计算机在材料化学中地应用知识点总结材料
- 格式:doc
- 大小:92.39 KB
- 文档页数:8
计算机在化学化工中的应用计算机在化学化工中的应用是现代化学化工产业发展的重要推动力。
计算机技术的广泛应用,使得化学化工研究更加准确、高效,并促进了生产过程的自动化和控制。
本文将从控制系统、模拟与优化、分析测试和材料设计等方面介绍计算机在化学化工领域中的重要应用。
首先,计算机在化学化工控制系统中的应用可以提高生产过程的稳定性和自动化程度。
传统的生产线一般由操作员控制,容易受到人为误差的影响,并且无法实时监控和调整生产参数。
而计算机控制系统可以实时采集和分析生产过程中的各类数据,并通过反馈控制来调整参数,实现自动化的生产。
例如,在化工生产中,计算机控制系统可以监测温度、压力、流量等参数,并根据设定的规则自动调整操作参数,保证生产过程的稳定性和符合产品质量要求。
其次,计算机在化学化工模拟与优化中的应用可以帮助研究人员更好地理解和优化化学反应和生产过程。
化学反应是一个复杂的过程,受到多个参数的影响。
通过建立数学模型,研究人员可以使用计算机模拟不同参数条件下的反应动力学和产物生成情况。
这样可以有效地预测反应过程,选择最佳工艺条件,提高产物收率和降低废物产生。
另外,计算机还可以进行精确的实验数据拟合,获取反应速率常数,并用于推导动力学模型。
这为新产品的设计和工艺优化提供了可靠的依据。
第三,计算机在化学化工分析测试中的应用可以提高分析结果的准确性和速度。
化学分析是化学化工研究和生产过程中的重要环节,传统的分析方法费时费力,且对样品的数量和质量有一定的要求。
而现代的计算机分析方法可以通过光谱分析、色谱分析、电化学分析等多种技术,实现快速、准确的分析。
通过与数据库的比对,计算机可以快速确定样品中的成分和含量,并可以自动化的对多个样品进行批量处理,提高分析测试的效率。
最后,计算机在化学化工材料设计中的应用可以加速新材料的发现和开发过程。
传统的材料设计需要大量的试验和经验积累,效率较低。
而计算机材料设计方法通过计算机模拟和数据挖掘,可以预测材料的性能和应用领域。
计算机在材料科学中的应用1 材料:是人类生产和生活水平提高的物质基础,是人类文明的重要支柱和进步的里程碑。
20世纪下半叶形成的以新材料技术为基础:信息技术、新能源技术、生物工程技术、空间技术、海洋开发技术的新技术群,更使材料科学得到发展。
2 20世纪60年代,被称为当代文明的三大支柱:A材料;B能源;C信息。
3 70年代新技术革命的主要标志指:A新型材料;B信息技术;C生物技术。
4 材料的分类:根据组成与结构:A金属材料;B无机非金属材料;C有机高分子材料;D复合材料。
根据性能特征和作用:A结构材料;B功能材料。
根据用途:A建筑材料;B能源材料;C电子材料;D耐火材料;E医用材料;F耐蚀材料。
5 材料的性质:是材料对电、磁、光、热、机械载荷的反应,而这些性质终于要取决于材料的组成与结构。
材料科学与工程是研究:材料组成、结构、性能、制备工艺、使用性能以及它们之间相互关系的科学。
6 使用性能:是材料在使用状态下表现出来的行为。
7 材料的合成与制备过程的内容:A传统的冶炼、制粉、压力加工和焊接;B也包括各种新发展的真空溅射、气相沉积等新工艺。
8 材料科学飞速发展的重要原因之一:材料科学随着各种技术的更新而出现了高速发展的趋势,计算机在材料科学中的应用正是材料科学飞速发展的重要原因之一。
9 计算机在材料科学中的应用:A计算机用与新材料的设计;B材料科学研究中的计算机模拟;C材料工艺过程的优化及自动控制;D计算机用于数据和图像处理;E计算机网络在材料研究中的应用。
10材料设计:设想始于20世纪50年代,是指通过理论与计算机预报新材料的组分、结构与性能,或者是通过理论设计来“订做”具有特定性能的新材料。
按生产要求“设计”最佳的制备和加工方法。
11 材料制备技术:A急冷;B分子束外延(MBD);C有机金属化合物气相沉积;D离子注入;E微重力制备等。
12材料设计的有效方法之一:利用计算机对真实的系统进行模拟“实验”、提供实验结果、指导新材料研究,是材料设计的有效方法之一。
计算机在化学中的应用实践总结报告(共五则)第一篇:计算机在化学中的应用实践总结报告计算机在化学中的应用实践总结报告第十四周实践内容分子结构及化学反应式的绘制、分子结构及能量优化、化学反应机理的分子力学和量子化学计算软件:ChemOffice 2010、Gaussian 09、MOPCA2010 第15周实践内容:复杂体系多组分定性定量分析的化学计量学方法软件:Matlab 2012、程序:MCR-ALS(多元曲线分辨-交替最小二乘)、PLS(偏最小二乘)、SVM(支持向量机)、PCA(主成分分析)、ANN(人工神经网络)第16周实践内容:计算机辅助药物分子设计、化学数据库与化学信息学软件:MOE 2008、VMD、NAMD、Amber、Autodock、Matlab 2012 数据库:蛋白质晶体结构数据库、ZINC数据库chemoffice的组成主要有ChemDraw 化学结构绘图,Chem3D 分子模型及仿真,ChemFinder 化学信息搜寻整合系统,此外还加入了 E-Notebook Ultra 10.0,BioAssay Pro 10.0,量化软件 MOPAC、Gaussian 和GAMESS 的界面,ChemSAR, Server Excel, CLogP, CombiChem/Excel等等,ChemOffice Pro 还包含了全套 ChemInfo 数据库,有ChemACX 和ChemACX-SC,Merck 索引和ChemMSDX等等Gaussian是一个功能强大的量子化学综合软件包。
其可执行程序可在不同型号的大型计算机,超级计算机,工作站和个人计算机上运行,并相应有不同的版本。
高斯功能:过渡态能量和结构、键和反应能量、分子轨道、原子电荷和电势、振动频率、红外和拉曼光谱、核磁性质、极化率和超极化率、热力学性质、反应路径,计算可以对体系的基态或激发态执行。
可以预测周期体系的能量,结构和分子轨道。
计算机在材料科学中的应用引言计算机科学与材料科学的结合,为材料科学领域的研究和应用带来了巨大的影响和变革。
随着计算机技术的不断发展和突破,计算机在材料科学中的应用逐渐得到了广泛的认可和应用。
分子建模与模拟计算机在材料科学领域的一个重要应用是分子建模和模拟。
通过利用计算机建立分子的模型和进行模拟计算,可以预测材料的性质和行为。
这种方法在材料设计、催化剂研究、药物研发等领域中具有重要的应用价值。
