牛顿第二定律的应用(经典、全面、实用)
- 格式:ppt
- 大小:898.50 KB
- 文档页数:57
牛顿第二定律及应用一、力的单位1.国际单位制中,力的单位是牛顿,符号N。
2.力的定义:使质量为1 kg的物体产生1 m/s2的加速度的力,称为1 N,即1 N=1kg·m/s2。
3.比例系数k的含义:关系式F=kma中的比例系数k的数值由F、m、a三量的单位共同决定,三个量都取国际单位,即三量分别取N、kg、m/s2作单位时,系数k=1。
小试牛刀:例:在牛顿第二定律的数学表达式F=kma中,有关比例系数k的说法,不正确的是()A.k的数值由F、m、a的数值决定B.k的数值由F、m、a的单位决定C.在国际单位制中k=1D.取的单位制不同, k的值也不同【答案】A【解析】物理公式在确定物理量之间的数量关系的同时也确定了物理量的单位关系,在F=kma中,只有m的单位取kg,a的单位取m/s2,F的单位取N时,k才等于1,即在国际单位制中k=1,故B、C 、D正确。
二、牛顿第二定律1.内容:物体加速度的大小跟作用力成正比,跟物体的质量成反比.加速度的方向与作用力方向相同.2.表达式:F=ma.3.表达式F=ma的理解(1)单位统一:表达式中F、m、a三个物理量的单位都必须是国际单位.(2)F的含义:F是合力时,加速度a指的是合加速度,即物体的加速度;F是某个力时,加速度a是该力产生的加速度.4.适用范围(1)只适用于惯性参考系(相对地面静止或匀速直线运动的参考系).(2)只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.小试牛刀:例:关于牛顿第二定律,下列说法中正确的是()A.牛顿第二定律的表达式F= ma在任何情况下都适用B.物体的运动方向一定与物体所受合力的方向一致C.由F= ma可知,物体所受到的合外力与物体的质量成正比D.在公式F= ma中,若F为合力,则a等于作用在该物体上的每一个力产生的加速度的矢量和【答案】D【解析】A、牛顿第二定律只适用于宏观物体,低速运动,不适用于物体高速运动及微观粒子的运动,故A错误;B、根据Fam合,知加速度的方向与合外力的方向相同,但运动的方向不一定与加速度方向相同,所以物体的运动方向不一定与物体所受合力的方向相同,故B错误;C、F= ma表明了力F、质量m、加速度a之间的数量关系,但物体所受外力与质量无关,故C错误;D、由力的独立作用原理可知,作用在物体上的每个力都将各自产生一个加速度,与其它力的作用无关,物体的加速度是每个力产生的加速度的矢量和,故D正确;故选D。
《牛顿第二定律的应用》讲义一、牛顿第二定律的基本概念牛顿第二定律是经典力学中的核心定律之一,它描述了物体的加速度与作用在物体上的合力以及物体质量之间的关系。
其表达式为:F =ma,其中 F 表示合力,m 表示物体的质量,a 表示物体的加速度。
加速度是描述物体速度变化快慢的物理量,当物体受到合力的作用时,就会产生加速度。
而质量则是物体惯性的量度,质量越大,物体的惯性越大,越不容易改变其运动状态。
二、牛顿第二定律在直线运动中的应用1、匀变速直线运动当物体在一条直线上受到恒定的合力作用时,将做匀变速直线运动。
比如,一个在光滑水平面上受到水平恒力作用的物体,其加速度恒定。
根据牛顿第二定律,可以计算出加速度的大小,再结合运动学公式,就能够求解物体在不同时刻的速度、位移等物理量。
例如,一个质量为 5kg 的物体,受到一个水平向右的 20N 的力,求5s 末物体的速度和位移。
首先,根据牛顿第二定律计算加速度 a = F/ m = 20 / 5 = 4 m/s²。
然后,根据速度公式 v = v₀+ at(假设初速度 v₀= 0),可得 5s 末的速度 v = 4 × 5 = 20 m/s。
再根据位移公式 s = v₀t + 1/2 at²(假设初速度 v₀= 0),可得 5s 内的位移 s =1/2 × 4 × 5²= 50 m。
2、非匀变速直线运动当物体所受合力随时间变化时,物体将做非匀变速直线运动。
