参数.参数和未知数是相互牵制、相互依赖的关系,有时候变换主元,可以起到事半功倍的效果. 学科@网 (2)联系不等式、函数、方程,转化为方程根的分布问题.(3)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.常转化为求二次函数的最值或用分离参数法求最值.即①若()f x 在定义域内存在最大值m ,则()f x a <(或()f x a ≤)恒成立⇔a m >(或a m ≥); ②若()f x 在定义域内存在最小值m ,则()f x a >(或()f x a ≥)恒成立⇔a m <(或a m ≤);③若()f x 在其定义域内不存在最值,只需找到()f x 在定义域内的最大上界(或最小下界)m ,即()f x 在定义域内增大(或减小)时无限接近但永远取不到的那个值,来代替上述两种情况下的m ,只是等号均可以取到. (4)转化为两个函数图象之间的关系,数形结合求参数. 在不等式恒成立问题的处理中,若能画出不等式两边相应的函数图象,恒成立的代数问题立即变得直观化,等价的数量关系式随之获得,数形结合可使求解过程简单、快捷.典例11 已知二次函数,且不等式的解集为,对任意的都有恒成立. (1)求的解析式;(2)若不等式在上有解,求实数的取值范围.∵,∴2212223x x x k -≤-⋅+,设,则22tk t ≤+,又∵2122t t t t=≤++即时取得最大值,∴,即实数的取值范围为⎛-∞⎝⎦. 典例12 已知函数()21f x mx mx =--.(1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围; (2)若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围.8.若不等式对任意恒成立,则实数的取值范围是A .B .C .D .9.若函数的定义域为,则实数的取值范围为A .B .C .D .1.设,则下列结论中正确的是A .c c a b< B .11ac bc> C .a c b c <D .22ac bc >2.设 4.20.60.60.6,7,log 7a b c ===,则,,a b c 的大小关系是 A .c b a << B .c a b << C .b c a << D .a b c <<3.不等式()2521x x +≥-的解集是A .13,2⎡⎤-⎢⎥⎣⎦B .1,32⎡⎤-⎢⎥⎣⎦ C .(]1[,1)1,32D .(]1,11,32⎡⎫-⎪⎢⎣⎭4.实数,,满足且,则下列关系式成立的是 A . B . C .D .5.已知的大小关系为A .B .C .D .的大小关系不确定,与的取值有关6.设集合,则A .B .C .D .7.已知15,13a b a b ≤+≤-≤-≤,则32a b -的取值范围是 A .[]6,14- B .[]2,14- C .[]2,10-D .[]6,10-8.若不等式222424ax ax x x +-<+对任意实数x 均成立,则实数a 的取值范围是 A .(2,2)- B .(,2)(2,)-∞-+∞C .(2,2]-D .(,2]-∞- 9.已知下列四个条件:①;②;③;④,能推出11a b<成立的有 A .1个 B .2个 C .3个D .4个10.若关于的不等式23x ax a --≤-的解集不是空集,则实数的取值范围是A .[2,+∞)B .(-∞,-6]C .[-6,2]D .(-∞,-6]∪[2,+∞) 11.已知不等式的解集是,则不等式的解集是A .B .C .D .12.已知函数=的定义域是一切实数,则m 的取值范围是A .0<m ≤4B .0≤m ≤1C .m ≥1D .0≤m ≤413.设,a b 是不相等的正数,x y ==,则,x y 的大小关系是___________.(用“<”连接) 14.不等式的解集是___________.15.已知实数,则的取值范围是___________.16.函数()()2log 23(0,1)f x x x a a =-->≠的定义域为___________.17.已知关于的不等式的解集为,则__________. 18.已知实数满足:,,则的最小值是___________.19.若关于x 的不等式()()221121k x k x x x -+-+++>0的解集为R ,则k 的取值范围为___________.20.已知0a b >>,0c d <<,0e <,试比较e a c -与eb d-的大小.21.已知11222x y +≤-≤,12-≤3x+y ≤12,求9x+y 的取值范围.22.解下列不等式:(1);(2).23.已知不等式的解集为.(1)求实数的值;(2)若不等式的解集为,不等式的解集为,且,求实数的取值范围.24.已知不等式的解集是.(1)求,的值; (2)解不等式0c xax b->+(为常数) .25.(1)解关于的不等式a ;(2)已知不等式对一切实数恒成立,求实数的取值范围.26.已知函数.(1)若,且函数有零点,求实数的取值范围;(2)当时,解关于的不等式;(3)若正数满足,且对于任意的,恒成立,求实数的值.1.(2017新课标全国Ⅰ理科)设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z2.