通过在计算机上进行大规模的分子模拟,可以快速筛选出具有潜在应用价值的材料,从而加速材料科学的研究和应用过程。
材料结构预测另一个计算机在材料科学中的重要应用是材料结构预测。
传统的材料结构预测方法通常需要耗费大量的时间和人力,而计算机可以通过模拟和计算来快速预测材料的结构。
通过这种方式,可以找到新的材料结构,推动新材料的发现和应用。
这种方法在新能源材料、光电材料、储能材料等领域中具有重要的应用价值。
材料性能优化计算机在材料科学中的应用还可以用于材料性能优化。
通过利用计算机模拟和预测,可以优化材料的性能和特性。
例如,在涉及到材料的机械性能、导电性能、光学性能等方面,可以通过计算机模拟和优化来提高材料的性能。
这种方法不仅可以指导实验的设计和实施,还可以提高材料的应用性能,从而推动材料科学的发展和应用。
数据分析与挖掘计算机在材料科学中还可以用于数据分析与挖掘。
随着大数据时代的到来,材料科学领域也积累了大量的材料数据。
通过运用计算机技术,可以从这些数据中挖掘出有价值的信息和规律,指导材料的设计和研究。
例如,可以通过机器学习的算法来建立材料的结构-性能关联模型,从而加速材料的研发过程。
材料仿真与优化设计最后,计算机在材料科学中的应用还可以用于材料的仿真和优化设计。
通过在计算机上建立材料的模型,可以对材料进行仿真和优化。
例如,可以通过有限元分析方法对材料的力学行为进行仿真,帮助理解和预测材料的性能。
同时,也可以利用优化算法进行材料的优化设计,进一步提高材料的性能和特性。
计算机在材料科学(高分子)中的应用目录绪论 (1)第一节计算机在材料科学领域的应用 (1)1.1 用于新材料的设计 (1)1.2 材料科学研究中的计算机模拟 (2)1.3 材料工艺过程的优化及自动控制 (2)1.4 计算机用于数据和图像处理 (3)1.5 计算机网络在材料研究中的应用 (3)本课程主要内容: (3)第-章材料数据分析和模型建立 (6)第一节数学模型 (6)第二节回归分析 (10)2.1 问题的提出 (10)2.2拟合的标准 (11)2.3 线性拟合,二次拟合及多变量拟合 (11)第三节正交试验设计 (15)第二章常用的数值分析方法 (24)第一节数值分析和误差分析 (24)1.1数值分析 (24)1.2 误差分析 (25)第二节非线性方程求解 (26)2.1 实根的对分法 (26)2.2 直接迭代法 (27)2.3 松弛迭代法 (28)2.4 牛顿迭代法 (29)2.5 割线法 (30)第三节线性方程的求解 (31)3.1 简单迭代法 (32)3.2 紧凑迭代法 (34)3.3 松弛迭代法 (35)3.4 高斯消去法 (35)3.5 三角分解法 (36)第四节微分方程数值解 (37)4.1 常微分方程的数值解 (37)4.2 常微分方程组的数值解法 (40)4.3 偏微分方程数值解 (40)4.4 有限差分法 (42)绪论第一节计算机在材料科学领域的应用计算机技术的发展:1. 软硬件技术的发展硬件(CPU发展,存贮设备:时间和空间复杂度的问题)软件(操作系统win linux unix;应用软件;算法)2网络技术的发展文献资料的查阅,材料数据库的联网,电子商务,数字化管理材料科学技术的发展:按组成来分:金属,无机,高分子,复合材料用途来分:结构材料和功能材料材料科学:研究材料组成、结构、性能、制备工艺和使用性能以及它们之间相互关系的科学。
多学科交叉数学,物理,化学,计算机未来材料的发展趋势新材料,新技术,新工艺相互结合多学科相互交叉渗透四个要素:性质与现象、使用性能、结构与成分、合成与加工两个关键:仪器设备与分析建模计算材料学利用计算机算法来进行材料设计除实验和理论外,计算机模拟已成为解决聚合物科学中实际问题的第三个重要组成部分。
第一章计算机在材料科学与工程中的应用引言:计算机科学和工程已经成为现代社会和各种领域的关键技术。
特别是在材料科学与工程领域,计算机已经成为一个不可或缺的工具。
本文将重点介绍计算机在材料科学与工程中的应用,包括模拟与建模、材料设计与优化、材料性能预测与评估、材料制备过程的模拟与优化等方面。
一、模拟与建模在材料科学与工程中,模拟与建模是一种非常重要且常用的方法。
计算机可以通过建立材料的数学模型,对材料的结构、性能等进行模拟和分析。
例如,通过计算机模拟可以揭示材料的原子结构、晶体结构、晶体缺陷等,可以预测材料的力学性能、电子性质、热传导性能等。
这些模拟与建模的结果可以为实验提供指导,加快材料的发现和开发过程。
二、材料设计与优化材料设计与优化是材料科学与工程中的一个重要任务。
通过计算机的辅助,可以对材料进行设计和优化。
例如,利用计算机辅助设计软件,可以设计新型的组分或配方,用于制备更高性能的材料。
利用计算机的优化算法,可以对现有材料的结构和组分进行优化,以提高材料的性能。
这些设计和优化的结果可以在实验中验证,并指导材料的进一步开发。
三、材料性能预测与评估了解材料的性能是材料科学与工程中的核心任务之一、计算机可以通过材料的模拟和计算,预测材料的性能。
例如,计算机可以计算材料的力学性能、电子性质、光学性质等,从而预测材料在不同环境下的行为。
这些性能预测的结果可以为实验提供参考,指导材料的选择和设计。
四、材料制备过程的模拟与优化材料的制备过程通常决定着材料的结构和性能。
计算机可以通过模拟和优化材料的制备过程,帮助提高材料的质量和性能。
例如,计算机可以模拟材料的原子、分子、晶体的排列和运动过程,从而提供制备过程中的参数和条件。
通过优化这些参数和条件,可以实现材料的精确控制和优化制备,从而获得质量更好的材料。
结论:计算机在材料科学与工程中的应用非常广泛而重要,从模拟与建模、材料设计与优化、材料性能预测与评估,到材料制备过程的模拟与优化,计算机都发挥着不可或缺的作用。
计算机在材料科学中的应用1.材料按组成和结构的分类工程上按材料的物化属性将其分为金属材料,高分子材料,陶瓷材料以及复合材料;根据其性能特征和作用分为结构材料和功能材料;根据用途还可以分为建筑材料、能源材料、电子材料、耐火材料、医用材料和耐腐蚀材料。
*2.计算机在材料科学与工程中的五大应用方面1.计算机模拟技术用于材料行为工艺研究2.计算机技术用于材料数据库和知识库3.计算机技术用于材料设计4.计算机技术用于材料加工控制5.计算机技术用于材料性能表征与检测6.计算机技术用于材料数据和图像处理3.最小二乘法处的值与实验数值的偏差平方解决灰箱问题的原则通常是使拟合函数在xi和最小,这种在方差意义下对实验数据实现最佳拟合的方法称为最小二乘法。
