计算机在化学与化工中的应用
- 格式:doc
- 大小:160.50 KB
- 文档页数:5
计算机在化学化工中的应用课程设计一、前言伴随着信息技术的飞速发展,计算机已经成为现代化学化工领域的重要工具。
计算机在化学化工中的应用,不仅可以大大提高实验数据的准确性和精度,还能使化学工程师更加高效地完成工程设计和管理工作。
因此,计算机在化学化工中的应用课程设计显得尤为重要。
二、课程目标通过本课程的学习,学生可以了解到计算机在化学化工中的应用现状和发展趋势,掌握计算机在化学化工中的基本应用技术和方法,培养学生的计算机与化学化工领域的综合能力。
三、课程内容3.1 计算机在化学化工中的基本应用技术1.计算机辅助分析技术:介绍如何利用计算机进行实验数据的分析和处理,包括常见的数据处理软件和分析方法等。
2.应用数学方法:介绍在化学化工过程中常用的数学方法和工具,包括线性代数、微积分、差分方程等。
3.模拟和仿真技术:介绍如何利用计算机进行化学反应、物理传递过程、工艺流程等方面的模拟和仿真。
3.2 计算机在化学化工中的实际应用案例1.应用案例1:利用计算机模拟反应动力学,实现对某一化学反应速率规律的研究。
2.应用案例2:基于计算机视觉的边缘检测技术,实现对污水处理水质的实时监测和控制。
3.应用案例3:利用计算机自动化控制技术,实现对化学反应过程的自动控制和优化。
3.3 课程设计本课程涉及到的基本应用技术和实际应用案例,将在一个综合性的课程设计中得到实际应用。
学生可以根据自身的兴趣和实际需求,选择其中一项应用案例进行深入研究和开发。
在课程设计中,学生需要完成以下基本任务:1.掌握相关的计算机技术和化学化工理论知识,准备软硬件环境和实验数据。
2.分析选定的应用案例,并设计相应的计算机程序。
3.利用计算机进行仿真和模拟实验,收集并处理相关实验数据。
4.分析实验数据,得出相关结论,撰写相关实验报告和技术文献。
四、教学方法本课程采取讲授与实践相结合的教学方法。
讲授部分包括基础理论的讲解和实际应用案例的演示,旨在让学生了解相关技术的原理和应用场景。
计算机在化学化工中的应用计算机在化学化工中的应用是现代化学化工产业发展的重要推动力。
计算机技术的广泛应用,使得化学化工研究更加准确、高效,并促进了生产过程的自动化和控制。
本文将从控制系统、模拟与优化、分析测试和材料设计等方面介绍计算机在化学化工领域中的重要应用。
首先,计算机在化学化工控制系统中的应用可以提高生产过程的稳定性和自动化程度。
传统的生产线一般由操作员控制,容易受到人为误差的影响,并且无法实时监控和调整生产参数。
而计算机控制系统可以实时采集和分析生产过程中的各类数据,并通过反馈控制来调整参数,实现自动化的生产。
例如,在化工生产中,计算机控制系统可以监测温度、压力、流量等参数,并根据设定的规则自动调整操作参数,保证生产过程的稳定性和符合产品质量要求。
其次,计算机在化学化工模拟与优化中的应用可以帮助研究人员更好地理解和优化化学反应和生产过程。
化学反应是一个复杂的过程,受到多个参数的影响。
通过建立数学模型,研究人员可以使用计算机模拟不同参数条件下的反应动力学和产物生成情况。
这样可以有效地预测反应过程,选择最佳工艺条件,提高产物收率和降低废物产生。
另外,计算机还可以进行精确的实验数据拟合,获取反应速率常数,并用于推导动力学模型。
这为新产品的设计和工艺优化提供了可靠的依据。
第三,计算机在化学化工分析测试中的应用可以提高分析结果的准确性和速度。
化学分析是化学化工研究和生产过程中的重要环节,传统的分析方法费时费力,且对样品的数量和质量有一定的要求。
而现代的计算机分析方法可以通过光谱分析、色谱分析、电化学分析等多种技术,实现快速、准确的分析。