(2017天津理科)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(l o g 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 A .a b c << B .c b a << C .b a c <<D .b c a <<3.(2018新课标全国Ⅰ理科)已知集合{}220A x x x =-->,则A =R ð A .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <-> D .}{}{|1|2x x x x ≤-≥4.(2018新课标全国Ⅲ理科)设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+5.(2016江苏)函数y的定义域是.1.【解析】方法一:∵左边-右边=()()()()()()()()2222222[]2a b a b a b ab a b aba b aba b -+-+-=++++>0,∴原不等式得证.方法二:∵a >b >0,∴2222a b a b-+>0,a b a b -+>0, ∴22222()211a b aba b a b+==+>++左边右边, 学.科网 ∴原不等式得证. 2.【答案】C3.【答案】B【解析】由题意易得:,即,∴,∴不等式的解集为.故选B.4.【解析】(1)由题意得()()f x g x -+-=22x x --,即()()f x g x -=22x x --, 联立得()f x =22x -,()g x =x . (2)由题意得,即()23130mx m x +--<,当0m =时,30x --<,解得3x >-; 当0m ≠时,()()130mx x -+<, 对应方程的两个根为1x =1m,2x =3-, 故当0m >时,易知13m >-, 不等式的解为13x m-<<;5.【答案】A 【解析】因为不等式的解集是11,23⎛⎫-⎪⎝⎭,所以一元二次方程的解是11,23-,所以11112,2323b a a-+=--⨯=,解得,则6.【答案】B【解析】102x x -≥+等价于()()()()120120,212020x x x x x x x ⎧-+≥-+≤⎪⇒∴-<≤⎨+≠+≠⎪⎩⎧⎪⎨⎪⎩,即解集为(]2,1-.故选B.7.【解析】(1)则()()()()()()11230310x x x x x x +--⎧-≤-+≠⎪⎨⎪⎩, 由穿针引线法可知原不等式的解集为][()1,12,3-.(2)()()()3212110x x x --+<即()()()3221110x x x --+>,利用穿针引线法可知不等式()()()3212110x x x --+<)()11,1,2⎛⎫-+∞ ⎪⎝⎭.8.【答案】C【解析】因为不等式对任意恒成立,所以,解得,即实数的取值范围是,故选C .9.【答案】A 【解析】对任意的,有恒成立, 所以或,得,故选A .1.【答案】D【解析】当0a b >>时,110a b <<,因为0c <,所以11,c c a b ac bc>>,排除A,B; 当0a b >>时,0a b <<,所以a c b c >,排除C .选D . 2.【答案】B 【解析】∵0< 4.20.6<1,0.67>1,0.6log 7<0,∴b >a >c ,选B . 学科#网5.【答案】【解析】由题可得,111111bb ba ab b a bm a a an b b b b-----+--⎛⎫===⋅ ⎪⎝⎭.因为,所以111,1ba bab b--⎛⎫>>⎪⎝⎭,所以111ba bab b--⎛⎫⋅>⎪⎝⎭,所以,即.故选C.当02≠-a 时,要使不等式恒成立,需20a ∆-<⎧⎨<⎩,解得22<<-a .所以a 的取值范围为]2,2(-. 9.【答案】C【解析】①中,因为0b a >>,所以110b a >>,因此①能推出11a b<成立; ②中,因为0a b >>,所以0ab >,所以a b ab ab >,所以11b a>,因此②正确; ③中,因为0a b >>,所以110a b >>,所以③不正确;④中,因为0a b >>,所以a b ab ab>,所以④正确; 故选C . 10.【答案】D【解析】因为关于的不等式的解集不是空集,所以()2430a a ∆=--≥,解得或,所以实数的取值范围是(][,6,)2-∞-+∞.故选D.12.【答案】C【解析】由题意可知:恒成立,当时,不等式不一定成立;当时,应有,且,解得.综上可得,m的取值范围是m≥1.选C.13.【答案】x y<【解析】由于,a b为不相等的正数,222a bx y+==,则22y x-=24=>,所以x y<.14.【答案】【解析】由题意得,不等式可化为,所以不等式的解集为. 15.【答案】【解析】由题意可得,当时,;当时,.综上可知,.19.【答案】[1,9)【解析】∵关于x 的不等式()()221121k x k x x x -+-+++>0的解集为R ,而x 2+x +1=+>0,∴(k ﹣1)x 2+(k ﹣1)x +2>0的解集为R .当k =1时,2>0恒成立,因此k =1满足条件.