a 称为最小二乘解,y称为拟合函数。
*4.曲线拟合根据一组数据,即若干点,要求确定一个函数,即曲线,使这些点与曲线总体来说尽量接近,这种确定曲线函数的过程叫做曲线拟合。
目的是根据实验获得的数据区建立因变量与自变量之间有效的经验函数关系,为进一步的深入研究提供线索。
5.数学模型中,过程模化的原则a.等效性:简化应不失去原过程的关键性本质特征、规律和特点。
b.适应性:要满足应用的要求。
c.可行性:要适应现有的计算能力。
d.经济性:满足等效性前提下尽可能简化。
*6.数学模型的含义及分类数学模型定义:以相应的客观原型作为背景加以抽象的数学概念、数学式子、数学理论等叫做数学模型。
或者是那些反映特定问题或特定事物系统的数学符号系统叫做数学模型。
其目的是解决实际的问题。
数学模型分类:按建立模型的数学方法分类:图论模型、微分方程模型、随机模型、模拟模型等。
按模型的特征分类:离散模型、连续性模型、线性模型和非线性模型等。
7.*建立数学模型的基本步骤1.建模准备(收集相关信息数据,弄清背景和目的)2.建模假设(目的性、简明性、真实性、全面性)3.构造模型(区分参量,选择恰当的工具和构造方法)4.模型求解(设计或选择求解模型的数学方法和算法)5.模型分析(稳定性分析、灵敏度分析、误差分析)6.模型检验(是否符合客观)7.模型应用(建模的宗旨,对模型最客观,公正的检验)8.*有限差分法解题步骤,其基于的原理1)建立微分方程根据问题的性质选择计算区域,建立微分方程式,写出初始条件和边界条件。
计算机在材料科学中的应用材料科学:以材料的组成、结构、性能、制备工艺和使用性能以及它们之间相互关系为研究对象的一门科学;这也是材料研究者的共同使命;材料科学的四个要素包括:成分、组织、性能、合成/制备; 计算机在材料科学中的应用领域:1.计算机用于新材料的设计2.材料科学研究中的计算机模拟3 材料与工艺过程的优化及自动控制4 计算机用于数据和图像处理 5 计算机网络在材料研究中的应用特定性能的新材料,按生产要求设计最佳的制备和加工方法;主要是利用人工智能、模式识别、计算机模拟、知识库和数据库等技术, 使人们能将物理、化学理论和大批杂乱的实验资料沟通起来, 用归纳和演绎相结合的方式对新材料的研制作出决策, 为材料设计的实施提供行之有效的技术和方法;之一;材料设计中的计算机模拟对象遍及从材料研制到使用的过程,包括合成、结构、性能制备和使用等;计算机模拟是一种根据实际体系在计算机上进行的模拟实验;通过将模拟结果与实际体系的实验数据进行比较, 可以检验模型的准确性, 也可以检验出模型导出的解析理论所作的简化近似是否成功,还可为现实模型和实验室中无法实现的探索模型做详细的预测并提供方法;优点:在某些情况下,计算机模拟可以部分地代替实验;计算机模拟对于理论的发展也有重要的意义;1.简述建立数学模型的基本步骤;常用的数学模型建立有几种方法;答:建立数学模型的基本步骤:⑴建模准备——是确定建模课题的过程,就是要了解问题的实际背景,明确建模的目的;深入生产和科研实际以及社会生活实际,掌握与课题有关的第一手资料,汇集与课题有关的信息和数据,弄清问题的实际背景和建模的目的,进行建模筹划;⑵建模假设——建模假设就是根据建模的目的对原型进行适当的抽象、简化,把那些反映问题本质属性的形态、量及其关系抽象出来,简化掉那些非本质的因素、使之摆脱原来的具体复杂形态,形成对建模有用的信息资源和前提条件;对原型的抽象、简化不是无条件的,必须按照假设的合理性原则:①目的性原则;②真实性原则;③简明性原则;④全面性原则;⑶构造模型——在建模假设的基础上,进一步分析建模假设的内容,首先区分常量、变量、已知量、未知量,然后查明各种量所处的地位、作用和他们之间的关系,选择恰当的数学工具和构造模型的方法对其进行表征,构造出刻画实际问题的模型;⑷模型求解——构造数学模型之后,根据已知条件和数据,分析模型的特征和模型的结构特点,设计或选择求解模型的数学方法和算法,然后编写计算机程序或运用与算法相适应的软件包,并借助计算机完成对模型的求解;⑸模型分析——根据建模的目的要求,对建模求解的数字结果,或进行稳定性分析,或进行系统参数的灵敏度分析,或进行误差分析等;通过分析,如果不符合要求就修改或增减建模假设条件,重新建模,直到符合要求;如果通过分析符合要求,还可以对模型进行评价、优化、预测等方面的分析和探讨;⑹模型检验——模型分析符合要求后,还必须回到客观实际中去对模型进行检验,看是否符合客观实际,若不符合,就修改或增减假设条件,重新建模,循环往复,不断完善,直到获得满意的结果;⑺模型应用——模型应用是数学建模的宗旨,也是对建模的最客观、最公正的检验;一个成功的数学建模,必须根据建模的目的,将其用于分析、研究和解决实际问题,充分发挥数学建模在生产和科研中的特殊作用;常用的数学建模方法:1理论分析法;2模拟方法;3类比分析法;4数据分析法;2、最小二乘法的原理;求系统回归方程的方法;解:最小二乘法又称最小平方法是一种数学优化技术;它通过最小化误差的平方和寻找数据的最佳函数匹配;利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小;最小二乘法还可用于曲线拟合;其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达;求一条通过或接近一组数据点的曲线,这一过程叫数据拟合,而表示曲线的数学式称为回归方程;求系统回归方程的一般方法如下:设有一未知系统,以测得该系统有 n个输入-输出数据点为x i ,y i i=1,2,…,n现寻求其函数关系y=fx或Fx,y=0无论x,y为什么函数关系,假设用以多项式y^=b0 +b1 x+b2 x2+…b m x m作为对输出观测量y的估计用y^表示;若能确定其阶数及系数b0 、b1 、b2 …,b m,所得到的就是回归方程——数学建模;各项系数即回归系数;当输入为x i,输出为y i时,多项式拟合曲线相应于的估计值为y i^=b0 +b1 x i+b2 x i2+…b m x i m i=1, 2, …,n现在要使多项式估计与观测值的差的平方和Q=∑y i^-y i2为最小,这就是最小二乘法,令ΔQ/Δb j=0 j=1, 2, …,m得到下列正规方程组ΔQ/Δb1=2∑b0 +b1 x i+b2 x i2+…b m x i m - y i x i =0ΔQ/Δb2= 2∑b0 +b1 x i+b2 x i2+…b m x i m - y i x i2=0┆ΔQ/Δb M= 2∑b0 +b1 x i+b2 x i2+…b m x i m - y i x i m =0一般数据点个数n大于多项式阶数m,m取决于残差的大小,这样,从上式可求出回归系数b0,b1,…b m,从而建立回归方程数据模型;3.