通过与数据库的比对,计算机可以快速确定样品中的成分和含量,并可以自动化的对多个样品进行批量处理,提高分析测试的效率。
最后,计算机在化学化工材料设计中的应用可以加速新材料的发现和开发过程。
传统的材料设计需要大量的试验和经验积累,效率较低。
而计算机材料设计方法通过计算机模拟和数据挖掘,可以预测材料的性能和应用领域。
计算机在化工中的运用前言:随着科技的发展,计算机的运用越来越广泛,在化工领域中,计算机技术也有着重要的作用。
计算机在化工领域的使用,极大的降低了工作难度,提高了工作效率。
近年来化学学科的重要成就之一是计算机在化学中的应用。
计算机与化学的结合促进了化学的发展。
本论文将主要介绍其在化学化工上4方面的运用。
一、计算机在计算机化学中的应用计算机化学(Computer chemistry)是应用计算机研究化学反应和物质变化的科学。
以计算机为技术手段,建立化学化工信息资源化和智能化处理的理论和方法,认识物质、改造物质、创造新物质,认识反应、控制反应过程和创造新反应、新过程是计算机化学研究的主体。
它的兴起与发展是与计算机技术的发展和计算机的普及紧密联系的。
计算机对化学的作用,还体现在可以用计算机技术描述已有的化学理论知识、化学反应机理、物质结构、化学实验等将计算机的多媒体技术与化学知识相结合,用来展示原子、分子、晶体的空间结构,动态性地模拟各种化学键的形成原理、过程和特性,揭示化学反应的内部机理重现特殊化学实验的全过程。
化静为动,变抽象为具体,将在真实世界中难以感觉到的虚幻世界、微观世界真实地模拟出来,使人们对化学的了解和学习进人了一个可视化的世界。
二、计算机智能化技术在化学化工中的运用专家系统是数据库与人工智能结合的产物,它把“知识规则”作为程序,让机器模拟专家的分析、推理过程,达到用机器代替或部分代替专家的效果。
具体例子有:①酸碱平衡专家系统,内容包括知识库和检索系统,提出问题时,机器自动查出数据,找到程序,进行计算、绘图、选择判断等处理,并用专业内行的语言回答问题,例如,任意溶液(包括任意种组分的混合溶液)的pH值计算,任意溶液用酸、碱进行滴定时操作规程的设计等。
②定性分析专家系统,用帕斯卡语言编写了阳离子硫化氢系统和阴离子消去法系统,学生拿到未知试样,不用学习和查阅这种古老系统,只须按照机器提示的手续进行操作,所得现象再输入机器,如此逐步处理,就会得出“试样是什么化合物”的结论。
计算机在化学工程中的应用(精选5篇)计算机在化学工程中的应用范文第1篇随着计算机硬件和软件的飞速进展,计算机的应用已深入到各个专业领域。
将计算机技术与其他学科交叉融合,形成了浩繁以计算机应用为核心的新技术、新手段和新兴学科。
将计算机科学、数学应用于化学形成了计算机在化学中的应用(又称计算机化学)这个新兴化学分支学科[1],重要讨论领域有:化学数据库技术、化学结构与化学反应的计算机处置技术、化学中的人工智能方法、计算机辅佑襄助分子设计、计算机辅佑襄助合成路线设计等[1—3]。
将计算机与应用数学、统计学和计算机科学交叉融合形成了化学计量学这个新兴化学分支学科[1—4],其基本任务是讨论运用数学、统计学、计算机科学、其他相关学科的理论与方法优化化学量测过程,并从化学量测数据中最大限度地取得有用的化学信息[4]。
将计算机和计算机网络技术应用于化学信息处置形成了化学信息学这个新兴化学分支学科。
它利用计算机技术和计算机网络技术,对化学信息进行表示、管理、分析、模拟和传播,以实现化学信息的提取、转化与共享,揭示化学信息的实质与内在联系,促进化学学科的学问创新[5—6]。
计算机在化工领域中的应用已经特别广泛和深入,比较典型的应用有:试验数据的分析与处置、化工过程分析与开发(计算机仿真)、化工过程设计(工艺计算,计算辅佑襄助绘图)、化工过程掌控、化工信息管理和化工文献检索与管理[7—15]。