当k ≠0时,可得()210(1)810k k k ∆->⎧⎨=---<⎩,解得1<k <9. 综上,可得k 的范围为[1,9).20.【解析】e a c --e b d -=()()()()()()()b acde e b d a c a c b d a c b d ⎡⎤-+---+⎣⎦=----,0a b >>,0c d <<,∴0,0,0,0b a b d a c c d -<->->-<.又0e <,∴0e e a c b d ->--,∴e ea cb d>--. 21.【解析】方法一:设a (2x+y )+b (3x+y )=9x+y ,则2a+3b =9,a+b =1,22.【解析】(1),即,学……科网所以,即解集为.(2)分式不等式移项得2203xx+->-,即()23233xxx x-+->--,即343xx->-,即343xx-<-,根据穿针引线法,得,所以解集为.23.【解析】(1)依题意,得1,3是方程的两根,且,所以11313aaca⎧⎪<⎪⎪+=-⎨⎪⎪⨯=⎪⎩,解得1434ac⎧=-⎪⎪⎨⎪=-⎪⎩.(2)由(1)得1434ac⎧=-⎪⎪⎨⎪=-⎪⎩,所以,即为212304x x-+->,解得,所以.又,即为,解得,所以. 因为,所以,即.所以实数的取值范围是[)2,-+∞.25.【解析】(1)∵,∴方程的两根为或.当时,,此时不等式的解集为.当时,,此时不等式的解集为.(2)当时,或.当时,符合题意;当时不符合题意,所以.当时,需满足()()22223034230m m m m m --<-+--<⎧⎪⎨⎪⎩,解得.综上可得,的取值范围是. 学#科网1.【答案】D【解析】令235(1)xyzk k ===>, 则2log x k =,3log y k =,5log z k = ∴22lg lg3lg913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <, 故选D.【名师点睛】对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.2.【答案】C【名师点睛】比较大小是高考的常见题型,指数式、对数式的大小比较要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性、奇偶性等进行大小比较,要特别关注灵活利用函数的奇偶性和单调性,数形结合进行大小比较或解不等式.3.【答案】B 【解析】解不等式得,所以,所以可以求得{}|12A x x =-≤≤R ð,故选B .4.【答案】B【解析】∵0.2log 0.3a =,2log 0.3b =,.0.3030.211log ,lo 2g a b ∴==,0.311lo 0.g 4a b ∴+=,,即, 又,,即,故选B. 5.【答案】[3,1]- 【解析】要使函数式有意义,必有2320x x --≥,即2230x x +-≤,解得31x -≤≤.故答案为[3,1]-.。
第2章 一元二次方程2.1 一元二次方程专题一 利用一元二次方程的定义确定字母的取值1.已知2(3)1m x -+=是关于x 的一元二次方程,则m 的取值范围是( ) A.m ≠3 B.m ≥3 C.m ≥-2 D. m ≥-2且m ≠32. 已知关于x 的方程21(1)(2)10m m x m x +++--=,问:(1)m 取何值时,它是一元二次方程并写出这个方程; (2)m 取何值时,它是一元一次方程?专题二 利用一元二次方程的项的概念求字母的取值3.关于x 的一元二次方程(m-1)x 2+5x+m 2-1=0的常数项为0,求m 的值.4.若一元二次方程2(24)(36)80a x a x a -+++-=没有一次项,则a 的值为 .专题三 利用一元二次方程的解的概念求字母、代数式5.已知关于x 的方程x 2+bx+a=0的一个根是-a (a≠0),则a-b 值为( ) A.-1 B.0 C.1 D.26.若一元二次方程ax 2+bx+c=0中,a -b+c=0,则此方程必有一个根为 .7.已知实数a 是一元二次方程x 2-2013x+1=0的解,求代数式22120122013a a a +--的值.知识要点:1.只含有一个未知数(一元),并且未知数的最高次数是2(二次),等号两边都是整式的方程,叫做一元二次方程.2.一元二次方程的一般形式是ax 2+bx+c=0(a ≠0),其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.3.使一元二次方程的两边相等的未知数的值,叫做一元二次方程的解,又叫一元二次方程的根. 温馨提示:1.一元二次方程概念中一定要注意二次项系数不为0的条件.2.一元二次方程的根是两个而不再是一个. 方法技巧:1.ax k +bx+c=0是一元一次方程的情况有两种,需要分类讨论.2.利用一元二次方程的解求字母或者代数式的值时常常用到整体思想,需要同学们认真领会.2.2 一元二次方程的解法专题一 利用配方法求字母的取值或者求代数式的极值1. 若方程25x 2-(k-1)x+1=0的左边可以写成一个完全平方式;则k 的值为( ) A .-9或11 B .-7或8 C .-8或9 D .8或-92.