请简述差分法的数学思想和解题目步骤;答:差分法的数学思想:将求解域划分为差分网络,用有限网格节点代替连续的求解域;有限差分法通过Taylor技术展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行疏散,从而建立以网格节点上的值为未知数的方程组;有限差分法的主要解题步骤:1建立微分方程;2构建差分格式;3求解差分方程;4精度分析和检验;4有限元分析的基本原理;答:一、是把连续的几何机构离散成有限个单元,并在每一个单元中设定有限个节点;二、根据几何机构离散思想而将连续体看作仅在节点处相连接的一组单元的集合体,同时选定场函数的节点值作为基本未知量并在每一单元中假设一个近似插值函数以表示单元中场函数的分布规律;三、建立用于求解节点未知量的有限元方程组,再将一个连续域中的无限自由度问题转化为离散域中的有限自由度问题;四、求解得到节点值,再通过设定的插值函数确定单元上以至个集合体上的场函数;然后对每个单元选取适当的插值函数,使得该函数在子域内部、在子域分界面上以及子域与外界面上都满足一定的条件;五、单元组合体在已知外载荷作用下处于平衡状态时,列出一系列以节点、位移为未知量的线性方程组,利用计算机解出节点位移后,再用与模型相关公式,计算出各单元上产生的微小变化,当各单元小到一定程度,那么它就代表连续体各处的真实情况;❖有限单元法的基本思想就是把一个连续体人为的分割成有限个单元,即把一个结构看成由若干通过结点相连的单元组成的整体,先进行单元分析,然后再把这些单元组合起来代表原来的结构;这种先化整为零、再积零为整的方法就叫有限元法;从数学的角度来看,有限元法是将一个偏微分方程化成一个代数方程组,利用计算机求解;由于有限元法是采用矩阵算法,借助计算机这个工具可以快速的算出结果;6..请简述有限元法的数学思想和解题目步骤;答:有限元法的数学思想:把连续的几何结构离散成有限个单元,并在每个单元中设定有限个节点,运用变分原理和加权余量法等数学基础解得节点值,进而得到整个集合体的场函数;有限元法的解题步骤:1建立求解域并将其离散化为有限单元;2假设代表单元解的近似连续函数;3建立单元方程;4构造单元整体刚度矩阵;5施加边界条件,初始条件和荷载;6求解线性或非线性的微分方程组,得到节点求解结果及其他重要信息;1.建模阶段建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型——有限元模型,从而为有限元数值计算提供必要的输入数据;有限元建模的中心任务是结构离散,即划分网格;但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等;2.计算阶段计算阶段的任务是完成有限元方法有关的数值计算;由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成;3.后处理阶段它的任务是对计算输出的结果进行必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是进行结构有限元分析的目的所在;❖首先,有限元模型为计算提供所有原始数据,这些输入数据的误差将直接决定计算结果的精度;❖其次,有限元模型的形式将对计算过程产生很大的影响,合理的模型既能保证计算结构的精度,又不致使计算量太大和对计算机存储容量的要求太高;❖再次,由于结构形状和工况条件的复杂性,要建立一个符合实际的有限元模型并非易事,它要考虑的综合因素很多,对分析人员提出了较高的要求;❖最后,建模所花费的时间在整个分析过程中占有相当大的比重,约占整个分析时间的70%,因此,把主要精力放在模型的建立上以及提高建模速度是缩短整个分析周期的关键;9.模型中一般包括以下三类数据:❖ 1.节点数据:包括每个节点的编号、坐标值等;❖ 2.单元数据:a.单元编号和组成单元的节点编号;b.单元材料特性,如弹性模量、泊松比、密度等;c.单元物理特征值,如弹簧单元的刚度系数、单元厚度、曲率半径等;d.一维单元的截面特征值,如截面面积、惯性矩等;e.相关几何数据b.载荷条件数据;c.热边界条件数据;d.其他边界数据.1.分析问题定义在进行有限元分析之前,首先应对结果的形状、尺寸、工况条件等进行仔细分析,只有正确掌握了分析结构的具体特征才能建立合理的几何模型;总的来说,要定义一个有限元分析问题时,应明确以下几点:a.结构类型;b.分析类型;c.分析内容;d.计算精度要求;e.模型规模;f.计算数据的大致规律2.几何模型建立几何模型是从结构实际形状中抽象出来的,并不是完全照搬结构的实际形状,而是需要根据结构的具体特征对结构进行必要的简化、变化和处理,以适应有限元分析的特点;3.单元类型选择划分网格前首先要确定采用哪种类型的单元,包括单元的形状和阶次;单元类型选择应根据结构的类型、形状特征、应力和变形特点、精度要求和硬件条件等因素综合进行考虑;4.单元特性定义有限元单元中的每一个单元除了表现出一定的外部形状外,还应具备一组计算所需的内部特征参数,这些参数用来定义结构材料的性能、描述单元本身的物理特征和其他辅助几何特征等.5.网格划分网格划分是建立有限元模型的中心工作,模型的合理性很大程度上可以通过所划分的网格形式反映出来;目前广泛采用自动或半自动网格划分方法,如在Ansys中采用的SmartSize网格划分方法就是自动划分方法;6.模型检查和处理一般来说,用自动或半自动网格划分方法划分出来的网格模型还不能立即应用于分析;由于结构和网格生成过程的复杂性,划分出来的网格或多或少存在一些问题,如网格形状较差,单元和节点编号顺序不合理等,这些都将影响有限元计算的计算精度和计算时间;7.边界条件定义在对结构进行网格划分后称为离散模型,它还不是有限元模型,只有在网格模型上定义了所需要的各类边界条件后,网格模型才能成为完整的有限元模型;11..Ansys主要功能❖ 1. 结构分析;2. 高度非线性瞬态动力分析ANSYS/LS-DYNA;3. 热分析;4. 电磁分析;5. 流体动力学分析;6. 声学分析;7. 压电分析;8. 多场耦合分析;9. 优化设计及设计灵敏度分析; 10.二次开发功能;11. ANSYS土木工程专用包;.典型分析过程:1. 