在这个背景下,化工类的工程技术人员假如没有较强的计算机应用本领,将直接影响到其对工作岗位的胜任程度。
当前大学阶段的计算机应用本领培育重要集中在低班级阶段,在高班级阶段由于教学重点转移到专业基础课和专业课,往往忽视了对计算机应用本领的连续培育,造成毕业生的计算机应用本领不能充足实际需求。
本讨论以武汉科技大学化学工程与技术学院化学工程与工艺专业为例对化工专业本科生高班级阶段强化计算机应用本领培育进行一些初步探究,以期提高毕业生的计算机应用本领。
计算机在化学化工中的应用.第3版
计算机在化学化工中的应用已经发展了很多年,从最初的以提高工作效率为目的,到现在的利用计算机技术开发出新的化学反应和分析方法,计算机在化学化工领域的应用日益广泛。
1、计算机技术在化学反应中的应用:计算机可以帮助化学家精确地预测化学反应的过程,从而可以更有效地控制反应的过程,提高反应的效率。
此外,计算机还可以帮助化学家设计新的反应方法,从而探索新的反应类型。
2、计算机技术在化学分析中的应用:计算机技术可以帮助化学家以更精确的方式进行化学分析,其中最常用的是计算机辅助分析(CAA)。
CAA可以帮助化学家快速准确地测量和分析物质的组成,从而更好地了解化学反应的机理。
3、计算机在化学工程中的应用:计算机可以帮助化学工程师更有效地优化化学工艺,从而提高生产效率。
此外,计算机还可以帮助化学工程师分析和模拟化学反应,从而更好地了解化学工艺的运行状况。
化工原理中的计算机辅助工程计算机辅助工程在化工原理中的应用化工原理是研究化学工艺与化学反应原理的一门学科。
在过去,化工原理的计算和分析往往是通过手工计算和实验室试验来完成的。
然而,随着计算机科学和技术的快速发展,计算机辅助工程逐渐成为化工原理研究和实践中不可或缺的一部分。
本文将介绍计算机辅助工程在化工原理中的应用,包括模拟与建模、优化设计、过程控制等方面。
1. 模拟与建模化工原理中的反应过程往往非常复杂,涉及到多个物理和化学参数的相互作用。
通过计算机辅助工程,可以利用数值模拟方法对这些复杂过程进行模拟与建模,预测反应过程中的物理和化学行为。
例如,我们可以利用计算机模拟软件对不同反应条件下的化学反应速率、产物生成和反应物消耗进行模拟分析,从而优化反应条件,提高反应效率和产物质量。
2. 优化设计化工原理中的工艺设计需要考虑多个因素,包括反应器尺寸、反应物浓度、温度和压力等。
通过计算机辅助工程,可以利用优化算法对这些因素进行优化设计,以获得最佳的工艺条件和设备参数。
比如利用遗传算法和模拟退火算法等优化方法,可以在最小化资源消耗的前提下,实现反应物完全转化和产物高收率的目标。
3. 过程控制化工原理中的实际生产过程需要进行实时监测和控制,以确保反应条件的稳定和产物的一致性。
计算机辅助工程提供了多种实时数据采集和控制方法,可以帮助化工工程师实现精确的过程控制。
例如,通过计算机辅助工程,可以建立反应过程的数学模型,实时监测反应物浓度、温度和压力等参数,并通过反馈控制算法对反应条件进行自动调节。
4. 系统集成和智能化计算机辅助工程可以将化工原理中的各个环节进行集成,实现整个生产过程的智能化管理。
通过利用现代信息技术,可以实现生产数据的实时采集、存储和分析,进而优化生产过程和资源利用。
此外,计算机辅助工程还可以与其他领域的技术相结合,如人工智能、大数据分析等,为化工原理研究和实践带来更多的技术创新。
总结起来,计算机辅助工程在化工原理中的应用涵盖了模拟与建模、优化设计、过程控制和智能化管理等方面。
计算机在化学化工中的应用摘要:随着计算机在人类生活中的各个领域上的不断深入、其价值越来越被人们承认。
本文主要讲述了计算机在化学化工中应用。
主要从化工过程控制、绘图、辅助工程设计和化学分析四个方面。
关键词: 化工过程控制; 绘图; 辅助工程设计; 化学分析自从计算机的问世以来,人类生产的各个领域都受到了计算机的渗透。