如果代数式x 2+6x+m 2是一个完全平方式,则m= .3. 用配方法证明:无论x 为何实数,代数式-2x 2+4x -5的值恒小于零.专题二 利用△判定一元二次方程根的情况或者判定字母的取值范围4.已知a ,b ,c 分别是三角形的三边,则方程(a+b )x 2+2cx+(a+b )=0的根的情况是( ) A.没有实数根 B.可能有且只有一个实数根 C.有两个相等的实数根 D.有两个不相等的实数根5.关于x 的方程kx 2+3x+2=0有实数根,则k 的取值范围是( )6.定义:如果一元二次方程ax 2+bx +c =0(a ≠0)满足a +b +c =0,那么我们称这个方程为 “凤凰”方程.已知ax 2+bx +c =0(a ≠0)是“凤凰”方程,且有两个相等的实数根,则下列结 论正确的是( ) A .a =c B .a =b C .b =c D .a =b =c 专题三 解绝对值方程和高次方程7.若方程(x 2+y 2-5)2=64,则x 2+y 2= . 8. 阅读题例,解答下题: 例:解方程x 2-|x -1|-1=0.解:(1)当x -1≥0,即x≥1时,x 2-(x -1)-1=0,∴x 2-x=0. 解得:x 1=0(不合题设,舍去),x 2=1.(2)当x -1<0,即x <1时,x 2+(x -1)-1=0,∴x 2+x -2=0. 解得x 1=1(不合题设,舍去),x 2=-2. 综上所述,原方程的解是x=1或x=-2. 依照上例解法,解方程x 2+2|x+2|-4=0.专题四 一元二次方程、二次三项式因式分解、不等式组之间的微妙联系 9.探究下表中的奥秘,并完成填空:专题五 利用根与系数的关系求字母的取值范围及求代数式的值11. 设x 1、x 2是一元二次方程x 2+4x -3=0的两个根,2x 1(x 22+5x 2﹣3)+a =2,则a = . 12.(怀化)已知x 1、x 2是一元二次方程()0262=++-a ax x a 的两个实数根,⑴是否存在实数a ,使-x 1+x 1x 2=4+x 2成立?若存在,求出a 的值;若不存在,请你说明理由; ⑵求使(x 1+1)(x 2+1)为负整数的实数a 的整数值.13.(1)教材中我们学习了:若关于x 的一元二次方程ax 2+bx+c=0的两根为x 1、x 2,x 1+x 2=-ba,x 1·x 2=ca .根据这一性质,我们可以求出已知方程关于x 1、x 2的代数式的值.例如:已知x 1、x 2为方程x 2-2x-1=0的两根,则:(1)x 1+x 2=____,x 1·x 2=____,那么x 12+x 22=( x 1+x 2)2-2 x 1·x 2=__ __. 请你完成以上的填空..........(2)阅读材料:已知2210,10m m n n --=+-=,且1mn ≠.求1mn n+的值.解:由210n n +-=可知0n ≠.∴21110n n +-=.∴21110n n --=. 又210,m m --=且1mn ≠,即1m n ≠.∴1,m n是方程210x x --=的两根.∴11m n +=.∴1mn n+=1.(3)根据阅读材料所提供的的方法及(1)的方法完成下题的解答.已知222310,320m m n n --=+-=,且1mn ≠.求221m n+的值.知识要点:1.解一元二次方程的基本思想——降次,解一元二次方程的常用方法:直接开平方法、配方法、公式法、因式分解法.2.一元二次方程的根的判别式△=b-4ac 与一元二次方程ax 2+bx+c=0(a ≠0)的根的关系: 当△>0时,一元二次方程有两个不相等的实数解; 当△=0时,一元二次方程有两个相等的实数解; △<0时,一元二次方程没有实数解.3.一元二次方程ax 2+bx+c=0(a ≠0)的两根x 1、x 2与系数a 、b 、c 之间存在着如下关系: x 1+x 2=﹣,x 1•x 2=.温馨提示: 1.x 2+6x+m 2是一个完全平方式,易误以为m=3.2.若一元二次方程ax 2+bx+c=0(a ≠0)的两根x 1、x 2有双层含义:(1)ax 12+bx 1+c=0,ax 22+bx 2+c=0;(2)x 1+x 2=﹣,x 1•x 2=.方法技巧:1.求二次三项式ax2+bx+c极值的基本步骤:(1)将ax2+bx+c化为a(x+h)2+k;(2)当a>0,k>0时,a(x+h)2+k≥k;当a<0,k<0时,a(x+h)2+k≤k.2.若一元二次方程ax2+bx+c=0的两个根为x1.x2,则ax2+bx+c=a(x﹣x1)(x﹣x2).3.解绝对值方程的基本思路是将绝对值符号去掉,所以要讨论绝对值符号内的式子与0的大小关系.4.解高次方程的基本思想是将高次方程将次转化为关于某个式子的一元二次方程求解.5.利用根与系数求解时,常常用到整体思想.2.3 一元二次方程的应用专题一、利用一元二次方程解决面积问题1.在高度为2.8m的一面墙上,准备开凿一个矩形窗户.现用9.5m长的铝合金条制成如图所示的窗框.问:窗户的宽和高各是多少时,其透光面积为3m2(铝合金条的宽度忽略不计).2.如图:要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?3. 数学的学习贵在举一反三,触类旁通.