准备工作: 1清空数据库并开始一个新分析2指定新的工作文件名Jobname3指定新标题Title 4指定新的工作目录Working Directory;2.前置处理——创建有限元模型:1单元属性定义单元类型、实常数、材料属性;2创建或读入几何实体模型;3划分单元获得网络模型节点及单元:4模型检查,存储模型;3.计算求解——施加载荷进行求解:1选择分析类型并设置分析选型;2定义载荷及载荷步选项;3求解 solve;长、气象沉积、复合材料的失效破坏等;蒙特卡洛法的基本步骤:1构建概率模型;2随机抽样;3估计统计量;14.请回答Ansys软件主要包括三个部分的名称和各部分的功能;答:Ansys软件主要包括三个部分:前处理模块,求解模块和后处理模块;前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便的构造有限元模型;求解模块可模拟多种物理介质的相互作用,具有灵敏度分析和优化分析能力;后处理模块可将计算结果以图形,图表,曲线形式显示或输出;15.简述数据库的构成和主要特征;答:数据库系统至少包含以下三部分:1.数据库:结构化的相关数据的集合,有数据间的关联性;2.物理存储器:存储数据的介质,如光盘、磁盘、磁带等;3.数据库软件:负责对数据库管理和维护的软件,其核心是DBMS;16.数据库系统管理数据具有下列特征:1.数据共享:多用户同时使用全部或部分数据;2.数据独立性:每个用户所使用的数据有其自身的逻辑机构;3.减少数据冗余:数据集中管理,统一组织、定义和存储;4.数据的结构化:数据的相互关联和记录类型的相互关联;5.统一的数据保护功能:并发控制的问题,加强了对数据的保护;17.用PC-PDF检索系统分析PVD涂层的XRD谱线1 PC-PDF检索系统2使用方法分析过程PVD涂层:高速钢TiN多弧离子镀PVD涂层;沉积工艺为:预抽真空20min,预轰击清洗15min,离子镀沉积30min后冷却出炉;涂层厚度约2~3μm,可以初步判断XRD图谱为基体的衍射峰和涂层的衍射峰的叠加;1根据相图,确定稳定相,估计非平衡相:根据Fe-Ti相图,稳定化合物只有TiFe和TiFe2两种,分析得出优先形成TiFe;根据Ti-N相图,在PVD 的温度下可能形成的稳定相有α-Ti、Ti2N及TiN,除此外,还可能出现非平衡相;2检索:采用布尔Boolean检索法对仅形成Ti-N和Fe-Ti化合物进行检索,检索出12张PDF卡片;选择编号就可得到相应的PDF卡片在每个记录中存入的主要内容有:序号、PDF卡片号、物相名、该物相所含的元素名、晶体结构参数、衍射靶参数、晶面间距值、相对强度值、晶面指数等;;结合该PVD工艺条件和PDF卡片对试样的X衍射图谱进行对照分析,得出该涂层表面主要有TiN、Ti2N 、、FeTi相;3分析:X射线衍射物相定性计算机分析系统;有了PDF卡片检索数据库,结合相分析软件可在获得 X射线衍射谱后,利用数据库来对照分析,迅速准确对物相进行分析;Philips 公司为此开发出了 PC-IDENTIFY X衍射图谱计算机分析系统,该分析系统将各衍射降的值与各个可能存在物相的 d 值逐个进行比较,最终输出分析结果;该分桥系统为 X衍射仪的一部分,能迅速对物相进行分析;18.举例说明材料数据库应用的实例;答:材料数据库应用的实例1计算机选材系统;选材系统可以查询材料基本信息、加工应用和商业信息;2合金相图数据库系统;合金相图数据库系统可以方便查询到合金系中合金状态、温度和成分之间的关系;3数据库用于材料热处理工艺设计;在热处理工艺数据库的基础上,开发了CAPP,使工艺设计中的工艺参数选择、保温时间的计算、零件图形的绘制等工作均由计算机来自动完成;4数据库在材料物相分析中的应用;该数据库可以方便的检索物相、计算物相质量分数等;19.完整的专家系统由六个组成部分的功能:1知识库:用于存放领域专家提供的专门知识,它有知识的数量和质量之分,要选择合适的知识表达方式和数据结构、把专家的知识形式化并存入知识库中;2工作数据库:包含问题的有关初始数据和求解过程的中间信息组成;3推理机:它要解决如何选择和使用知识库中的知识,并运用适当的控制策略进行推理来实现问题的求解;4知识获取机制:实现专家系统的自我学习,在系统使用过程中能自动获取知识,不断完善扩大现有系统功能;5解释机制:专家系统在通用户的交互过程中,回答用户提出的各种问题,包括与系统运行有关的求解过程和与运行无关的关于系统自身的一些问题;6人机接口:实现系统与用户之间的双向信息转换,即系统将用户的输入信息翻译成系统可以接受的内部形式,或把系统向用户输出的信息转换成人类所熟悉的信息表达方式;20.将专家系统分为下列几类:1解释专家系统:通过对已知信息和数据的分析与解释,确定它们的含义,如图像分析、化学结构分析和信号解释等;2预测专家系统:通过对过去和现在已知状况的分析,推断未来可能发生的情况,如天气预报、人口预测、经济预测、军事预测;3诊断专家系统:根据观察到的情况来推断某个对象机能失常即故障的原因,如医疗诊断、软件故障诊断、材料失效诊断等;4设计专家系统:工具设计要求,秋初满足设计问题约束的目标配置,如电路设计、土木建筑工程设计、计算机结构设计、机械产品设计和生产工艺设计等;5规划专家系统:找出能够达到给定目标的动作序列或步骤,如机器人规划、交通运输调度、工程项目论证、通信与军事指挥以及农作物施肥方案等;6监视专家系统:对系统、对象或过程的行为进行进行不断观察,并把观察到的行为与其应当具有的行为进行比较,以便发现异常情况,发出警报,如核电站的安全监视等;7控制专家系统:自适应地管理一个受控对象的全面行为,使之满足预期的要求,如空中交通管制、商业管理、作战管理、自主机器人控制、生产过程控制等;21.