许多生产领域由于计算机的介入,其效率和成绩取得了令人瞩目的成绩。
化工领域也同样受到了它的惠顾。
尤其在近几十年来,计算机在化学化工中的应用,发展突飞猛进。
一、计算机在化学化工过程中的应用(一)计算机的应用化工生产过程中的微机应用, 将从目前的开发尝试阶段发展到提高、推广应用新阶段, 即开发水平不断提高, 应用领域日益广泛. 管理领域的变化: 从目前单一的信息存贮、单向通讯联系, 发展到全面信息管理系统(CIMS) , 并将随之带来网络技术、计算机与通讯技术等的应用和发展社会的开放, 企业的竞, 信息所起的指导作用必将越来越显著, 从而导致咨询信息情报等企业的崛起。
随着计算机技术的飞速发展,它在化工设计中的应用范围日益扩大,由局部辅助发展到全面辅助,计算机的发展对化工设计的影响也越来越重要性已成为必然的趋势。
对化工设计而言,从由分子结构出发预测物质的物性到工艺过程的设计、分析直至绘图,均可由计算机完成,可用一句话简单地概括计算机在化工设计中的作用:模拟计算和绘图。
化工过程所涉及到的模拟包括微观过程或结构分子模拟到研究宏观过程的流程模拟。
绘图是计算机科学的一个重要分支,在工程设计中用计算机绘图通常为计算机辅助设计,简称CAD。
化工设计是一个系统工程,除了工艺路线设计、设备计算、绘图等以外,还有环境评估,经济效益,社会效益等大量的工作,这些都可以借助于计算机来完成。
计算机与化工两者互相影响、渗透与结合,已经并将继续给化工设计带来影响和改变。
对企业本身而言, 时间的概念、“商品”的质量、“资金”的周转等也必将提到重要议程上来, 改变过去生产脱离信息服务于权威等习惯领导方法的变更: 目前企业的生产和自我完善, 归根到底是由上门主宰的。
《计算机在化学化工中的应用》学习心得计算机在当今社会正逐渐占据越来越重要的位置,而理所当然的,计算机在自然科学中对绘图和计算量较大的工科的地位也可谓坐着火箭上升。
同时计算机技术在化学化工的应用也逐渐从传统的图像绘制,计算数据扩展到了设备模拟,设备优化,工艺尝试以及教学辅助等不同方面。
在刚接触到这门学科时,我就对其产生了浓厚的兴趣。
作为一个在大学呆了两年的工科生,我已深深明白熟练应用计算机的重要性。
这种熟练掌握不仅仅是对于Office等办公软件的掌握,这些对于大学生来说应是最基本的一项技能,除此之外,还应加强对检索文献、数据处理或设备设计等更多软件的掌握。
开学以来,老师为我们介绍了Word,Origin,EndNote,ChemSketch等各种软件。
在Word中,我在原有的知识上更了解了一些小技巧,如如何不用插入符号而打出℃,如何移动更小距离来精确调整图片位置等;在Origin中,我学会如何导入数据,将数据制成曲线或直线,然后将图形线性拟合或归一化,得到所需函数;在EndNote中,我学习到了如何管理文献建立本地数据库,并通过这个软件在Word中插入参考文献;在ChemSketch中,我学会了分子结构的绘制及其他化学图形的绘制,化学反应式的绘制,预测化合物的宏观性质,同时也简单了解了ChemDraw的操作。
除这些软件外,我对ACS等数据库有了更深的认识,并学会了如何利用主题、作者、刊名、ISSN等进行文献检索,还了解了论文的撰写格式和投稿要求。
在以上众多软件中,我对Origin和EndNote兴趣最为浓厚。
对于Origin,在接触到这门学科之前,我也仅仅是听过这个软件,却一直疏于学习。
因此在上学期的物化实验中,对于数据的处理还只是限于手工计算和在坐标纸上手画图形。
然而本学期对Origin的学习使我在化工原理实验中对数据的处理更加得心应手,图线的拟合,自动生成图线函数,都能通过Origin一步到位,由此省下了很多时间和精力。