仔细观察图形,认真思考,解决下面的问题:(1)在长为a m,宽为b m的一块草坪上修了一条1m宽的笔直小路(如图(1)),则余下草坪的面积可表示为2m;(2)现为了增加美感,设计师把这条小路改为宽恒为1m的弯曲小路(如图(2)),则此时余下草坪的面积为2m;(3)聪明的鲁鲁结合上面的问题编写了一道应用题,你能解决吗?相信自己哦!(如图(3)),在长为50m,宽为30m的一块草坪上修了一条宽为xm的笔直小路和一条长恒为xm 的弯曲小路(如图3),此时余下草坪的面积为14212m.求小路的宽x.专题二、利用一元二次方程解决变化率问题4.据报道,我省农作物秸杆的资源巨大,但合理利用量十分有限,2012年的利用率只有30%,大部分秸杆被直接焚烧了,假定我省每年产出的农作物秸杆总量不变,且合理利用量的增长率相同,要5.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?6.(广元)某中心城市有一楼盘,开发商准备以每平方米7000元的价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价后,决定以每平方米5670元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开放商建议:先公布下调5%,再下调15%,这样更有吸引力.请问房产销售经理的方案对购房者是否更优惠?为什么?专题三、利用一元二次方程解决市场经济问题7.(济宁)一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?8.(南京)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的售价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部;月底厂家根据销售量一次性返利给销售公司,销售10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为万元.(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)专题四、利用一元二次方程解决生活中的其他问题9. (1)经过凸n 边形(n >3)其中一个顶点......的对角线有 条. (2)一个凸多边形共有14条对角线,它是几边形?(3)是否存在有21条对角线的凸多边形?如果存在,它是几边形?如果不存在,说明得出结论的道理.10.如图每个正方形是由边长为1的小正方形组成.正方形边长 1 3 5 7 … n (奇数)红色小正方形个数… 正方形边长 2 4 6 8 … n (偶数)红色小正方形个数…1P 2,问是否存在偶数n ,使P 2=5P 1?若存在,请写出n 的值;若不存在,请说明理由.知识要点:列方程解决实际问题的常见类型:面积问题,增长率问题、经济问题、疾病传播问题、生活中的其他问题. 温馨提示:1.若设每次的平均增长(或降低)率为x ,增长(或降低)前的数量为a ,则第一次增长(或降低)后的数量为a(1±x),第二次增长(或降低)后的数量为a(1±x)2.2.面积(体积)问题属于几何图形的应用题,解决问题的关键是将不规则图形分割或组合、平移成规则图形,找出未知量与已知量的内在联系,根据面积(体积)公式列出一元二次方程.3.列方程解决实际问题时,方程的解必须使实际问题有意义,因此要注意检验结果的合理性. 方法技巧:1.变化率问题中常用a(1±x)n=b,其中a是起始量,b是终止量,n是变出次数,x是变化率.变化率问题用直接开平方法求解简单.2.解决面积问题常常用到平移的方法,利用平移前后图形面积不变建立等量关系.。
培优点2 基本不等式的综合问题【要点提炼】利用基本不等式求最值时,要坚持“一正、二定、三相等”原则,解题时可以对条件灵活变形,满足求最值的条件要求.【典例】1 (1)已知x 2+y 2+xy =1,则x +y 的最大值是_________________________.(2)设x ≥0,y ≥0,x 2+y 22=1,则x ·1+y 2的最大值为________. (3)已知x>0,y>0,1x +2y +1=2,则2x +y 的最小值为________. 【答案】 (1)233 (2)324(3)3 【解析】 (1)由(x +y)2=xy +1,得(x +y)2≤⎝ ⎛⎭⎪⎫x +y 22+1, 则x +y ≤233(当且仅当x =y =33时取等号), 故x +y 的最大值为233. (2)x ·1+y 2=2x ·1+y 22≤2·x 2+1+y 222=2·x 2+y 22+122 =324⎝ ⎛⎭⎪⎫当且仅当x =32,y =22时取等号,故x ·1+y 2的最大值为324. (3)∵2x +(y +1)=12⎝ ⎛⎭⎪⎫1x +2y +1[2x +(y +1)] =12⎝ ⎛⎭⎪⎫2+y +1x +4x y +1+2≥4, ∴2x +y =2x +(y +1)-1≥3(当且仅当x =1,y =1时取等号),故2x +y 的最小值为3.【典例】2 记max{a ,b}为a ,b 两数的最大值,则当正数x ,y(x>y)变化时,t =max ⎩⎨⎧⎭⎬⎫x 2,25y x -y 的最小值为________. 