实现"材料设计"的主要原因基本条件有以下三点:1基础理论物理和化学,特别是固体理论、量子化学和化学键理论的完善和发展;2计算机信息处理技术特别是人工智能、模式识别、计算机模拟、知识库和数据库等的建立和发展;3先进的材料生产和制备技术的发展:采用如急冷Splat Cooling、分子束外延MBD、有机金属化合物气相沉积、离子注入、微重力制备等;1、人工神经网络的特点和优越性表现在哪几个方面1具有自学习功能;2具有联想存储功能;3具有高速寻找优化解的能力;2、数据库数据主要特征包括1数据共享2数据独立性3减少数据冗余4数据的结构化5统一的数据保护功能;4、简述专家系统的工作过程:专家系统的工作过程大致描述为:系统根据用户提出的目标以综合数据库为出发点,在控制策略的指导下,由推理机运用知识库中的有关知识,通过不断的探索推理以实现求解的目标,因此,知识库与推理机是专家系统的核心部分,专家系统的工作过程是以知识为基础、对目标问题进行求解的过程是一个搜索过程;6、什么是人工神经网络,并画出经典人工神经网络连接形式人工神经网络是一种信息处理技术,力图模拟人类处理问题方式去理解&利用信息;人工神经网络既可以解决定性问题,又可以解决用于直接解决定量问题,具有较好的可靠性;擅长处理复杂的多元非线性问题;具有自学能力,能从已有的实验数据中自动总结规律;7、人工神经网络的结构形式有那些,并画出结构示意图1前馈式网络2输入输出有反馈的前馈网络3前馈内层互联网络4反馈型全互联网络5反馈型局部连接网络8、人工神经网络有那些类型1解释专家系统2预测专家系统3诊断专家系统4设计专家系统5规划专家系统6监视专家系统7控制专家系统9、什么是数据库管理系统数据库管理系统简称DBMS是一组通用的程序,对数据库中数据的各种操作提供一种共用的方法,接受并完成用户提出的访问数据库的各种请求,负责数据库的建立、操纵、管理&维护;其任务就是在保证数据安全、可靠的同时,提高数据应用时的简明性&方便性;数据库又可分为层次型、网络型和关系型三种;10在计算机控制系统中,什么是可靠性衡量可靠性的指标是什么可靠性:是指计算机控制系统能够无故障运行的能力,具体衡量可靠性的指标是“平均故障时间”;发生故障的间隔时间越长,则系统的可靠性就越高;11、在计算机工业控制系统中,硬件系统的五大组成部分是什么微型计算机、外部设备、外围设备、工业自动化仪表和被控工业对象12、在计算机控制系统中,什么是可维护性可维护性:是指日常进行维护时的方便程度,并在发生故障时能尽量缩短故障时间;13、什么是传感器传感器是信息获取过程中的一个环节,是将被测对象的物理参数转换成相应的易于检测、传送或控制的模拟信号的器件,由敏感元件和部分测量电路组成;14、举出至少五个可以通过教育网进行检索的全文数据库;.中国知识资源总库;2万方数据库;3维普资讯中文期刊库;4超星电子图书;5ACS期刊美国化学学会;6ScienceDirect;7Springer-Link全文期刊;7EBSCO欧美期刊全文;22.人工神经网络与材料工艺优化:材料在加工处理过程中,对最终性能的影响因素较多,关系较复杂,难以建立明确的数学模型;采用人工神经网络优化加工工艺能取得良好的效果;例:用人工神经网络方法优化7175铝合金工艺:将变形量、固溶时间和时效时间作为网络输入、合金抗拉强度和屈服强度作为输出,建立3× 6 × 2的三层BP网络,用遗传算法对训练好的网络进行优化,得到了7175铝合金在170℃时效处理的最优工艺为:冷变形%+480℃/133min固溶+170℃/10h时效;23.简述多尺度材料设计的层次与相应的计算模拟方法;答:多尺度材料设计的层次从广义来说,可按研究对象的空间尺度不同而划分为三个层次:1微观设计层次,空间尺度在约1nm量级,是原子、电子层次的设计;2连续模型层次,典型尺度在约1um量级,这时材料被看成连续介质;3工程设计层次,尺度对应于宏观材料,涉及大块材料的加工和使用性能的设计研究;所涉及的计算模拟方法分别为:量子化学第一性原子计算,分子动力学模拟,蒙特卡洛模拟,相图计算技术,相场模拟,有限元分析和概率断裂力学方法;24.分析电子显微方法:1.电子能量损失谱法EELS:这种方法是分析电子显微方法中重要的技术之一,对轻元素的分析特别有效,还可以对材料的微区组成进行定量分析;射线能谱法EDS:它也是分析电子显微方法中的成熟的基本技术,利用电子扫描观察装置,使电子束在待测试样上作二维扫描,测量其特征X射线的强度,从而得到特征X射线强度的二维分布图像,这种观察称为元素的面分布分析方法,所以对测量元素的二维分布极为有效;3.高角度散色暗场法STEM,即Z衬度法:这是扫描透射电子显微方法应用之一;上述的各种分析设备几乎都是在计算机采集和数据处理系统的控制下进行工作,而计算机控制系统都配备了不同的设备控制、数据处理分析软件,且功能强大,对检测结果的分析精度和详尽程度是人工无法比拟的;25.计算机材料缺陷评定系统软件构成:1图像采集及存储模块:用于实现参数定义、采集及存储图像;用此模块,计算机控制投影仪、显微镜、摄像机、采集和实时显示欲分析的材料图像,并以文件形式存储该图像备案;2图像预处理模块:主要用于图像增强;此模块主要包括:图像数字化、消噪处理、图像增强、锐化处理、二值化等计算机图像技术处理,以改善缺陷的图像质量;3特征提取模块:用于针对缺陷的特征,提取被采集部位的图像的缺陷信息,采用合适的识别准则判定缺陷的类型、位置等,列出缺陷的主要特征参数表格;4分析模块:主要用于列出各种缺陷分布情况结果,负责数据存储并评定级别;26. 万能材料试验机的计算机辅助测试系统CAT1系统工作原理及主要装置检测控制采用特殊的PWM数控电液比例微小流量阀:即可实现缓慢或微小的位移控制,又能实现一定速度的试验过程控制;既能作应力控制,也能作应变控制,还能作二者复合控制,且其控制范围相当宽;由计算机、 PWM流量阀和直接驱动流量阀的多功能板卡构成材料试验机的PWM数字伺服系统,使材料试验机的控制精度、控制稳定性、控制范围和软件设汁的难易程度都有较大的改善;。
计算机对于化学领域的应用随着科学技术的飞速发展,越来越多的行业开始应用计算机技术,化学领域也不例外。
计算机在化学领域的应用越来越广泛,为化学研究和实验提供了便利,本文将介绍计算机在化学领域的应用。
一、计算机辅助化学实验计算机在化学实验中的应用主要有两方面:一是在实验前的方案设计和优化,二是在实验中的数据处理和分析。
在实验前,计算机可以帮助化学研究人员进行实验方案设计和优化。
例如,化学研究人员可以使用计算机模拟某种反应过程,从而预测该反应的产物及其产率。
这种方法可以大大节省实验时间和成本,提高实验效率。
在实验中,计算机可以帮助化学研究人员进行数据处理和分析。
例如,化学研究人员可以借助计算机自动记录实验数据,避免手动记录数据的错误和繁琐。
同时,计算机还可以对实验数据进行分析和处理,得出更准确和可信的实验结论。
二、计算机模拟化学反应计算机模拟是一种基于计算机算法和数值模型的科学方法,可以帮助化学研究人员模拟特定化学反应的各个步骤,从而预测反应产物的结构、性质和反应机理等信息。
计算机模拟在化学反应领域的应用主要有三方面:一是在新药研发中的应用,二是在环境保护中的应用,三是在材料设计和合成中的应用。
在新药研发中,化学研究人员可以借助计算机模拟预测新药的药效和副作用,从而优化药物设计,提高药物研发的成功率和效率。