计算机在化学化工中的应用引言计算机技术在各个领域中都扮演着重要的角色,化学化工领域也不例外。
计算机在化学化工中的应用可以提高工作效率、精确计算、模拟实验等,为科研人员和工程师提供了强大的工具和支持。
本文将从分子模拟、实验数据分析、化学反应设计等方面介绍计算机在化学化工中的应用。
分子模拟分子模拟是计算机在化学化工中应用最为广泛的领域之一。
通过分子模拟,科研人员可以预测分子的结构和性质,深入了解化学反应机理,并优化新材料的设计。
常见的分子模拟方法包括分子动力学模拟(MD)、量子力学计算等。
分子动力学模拟(MD)分子动力学模拟是通过计算机模拟分子在一定时间内的运动轨迹和相互作用,来研究分子的结构和性质。
通过MD模拟,科研人员可以研究分子的结构变化、溶液中的扩散行为、蛋白质折叠等。
MD模拟可以为理论和实验研究提供有价值的信息。
量子力学计算量子力学计算是用来解决原子和分子的量子力学问题的计算方法。
通过求解薛定谔方程,可以计算出分子的能级、振动频率、电子密度等信息。
量子力学计算在催化剂设计、药物研发等领域都有重要的应用。
实验数据分析化学化工实验中产生大量的数据,如何高效地分析和处理这些数据是一个挑战。
计算机技术为实验数据分析提供了强大的工具和方法。
数据可视化数据可视化是将实验数据以图表、曲线等形式展示出来,让数据更加直观、易于理解。
计算机软件如Matplotlib、Plotly等可以帮助科研人员将实验数据进行可视化展示,从而方便分析和研究数据的规律和趋势。
数据处理实验数据处理是将原始数据进行整理、过滤和计算,以得到更有意义的结果。
计算机软件如Excel、Python等常用于实验数据处理,可以进行数据筛选、拟合、统计分析等操作。
化学反应设计计算机在化学反应设计中的应用可以帮助科研人员优化反应条件、预测反应产物和副产物等。
反应动力学模拟计算机可以通过建立反应动力学模型来模拟化学反应的动力学过程,预测反应速率、计算反应机理等。
1、被四大国际检索工具收录的文章档次都很高,“四大检索”是指《科学引文索引》(Science Citation Index, 简称SCI)、科技会议ISTP 、科技评论索引ISR 和《工程索引》(The Engineering Index ,简称EI ),前三者均由美国科学信息研究所The Institute for Scientific Information (简称ISI )编辑出版。
2、美国剑桥公司的ChemOffice 软件是世界上最优秀的桌面化学软件,它由2D 化学结构绘图软件ChemBioDraw 、3D 分子模拟与仿真软件ChemBio3D 、化学信息搜寻整合系统ChemBioFinder 和化学网站服务器数据库管理系统等几部分组成。
3、在缺省条件下,ChemWindow 文件的扩展名是.cwg,Origin 软件工程(Project )文件的扩展名是.opj 。
4、在Origin 的编辑窗口中,左侧图标的意义错误的是:A 、-用鼠标取屏幕上的座标值B 、-用鼠标取曲线上的数据C 、-在图中加入标记的文字 D 、-恢复撤消的操作5、在Origin 的编辑窗口中,设Col(A)=3.14*2/360,Col(B)=Cos(Col(A)),共计360行,若以Col(A)、Col(B)两列数据作图,Col(A)为横坐标,则该曲线为:A 、直线B 、圆C 、正弦波D 、余弦波6、使用Origin 绘制吸光度A 与透光率T 的关系曲线(lgT A -=),设表格A 列表示T 值,B 列表示A 值,已知A 列数据,则B 列数据的公式设置为:A 、Col(B)=Col(A)B 、Col(B)=-log(Col(i))C 、Col(B)=-log(i)D 、Col(B)=-log(Col(A)) 7、在Origin 