此时,需要根据合力随时间的变化关系,结合牛顿第二定律,求出加速度随时间的变化关系,进而求解物体的运动情况。
比如,一个物体在竖直方向上受到重力和随时间变化的向上拉力作用。
在不同时刻,拉力的大小不同,通过牛顿第二定律求出加速度的变化,再利用积分等数学方法,就可以求出物体在一段时间内的位移和速度。
三、牛顿第二定律在曲线运动中的应用1、平抛运动平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动。
牛顿第二定律的推导和应用牛顿第二定律是经典力学中的基本定律之一,它描述了质点运动的原因和规律。
本文将对牛顿第二定律的推导和应用进行详细介绍。
一、牛顿第二定律的推导牛顿第二定律可用以下公式表示:F = ma其中,F 表示作用在物体上的合外力,m 表示物体的质量,a 表示物体的加速度。
牛顿第二定律说明了力的大小与物体加速度的关系,即在给定质量的物体上施加力会导致物体产生加速度。
为了推导出牛顿第二定律,我们可以引入以下概念:1. 动量:物体的动量等于它的质量乘以速度,即 p = mv。
动量是一个矢量量,方向与速度方向相同。
2. 动量的变化率:当物体受到外力时,它的动量会发生变化。
根据牛顿第二定律可以知道,物体的加速度与施加在其上的合外力成正比,而物体的动量正比于其加速度。
因此,我们可以得到动量的变化率Δp与施加在物体上的合外力 F 成正比的关系:Δp ∝ F。
3. 时间:动量的变化取决于作用力的时间长度。
因此,我们可以将动量的变化率Δp 与外力作用的时间 t 相联系:Δp = Ft。
结合以上三个概念,我们得到牛顿第二定律的基本形式:F = ma。
二、牛顿第二定律的应用牛顿第二定律是解决力学问题时最基础也最有用的工具之一。
下面将介绍一些牛顿第二定律的具体应用:1. 物体的加速度计算:通过牛顿第二定律,我们可以计算物体的加速度。
已知物体受到的合外力和物体的质量,可以通过 F = ma 计算出物体的加速度。
这对于研究物体在外力作用下的运动非常关键。
2. 速度和位移的关系:运用牛顿第二定律,我们可以推导出速度和位移之间的关系。
根据牛顿第二定律可知,F = ma,进一步化简可得 F = m(dv/dt),其中 v 表示速度,t 表示时间。
将等式两边乘以 dt,得到Fdt = mvdv。
再进行积分,可以得到位移和速度之间的关系。
3. 牛顿第二定律与摩擦力:牛顿第二定律还可以应用于摩擦力的计算。
考虑到物体在表面上受到的摩擦力,可以将摩擦力纳入合外力的计算,进而计算出物体的加速度。
动力学演变牛顿第二定律的推导与应用牛顿第二定律是经典力学中最重要的定律之一,描述了物体在外力作用下的运动规律。
本文将对牛顿第二定律进行推导,并探讨其在实际问题中的应用。
一、牛顿第二定律的推导牛顿第二定律可以表述为:物体的加速度等于作用在它身上的力与物体质量的乘积。
即 F = m·a,其中 F 表示力,m 表示物体的质量,a 表示物体的加速度。
我们将从牛顿第一定律和牛顿第二定律的定义入手进行推导。
根据牛顿第一定律,一个物体如果受到合力为零的作用,则物体将保持静止或匀速直线运动。
假设现在有一个质量为 m 的物体受到一个合力 F,根据牛顿第一定律,物体将产生加速度 a。
根据牛顿第二定律的定义,我们有 F = m·a。
通过对物体质量和加速度的定义以及力的定义进行代入,可以推导出牛顿第二定律的表达式。
二、牛顿第二定律的应用牛顿第二定律广泛应用于许多实际问题中,下面将介绍其中两个常见的应用。
1. 自由落体运动自由落体是指只受重力作用下的运动,没有其他外力干扰。
在自由落体运动中,牛顿第二定律可以简化为 F = m·g,其中 m 表示物体的质量,g 表示重力加速度。
根据牛顿第二定律,我们可以推导出物体的下落距离和时间的关系。
设物体从初始位置下落至某一位置所经过的时间为 t,下落距离为 h。
由于自由落体运动中只有重力作用,根据牛顿第二定律,有 F = m·g,代入质量的定义,得到 F = mg。