在环境保护中,化学研究人员可以借助计算机模拟预测化学物质在大气、水体和土壤中的行为,从而评估化学物质对环境的影响,并制定相应的环境保护措施。
在材料设计和合成中,化学研究人员可以借助计算机模拟预测材料的结构、性质和合成路线,从而指导材料的设计和合成。
三、计算机辅助化学学习计算机在化学学习和教学中的应用主要有三方面:一是化学课程的在线教学,二是化学模拟实验的虚拟化实现,三是化学知识的普及化。
在化学课程的在线教学中,学生可以通过网络远程学习化学知识,随时随地进行学习。
学生可以通过计算机平台完成课程作业和实验报告,同时还可以与教师和其他学生进行在线交流和讨论,提高学习效率和互动性。
课程总结计算机在化学中的应用随着计算机技术的迅猛发展和日益普及,计算机的应用已渗透到各个领域,并且在学校 教育中发挥着越来越大的作用 .计算机技术的迅猛发展对各学科的发展给予了深刻的影响。
随着各学科之间的交叉渗透和相互影响, 计算机技术在其它学科领域中的应用也已经构成各具特点的独立学科。
化学学科中复杂计算对强大计算能力的依赖性, 海量化学信息对存储和管理能力的高要求, 化学反应的复杂性和微观性对虚拟现实的需求, 化工过程对自动化的需求等等都要求化学工作者掌握现代计算机技术,特别是计算机在化学中的特殊应用技术。
在 这种形势下,驾驭计算机的能力已经成为衡量包括化学工作者在内的科技人员能力的重要尺 度之一。
这学期,我们主要学习了计算机文献检索、化学编辑排版、实验数据的图形化处理、 绘制化学化工图形以及 Office 系列软件在化学化工及论文编辑中的应用。
我从中学到了不少 的实用性内容,在此衷心地感谢老师的耐心指导,下面我将对本课程所学的内容作一个简短 的总结。
一、计算机文献检索利用计算机检索化学文献主要有其中搜索引擎有谷歌、百度、搜狐、库、工程索引和科学引文索引等。
化学是一门专业性很强的学科,但是这些信息较为零散且难以查询,一定的整合与处理是十分必要的。
最合理的办法就是建立一个化学数据库。
当前的化学信息和数据种类和数量繁多,通过书籍查找需要的文献将消耗大量的时间且 难度较大。
但随着计算机与信息技术和化学的发展与相互渗透,使得我们检索化学信息更加 快捷方便,只要给出关键词、作者、期刊号、出版时间就可以进行检索,还可以利用逻辑关 系进行二次检索或多次检索,使得范围大大缩小,效率倍增。
最常用的几种检索工具有:化 学化工网站、搜索引擎和专业数据库。
随着网络化学数据库的使用,化学工作者查找信息将 会变得更加方便,效率也会大大提高。
二、化学编辑排版采用ACD/ChemSketch 软件可以实现各种分子结构和化学反应式的绘制、分子三维模型 的建立及实验装置图的绘制等,是一个功能十分强大的化学专业应用软件。
计算机在材料化学中的应用第一章绪论1.工程模拟:在模型的基础上观察客观世界的各种系统并进行实验研究的技术。
2.模型的构造(1)模型的分类:物理模型(动、静);描述性模型;数学模型(动、静;数值法、解析法)(2)模型的构造方法:a.理论分析;b.类比分析;c.数据分析:使用系统回归分析的方法利用若干能表征系统规律,描述系统状态的数据来建立系统的数学模型。
d.人工假设:基于对系统的了解,将系统中不确定的因素假定为若干组确定的取值,而建立系统模型。
3.过程模拟(流程模拟)a.稳态流程模拟;b.动态流程模拟:利用计算机技术、图形原理和成像方法在屏幕上以动态、直观、立体、彩色的方式显示物体运动的过程模拟。
4.工程模拟研究的步骤:问题描述;设定目标和总体方案;构造模型;数据收集;编制程序;程序验证;模型确认;实验确认。
5.相关英文简称CAD:计算机辅助设计。
CAM:计算机辅助制造。
CAPP:计算机辅助工艺过程设计(computer aided process planning)。
在化学领域CAPP:计算机辅助合成路线设计。
DCS:分散控制系统。
6.分子模拟的方法中主要有四种:量子力学方法、分子力学方法、分子动力学方法、分子蒙特卡洛方法。
7.分子模拟法是用计算机以原子水平的分子模型来模拟分子的结构和行为,进而模拟分子系统的各种物理与化学性质。
(定义)8.分子模拟方法与高分子理论和材料设计的关系第二章数值计算方程求根1.二分法原则:保持新区间两端的函数值异号,对分n次得到第n个区间的长度为最初区间长度(x1-x0)的1/2n,在误差允许范围内,取In的中点为方程的根,则误差小于1/2(n+1)(x1-x0),这种对分区间,不断缩小根的搜索范围的方法叫二分法。
此法简单、快速、不易丢根。
二分法求根原则(跳出条件):(1)函数f(x)的绝对值小于指定的e1;(2)最后的小区间的一半宽度小于指定的自变量容差e2。
二分法函数:Void root(float a,float b,int*n,float fa,float fb,float e1,float e2,float rt[20]){ float a0,f0;a0=(a+b)/2;f0=f(a0);While((fabs(a-b)>e2)&&(f0>e1)){ if(f0*fa>0){a=a0;fa=f0;}If(f0*fb>0){b=a0;fb=f0}a0=(a+b)/2;f0=f(a0);}*n=*n+1;rt[*n]=a0;}弦截法求根:不取区间的中点,而取AB与X轴的交点为根的估算值。
优点:比原来趋近根的速度快2.迭代法方法概述:二分法和弦截法实质上就是迭代法,在迭代的每一步都是利用两个初始的“x”去求一个新的“x”值,能否在迭代的每一步只用一个“x”值去求新的“x”呢?这就是一点迭代法,通常简称为迭代法。
3牛顿法方法原理:将f(x)在x=x0附近按泰勒级数展开;f (x) = f (x0) + (x-x0) f′(x0) +!2)0(2xxf〞(x0) + …因x 与x0相差很小,故可略去含平方项的高次项得:f (x0) + (x-x0) f ′(x0) = 0 x = x0 -)0()0(x f x f ' 牛顿法特点:收敛速度比其他方法快得多。
但该法对f(x)函数本身的性质和初值x0的选区有一定的要求,选择不当,容易发散或丢根。