的编辑功能中,关于线性拟合的叙述错误的是:A 、线性拟合方程就是线性回归方程B 、线性拟合后的直线过所有的实验点C 、线性拟合依据的原理是实验数据与拟合方程的误差平方和最小D 、线性拟合处理的对象是实验点接近线性关系的数据8、用Origin 绘制正弦波曲线时(y=sin(x)),设A(X)列为x 值,B(Y)列为y 值,下列叙述最恰当的是A 、A(X)为角度值(0),取值从00到3600B 、A(X)为角度值,用弧度表示,取值从0到2π,即从0到6.24C 、A(X)可手工依次输入数据(从0到6.24),B(Y)用Sin(Col(A))生成D 、A(X)用公式Col(A)=6.28*i/360,B(Y)用公式Col(B)=Sin(Col(A))生成数据 9、使用Origin 绘制吸光度A 与透光率T 的关系曲线时(lgT A -=),设表格B 列表示T 值,C 列表示吸光度值A值,已知C列数据,则B列数据的公式设置为:A、Col(C)=-lnCol(B)B、Col(C)=-lg(Col(T))C、Col(C)=-lg(Col(B))D、Col(C)=-log(Col(B))10、在Origin7.5软件窗口中,图标的作用是读取屏幕坐标值;图标的作用是读取曲线上的数据(坐标值);图标的作用是读取屏幕上的数据并能存贮在一个表单中。
下图是用Origin绘制的强碱滴定弱酸的滴定曲线,它包括 4个分段函数,按照滴定曲线的化学意义,计算PH值时,分别按:滴定前、开始到计量点前、计量点、计量点后计算。
11、在Origin7.5中,要在表格的某列中按公式填写数据,可调入下面的对话框:如果要在D列中填写70个pH值数据,最小为0,间隔为0.2个pH单位,则Col(D)=i*0.2-0.2,For row2 to 71。
12、在Origin7.5中,利用工具菜单里的“线性拟合”,可以由实验数据得到线性回归方程,表达式为:Y=A+B*X,某组实验数据的图形和线性拟合处理的相关数据为:R SD N P--------------------------------0.99985 0.01083 6 <0.0001其中,R是指相关系数,SD是标准偏差,N是指数据个数。
判断题13、由Origin编辑和绘制的图形,可以直接复制/粘贴到word文档中的任何地方。
√14、Origin文档也可以引入Excel数据√15、Origin 中的“i ”也是一个内部变量,代表行的序号 √ 16、已知aH K +=++][H ][H Acδ ,[H +]=10-pH , K a =1.8×10-5 若指定A 列为pH 值(指定数值),B 列为醋酸分布分数δHAc (用自定义公式计算)。
请写出在Origin 中B 列Col(B)的计算公式(A 的值已知)17、物质的饱和蒸汽压p 与温度t 满足安托因方程ln p =A -B /(t +C ) [p : mmHg, t : ℃],水的安托因方程拟合系数A=18.4057 , B=3903.66 , C=231.60(1) 用Origin 软件的工作表计算下表中不同温度下的蒸汽压数据,填入表1中。
表1 纯水饱和蒸汽压P 与温度T 数据p /mmHg 760.141491484.955782699.156564615.667387491.9861311626.8847617354.97444t /℃100.0 120 140 160 180 200 220(2)用二次多项式p = a + b *t + c *t 2对上表中的数据进行拟合,可得到: a =14858.40058 b =-261.93342 c =1.2362918、求方程sin 2x *exp(-0.1 x )-0.5*| x |=0 的 x 在-3到 3之间的五个零点的解。