【答案】 10【解析】 方法一 由题意知t ≥x 2,t ≥25y x -y, ∴2t ≥x 2+25yx -y , 又∵x 2+25y x -y ≥x 2+25⎣⎢⎡⎦⎥⎤y +x -y 22=x 2+100x 2 ≥20,∴2t ≥20,即t ≥10.∴当正数x ,y(x>y)变化时,t =max ⎩⎨⎧⎭⎬⎫x 2,25y x -y 的最小值为10. 方法二 由题意知t ≥x 2>0,t ≥25yx -y >0, ∴t 2≥x 2·25y x -y , 又∵x 2·25y x -y ≥x 2·25⎣⎢⎡⎦⎥⎤y +x -y 22=x 2·100x 2 =100,∴t 2≥100,即t ≥10.∴当正数x ,y(x>y)变化时,t =max ⎩⎨⎧⎭⎬⎫x 2,25y x -y 的最小值为10. 【方法总结】 (1)运用基本不等式求最值时,可通过配凑变量的系数或加减常数项出现定值,满足基本不等式求最值的条件.(2)将目标函数式中的常数用已知式进行等量代换,或者将目标函数式与已知代数式相乘,然后通过化简变形,求得目标函数的最值.【拓展训练】1.若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值是( ) A .1 B .6 C .9 D .16【答案】 B【解析】 ∵正数a ,b 满足1a +1b=1, ∴b =a a -1>0,解得a>1.同理可得b>1, ∴1a -1+9b -1=1a -1+9a a -1-1 =1a -1+9(a -1)≥21a -1·9a -1=6,当且仅当1a -1=9(a -1),即a =43时等号成立, ∴所求最小值为6.2.(2020·厦门模拟)函数y =2x -1+5-2x ⎝ ⎛⎭⎪⎫12<x<52 的最大值是________.【答案】 2 2 【解析】 y 2=(2x -1+5-2x)2=4+22x -15-2x ≤4+(2x -1)+(5-2x)=8,又y>0,所以0<y ≤22,当且仅当2x -1=5-2x ,即x =32时取等号.故函数的最大值是2 2. 3.(2020·天津)已知a>0,b>0,且ab =1,则12a +12b +8a +b的最小值为________. 【答案】 4【解析】 因为a>0,b>0,ab =1,所以原式=ab 2a +ab 2b +8a +b =a +b 2+8a +b ≥2a +b 2·8a +b =4, 当且仅当a +b 2=8a +b, 即a +b =4时,等号成立.故12a +12b +8a +b的最小值为4. 4.设a +b =2,b>0,则当a =________时,12|a|+|a|b取得最小值. 【答案】 -2【解析】12|a|+|a|b =a +b 4|a|+|a|b =a 4|a|+b 4|a|+|a|b ≥-14+2b 4|a|·|a|b =34,当且仅当b 4|a|=|a|b 且a<0,即a =-2,b =4时取等号.故当a =-2时,12|a|+|a|b取得最小值.。
高考培优 数学“一元二次函数、二次方程及二次不等式的关系”讲义编号:本讲义从以下两方面展开:1. 一元二次方程与一元二次不等式的基本解法有关一元二次方程与一元二次不等式的求解,是高考与会考考察内容的基础之一。
该部分内容或许不会独立形成题目,却是求解其他问题的基本工具。
这一部分内容,相对来说比较简单,却是最基本与最基础的,需要熟练掌握。
2. 利用一元二次函数的性质求解有关一元二次方程与一元二次不等式的问题一元二次函数是在高考以及会考当中是十分常考的一种函数,原因在于其性质比较容易研究,也相对简单。
因此,这部分内容也是基础的内容。
其主要问题大多在于一些含参数不等式(等式)恒成立(有解)条件的研究。
1. (★★★☆)已知函数2()f x x bx c =++,,b c R ∈,对于任意的x R ∈,不等式2()x b f x +≤恒成立,证明当0x ≥时,2()()f x x c ≤+2. (★★☆☆)已知不等式()22454(1)30m m x m x +---+>恒成立,求实数m 的取值范围。
知识点一:一元二次方程与一元二次不等式的基本解法✧ 子知识点一:一元二次不等式的基本解法。
一般地,对于一元二次不等式20(0)ax bx c a ++>≠,其解集有如下形式:这个表格是求解一元二次不等式问题的基础,是需要学生牢牢掌握的。
✧ 子知识点二:注意有关含参数的一元二次方程与一元二次不等式求解时的讨论。
知识点二:利用一元二次函数的性质求解有关一元二次方程与一元二次不等式的问题✧ 子知识点一:要学会利用一元二次方程的解与相应的一元二次不等式的解集之间的内在联系。
具体可以参见知识点一中的表格。
✧ 子知识点二:一元二次方不等式(方程)的恒成立问题。
一元二次不等式恒大于0,那么可知对应的二次函数开口向上且无实数零点;类似地,一元二次不等式恒小于0,那么可知对应的二次函数开口向下且无实数零点。
不过这道题需要注意的是,该不等式虽然形如一元二次不等式,但是不一定就是一元二次不等式。