4高斯消去法(1) 获得消元上三角矩阵a 1j = a 1j / a 11 j:1~n+1a ij = a ij – a i1·a 1j i = 2…n ; j = 1…n+1(2) k-1次消元后,进行k 次消元a kj = a kj / a kk ; j = k …n-1a ij = a ij – a ik · a kj ; j = k …n-1; i = k+1…n(3)高斯消去法主函数for ( k=0; k<=n-1; k++) { for(j=n; j>=k; j--) a[k][j]=a[k][j]/a[k][k]; for(i=k+1;i<=n-1;i++) for(j=n;j>=k;j--)a[i][j]=a[i][j]-a[i][k]*a[k][j]; }(4)结果总结x i = a i,n+1 – ∑+=ni j xj aij 1)*(5.怎样判断一条直线与各原始数据的散点最为靠近呢? 常用的判断标准是“残差平法和最小”。
残差:测量值与回归值的差。
第i 点的残差为δi = yi – ( a + b ·xi ),则残差平方和可以表示为 Q =∑=mi i12δ=∑=⋅--mi i i x b a y 12)( “平方”也称为二乘,因此按照残差平方和最小的原则求回归线的方法称为最小二乘法。
当回归线是只有一个自变量x 和一个应变量y 的直线时,该法称为一元线性最小二乘法。
6.数值积分与微分方程的数值解(1)最基本的数值积分法:梯形法、辛普森法及高斯法。
(2)欧拉法求微分方程的数值解dxdy= f (x,y) 初值条件x=x0时y=y0。
数值解法就是在点x1,x2,…xn 上求解未知数y(x)的近似值。
其中xi = x0 + ih ( i=1,2,…,n), h 是积分步长,是相邻两点间距。
f (x,y)称为微分方程的右函数。
将微分方程两边积分,得到dx dxdyxi xi⎰+1= ⎰+1),(xi xi dx y x fy (xi+1) = y (xi) +⎰+1))(,(xi xidx x y x f当x>x0时,y(x)是未知的,因此右边的积分仍求不出,为此把小区间[xi,xi+1]上的f(x,y)近似得看成是常数f(xi,y(xi)).这样将微分方程两边积分,得到y (x i+1)≈y(x i ) + f(x i ,y(x i ))·(x i+1-x i )= y(x i ) + h f(x i ,y(x i )), i=0,1,2,…n-1此处给出由y(x i )求y(x i+1)的近似值的方法,这种方法称为欧拉法。
当i=0时,公式为y(x 1)=y(x 0)+hf(x 0,y(x 0)),y(x 0)是初始条件,认为它是准确的,点x1处的切线上的y 值记为y ′. y ′= y 0 + hf(x 0,y 0)7.预测—校正法求微分方程组的数值解方法说明:欧拉法被积函数即微分方程的右函数采用了下限的函数值,如用梯形法,即采用下限与上限两处右函数的平均值,则截断误差将大大下降,这时,积分表达式为⎰+1),(xi xidx y x f ≈2h[f(x i ,y i ) + f(x i+1,y i+1)] 用欧拉法先算出yi+1的估算值,再算出f(x i+1,y i+1)的近似值,进一步再求较精确的yi+1 一般式 y i+1 = y i +2h[f(x i ,y i ) + f(x i+1,y ′i+1)] y ′i+1 = y i + hf(x i ,y i )当 i = 0时,y = y 0 + 2h [f(x 0,y 0) + f(x 0 + h ,y ′)]y ′1 = y 0 + h ·f(x 0,y 0)在数学上,把由y0,h 和f(x0,y0)由y ′(或由yi,h 和f(x i ,y i )求y ′i+1)的过程称为预测;把由y ′(或y ′i+1)进一步求比较精确的y 或y i+1的过程称为校正。
高斯牛顿法简化框图:量子力学计算方法1.材料设计的第一性原理(自然界所服从的原理)牛顿力学、电动力学和相对论、量子力学和测不准原理、pauli不相容原理从第一性原理出发,针对实际材料和所研究的问题进行数值计算,在处理问题时要做合理的近似,提出简化模型,利用薛定谔方程计算材料系统电子浓度和系统的基态能量。
2.分子轨道计算方法包括从头计算与半经验量子化学计算。
量子化学从头算(ab initio)方法仅仅利用普朗克常量、电子质量、电量三个基本物理常数以及元素的原子序数3.三个基本近似(1)非相对论近似(2)Born-Oppenheimer近似(绝热近似)(3)单电子近似4.原子单位长度:波尔半径 a0 = h2/4∏2mee2 = 0.53 Å能量:1 hartree = e2/a= 27.21eV =2625.4 KJ/mol意义:距离为a的两个电子的排斥能质量:me= 1 ; e =15.基组(1)Roothann方程的分子轨道是由原子轨道线性组合的,成原子轨道集合为基组(basic set)(2)主要的基函数类型有三种:类氢离子轨道,Slater型轨道(STO)与Gaussian型轨道(GTO),后者有时也称为Gaussian型函数(GTF)(3)STO-nG基组以n个GTO基组组合起来表示一个STO的基组,称为STO-nG 基组。
(4)n-31G基组它将原子的内层轨道以STO-nG形式表示,而价层轨道用ζ1和ζ2(STO)表示,ζ1以3个GTO,ζ2以1个GTO来表示。
量子化学计算方法总结量子化学计算方法使用前提是真空状态的孤立分子、离子和原子簇等。
离开这一前提往往会有意想不到的误差。
Ab initio主要提出者:Hartree ,Fork ,Roothann等主要特点:不借助于经验参数,计算有较高的精确性,但计算时间长,需较大的磁盘空间和内存。
HMO主要提出者:Huckel主要特点:最简单的量子化学计算方法,对于平面的共轭分子处理很成功。
EHMO主要提出者:Hoffman R.主要特点:能考虑全部价电子,但完全忽略电子相互作用。
PCILO主要提出者:Dinner主要特点:基于CNDO近似,采用微扰组态相互作用的方法,主要用于生物分子的计算。
Xα主要提出者:Slater主要特点:主要用于原子簇和配合物的计算,优点是计算省时,结果亦理想,缺点是只能得到多重态平均能量,对有孤对电子的平衡几何构型计算很差。
CNDO/2 , INDO主要提出者:Pople J.A.主要特点:对平衡几何构型、偶极矩等的计算很理想,但对电离势、结合能、拉伸力常数的计算与实验值差距较大。
MINDO/3主要提出者:Dewar M.J.S.主要特点:在计算分子基态性质方面如生成热、键长、键角、第一电离势、偶极矩等较为满意。
MNDO主要提出者:Dewar M.J.S.主要特点:多数基态性质计算MNDO 比MINDO/3平均绝对误差大约减少一半。
AM1主要提出者:Dewar M.J.S.主要特点:参量化固定,对基态分子的计算比MNDO 法有全面改进,能正确处理氢键。