提示:F1(x)的函数形式写成(sin( x ))^2*exp(-0.1* x )-0.5*abs(x )用Origin 软件的函数作图和工具栏上的Data Reader 按钮。
准确到小数点后第2位。
由小到大的顺序解分别为:x 1=-2.0074 x 2= -0.51984 x 3=0 x 4= 0.59926 x 5=1.67385五、某科研中,观察水分的渗透速度,测得时间t 与水的重量w 的数据如下表2:表2 时间t 与水的重量w 的实验数据t (s) 1 2 4 8 16 32 64 w (g)4.224.023.853.593.443.022.59已知t 与w 之间有经验公式w =c *t d ,试用非线性拟合函数(基础模式、内置函数)来确定参数c 和d 。
c 和d 的初值分别为3.5和-0.1。
则:c =4.34057 d =-0.10384六、设某化学反应A+2B→C 的动力学方程式可近似地表示为:a b cA B C rkp p p =,式中:r 为反应速率,p A 、p B 和p C 分别为反应物A 、B 和C 的分压,a 、b 和c 分别表示动力学方程式PH1 0.999820032 2 0.9982032343 0.982318271中的待定指数,k 为反应速率常数。
由实验测得不同分压的r 值如下表3。
试分别由多元线性回归和自定义拟合从下列数据求出上述模型中的k 、a 、b 和c 的值。
表3 实验数据r /(atm/h) 1.97 1.05 0.73 0.25 0.18 0.13 0.07 0.04 p A /atm 9 8.6 8.4 7.5 7 6.8 6.5 6 p B /atm 8.3 7 6.2 4.3 3.9 3.4 2.6 2.2 p C /atm2.74.45.48.29.19.810.911.8(1)多元线性回归log k = -2.96084 a =1.80347 b =1.86807 c =-0.43321 (2)自定义拟合(非线性拟合)k =0.28226 a =0.49024 b =0.47063 c =-0.13105七、湍流时直管摩擦系数λ的计算:计算当雷诺数Re=105,圆管直径d=0.1m ,绝对粗糙度ε=0.2mm 时的摩擦系数λ。
湍流时的摩擦系数λ可用下式计算,用Visual Basic 语言编程或手工计算采用迭代法求λ。
(湍流时λ一般在0.01到0.03之间,初值可设为0.02)]Re 34.9ln[8685.014.11λελ+-=d将程序的界面,对象的主要属性和编程代码写在试卷上,或 将计算框图及迭代计算步骤写在试卷上。
λ=0.025 (要求准确到小数点后第三位)ChemOffice 软件:(1) 借助ChemOffice 软件确定1-Ethyl-3-piperidinol 的分子量为: 129.20,结构式为。
OHHOHO 分子式为: C54H78O3(2)英文名称为4,4',4''-((2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene))tris(2,6-di-tert-butylphenol)。
用ChemDraw预测出它的各种氢的化学位移,标在结构式上。
附录:1、在欧洲专利局网站上可免费检索国际专利全文,网址是/。
2、在CA中检索到某专利号为WO 2002069706, 在欧洲专利局网站上查阅该专利全文时,专利号更改为WO 02069706。
3、中国知识产权局主页网址是,在可查美国专利全文。
4.Microcal Software公司Origin软件的主页是,主要功能是数据分析和科学绘图。
在科技论文绘图时,一般2D作图用Origin软件,Origin软件的3D作图功能显得有点粗糙,用ChemBio3D软件或Surfer软件绘制更合适。