方程与不等式培优六:一次方程与一次方程组 经典考题剖析:1.小王在解方程5a —x=13(x 为未知数)时,误将-x 看作+x ,得方程的解为x=-2,则原方程的解为( ) A .x=-3 B .x=0 C .x=2 D .x=1 2.若关于x 的方程233x mx x -=--无解,则m 的值为_______. 3.把一张面值50元的人民币换成10元、5元的人民币,共有_____种换法.4.解方程:(1)11262213x x =--- (2) 3582 1.x y x y +=⎧⎨-=⎩,5.某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50kg (第二次多于第一次),共付款264元,•请问张强第一次、第二次各购买香蕉多少千克?针对性训练: 1.已知方程3233x x x=---有增根,则这个增根一定是( ) A .2 B .3 C .4 D .52.关于x 的分式方程15mx =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数 C .5m <-时,方程的解为负数 D .无法确定3.已知x 、y 满足方程组⎩⎨⎧=+=+,42,52y x y x 则x -y 的值为________.4.解方程(组):(1)3)12(214)12(3-=-+x x ; (2)2(2)3(1)13,3(2)5(1)30.9x y x y +--=⎧⎨++-=⎩(3)13213231xx -=-- (4)120112x x x x-+=+-5.若关于x 的方程11ax x +--1=0无实根,则求a 的值. 购买香蕉数 (kg ) 不超过 20kg20kg 以上但 不超过40kg40kg 以上每千克价格 6元 5元 4元6.某乡积极响应党中央提出的“建设社会主义新农村”的号召,在本乡建起了农民文化活动室,现要将其装修.若甲、•乙两个装修公司合做需8天完成,需工钱8000元;若甲公司单独做6天后,剩下的由乙公司来做,还需12天完成,共需工钱7500元.若只选一个公司单独完成.从节约开支角度考虑,该乡是选甲公司还是选乙公司?请你说明理由.7.问当a 、b 满足什么条件时,方程2x+5-a=1-bx :(1)有唯一解;(2)有无数解;(3)无解。
8. 解方程11x x a ba b ab--+-=七:一元一次不等式 经典考题剖析:1.关于x 的不等式2x -a ≤-1的解集如右图所示,则a 的取值是( )A 、0B 、-3C 、-2D 、-12.小亮用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,那么小亮最多能买 支钢笔.3.解不等式31x -≥731x-,将解集在数轴上表示出来,并写出它的非正整数解.4.若不等式组⎩⎨⎧<->+2532b x a x 的解集为-1<x <1,求a •b 的值.5.已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.6、.关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.7.我们知道:只有一个未知数,并且未知数的最高次数为2的方程叫做一元二次方程,类似地,我们把只有一个未知数,并且未知数的最高次数为2的不等式叫做一元二次不等式,例如:x 2-2x-3<0就是一个一元二次不等式.下面我们讨论如何解这个一元二次不等式:解:将原不等式的左边因式分解得到:(x-3)(x+1)<0……①∵(x-3)、(x+1)既可以分别代表一个代数式,又可以分别代表一个实数,∴由 可知不等式①可化为: ⎝⎛<+>-0103x x ②或 ⎝⎛>+<-0103x x ③;不等式组②无解,不等式组③的解集为:-1<x<3,故原不等式的解集为:-1<x<3.(1)阅读并理解上述内容,并在上面的空格处填上恰当的道理;0 1 -1 -2(2)请你运用类比的方法,仿照上面的过程,解不等式:2332--x x ≤0针对性训练:1、对于整数a ,b ,c ,d ,定义bd ac c d b a -=,已知3411<<d b,则b +d 的值为_________ 2.若不等式组⎩⎨⎧->+<+1472,03x x a x 的解集为0<x ,则a 的取值范围为( )A .a >0B .a =0C .a >4D .a =43.若不等式组⎪⎩⎪⎨⎧+-132)3(21<x x x >的整数解是关于x 的方程24x ax -=的根,则a= ; 4.已知3462(2)x x ++-≤,则1x +的最小值等于 ;5.已知关于x 、y 的方程组⎩⎨⎧+=++=-9315a y x a y x 的解是正数,则a 的取值范围为 ;6.某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如右表所示.经过预算,本次购买机器所 耗资金不能超过34万元.(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?八、方程、不等式应用题经典考题剖析:1.某民营企业为支援四川地震灾区,特生产A 、B 两种型号的帐篷.若A 型帐篷每顶需篷布60平方米,钢管48米;B 型帐篷每顶需篷布125平方米,钢管80米.该企业在生产这批帐篷时恰好(不计损耗)用了篷布9900平方米,钢管6720米.问:该企业生产了A 、B 两种型号的帐篷各多少顶?2.今年5月12日,四川汶川发生了里氏8.0级大地震,给当地人民造成了巨大的损失.“一方有难,八方支援”,我市锦华中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:班级 (1)班 (2)班(3)班金额(元)2000吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元; 信息二:(2)班的捐款金额比(3)班的捐款金额多300元; 信息三:(1)班学生平均每人捐款的金额大于..48元,小于..51元. 请根据以上信息,帮助吴老师解决下列问题:(1)求出(2)班与(3)班的捐款金额各是多少元; (2)求出(1)班的学生人数.甲 乙价格(万元/台) 7 5 每台日产量(个)10060O xy l 1l 2-13(第12题图)3.某学校要印刷一批完全材料,甲印务公司提出制版费900元,•另外每份材料收印刷费0.5元;乙印务公司提出不收制版费,每份材料收印刷费0.8元.(1)分别写出两家印务公司的收费y (元)与印刷材料的份数x (份)•之间的函数关系式.(2)若学校预计要印刷5000份以内的宣传材料,请问学校应选择哪一家印务公司更合算? 针对性训练:1.某超市销售有甲、乙两种商品.甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元. (1)若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.2.金泉街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的32;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元.工程预算的施工费用为50万元.为缩短工期以减少对住户的影响,拟安排甲、乙两队合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.九、方程、不等式一、考题展示:1.直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示, 则关于x 的不等式21k x k x b >+的解集为 .2.三个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是 . 3.由于电力紧张,某地决定对工厂实行错峰用电.规定:在每天的7:00到24:00为用电高峰期,电价为a 元/kW ·h ;每天0:00到7:00为用电平稳期,电价为b 元/kW ·h ;下表为某厂4月和5月两个月的用电量和电费的情况统计表: (1)若4月份在平稳期的用电量占当月用电量的13,5月份在平稳期的用电量占当月用电量的14,求a ,b 的值. (2)若6月份该厂预计用电20万kW ·h ,为将电费探究在10万元至10.6万元之间(不含10万元和10.6万元),那么6•月份在平稳期的用电量占当月用电量的比例应控制在什么范围?针对性训练1、若对任意实数x 不等式b ax >都成立,那么a 、b 的取值范围为2.四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图3所示,则他们的体重大小关系是( )月份 用电量(万kW ·h ) 电费(万元) 4 12 6.4 5 16 8.8A .P R S Q >>>B .Q S P R >>>C .S P Q R >>>D .S P R Q >>>3.一元二次方程2(6)5x +=可转化为两个一次方程,其中一个一次方 程是65x +=,则另一个一次方程是 .4.关于的方程222(1)0x k x k +++=两实根之和为m ,且满足2(1)m k =-+,关于y 的不等式组4y y m>-⎧⎨<⎩有实数解,则k 的取值范围是______________________.5、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需15.3元;若购铅笔4支,练习本10本,圆珠笔1支共需2.4元,那么,购铅笔、练习本、圆珠笔各1件共需( )A 、2.1元 B 、05.1元 C 、95.0元 D 、9.0元6.已知关于x 的不等式ax +3>0(其中a ≠0).(1)当a =-2时,求此不等式的解,并在数轴上表示此不等式的解集;(2)小明准备了十张形状、大小完全相同的不透明卡片,上面分别写有整数-10、-9、-8、-7、-6、-5、-4、-3、-2、-1,将这10张卡片写有整数的一面向下放在桌面上.从中任意抽取一张,以卡片上的数作为不等式中的系数a ,求使该不等式没有..正整数解的概率.7、随着奥运会成功召开,福娃系列商品也随之热销.一天小林在商场看到一件奥运吉祥物的纪念品,标价为每件33元,他的身边只带有2元和5元两种面值的人民币各若干张,他买了一件这种商品. 若无需找零钱,则小林付款方式有哪几种(指付出2元和5元钱的张数)?哪种付款方式付出的张数最少?8.商场计划拨款9万元,从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元。