根据牛顿第二定律的定义,有 F = m·a,代入自由落体的加速度 g,得到 mg = m·g。
通过对时间 t 的定义,有 h = (1/2)·g·t^2。
因此,我们可以得出自由落体运动下物体的下落距离和时间的关系为 h = (1/2)·g·t^2。
2. 斜面上的运动考虑一个物体沿着光滑斜面下滑的情况。
在斜面上,物体既受重力作用,也受到斜面的支持力作用。
牛顿第二定律的原理及应用牛顿第二定律是经典物理学中最基本的定律之一,它描述了力对物体的作用方式,形式化地表达了物体受力时运动的规律。
本文将探讨牛顿第二定律的原理及其在实际应用中的重要性。
1. 牛顿第二定律的原理牛顿第二定律可以简单地表述为:当一个物体受到作用力时,它的加速度正比于作用力,反比于物体的质量,方向与作用力方向相同。
换句话说,当一个物体受到作用力F时,其加速度a的大小与F成正比,与物体质量m成反比,即a=F/m。
这个定律描述了物体运动的规律,告诉我们:当物体受到的力增加时,它会加速运动;当物体的质量增加时,它会减缓运动。
在良好的近似情况下,牛顿第二定律适用于所有物体,并且在许多工程和科学领域中都是无可替代的。
例如,汽车碰撞测试中使用的模型就基于牛顿第二定律,因为它可以计算出车辆在不同速度下碰撞时的加速度和动量变化。
2. 应用:力的测量牛顿第二定律的另一个重要应用是测量力的大小。
由于牛顿第二定律建立了力与加速度之间的关系,因此如果可以测量一个物体的质量和加速度,就可以通过牛顿第二定律计算出作用力的大小。
例如,在电子磅秤中,我们可以通过测量物体的质量和磅秤显示的加速度来计算物体所受的重力。
在工业生产中,也常常需要测量机器所受的拉力或推力,这时采用的仪器就是力计,其原理也是基于牛顿第二定律。
3. 应用:运动学分析牛顿第二定律在运动学分析中也扮演着重要的角色。
例如,我们可以通过牛顿第二定律来计算发射的火箭所需要的动力和燃料,以保证它能够成功地到达目标。
另一个运动学分析中的实际应用是动力学分析,它包括了各种不同类型的力学系统,如机械系统、流体系统和电磁系统等,以及各种物理现象,如声音、火焰和电磁辐射等。
在动力学分析中,牛顿第二定律可以描述系统的动力学性质,并可以计算系统受到的各种力的大小和方向。
4. 应用:运动的优化牛顿第二定律的应用不仅限于理论分析,还可以用于优化运动过程。
例如,我们可以通过牛顿第二定律来计算体育运动员的力量和速度,以帮助他们在比赛中取得最佳成绩。
牛顿第二定律的简单应用1.牛顿第二定律的用途:牛顿第二定律是联系物体受力情况与物体运动情况的桥梁.根据牛顿第二定律,可由物体所受各力的合力,求出物体的加速度;也可由物体的加速度,求出物体所受各力的合力.2.应用牛顿第二定律解题的一般步骤(1)确定研究对象.(2)进行受力分析和运动状态分析,画出受力分析图,明确运动性质和运动过程.(3)求出合力或加速度.(4)根据牛顿第二定律列方程求解.3.两种根据受力情况求加速度的方法(1)矢量合成法:若物体只受两个力作用,应用平行四边形定则求这两个力的合力,再由牛顿第二定律求出物体的加速度的大小及方向.加速度的方向就是物体所受合力的方向.(2)正交分解法:当物体受多个力作用时,常用正交分解法分别求物体在x 轴、y 轴上的合力F x 、F y ,再应用牛顿第二定律分别求加速度a x 、a y .在实际应用中常将受力分解,且将加速度所在的方向选为x 轴或y 轴,有时也可分解加速度,即⎩⎪⎨⎪⎧F x =ma x F y =ma y . 注意:在应用牛顿第二定律解决问题时要重点抓住加速度a 分析解决问题。
【题型1】如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向的夹角θ=37°,小球和车厢相对静止,小球的质量为1 kg.sin 37°=0.6,cos 37°=0.8,取g =10 m/s 2.求:(1)车厢运动的加速度并说明车厢的运动情况;(2)悬线对小球的拉力大小.【题型2】(多选)如图所示,套在绳索上的小圆环P 下面用悬线挂一个重力为G 的物体Q 并使它们处于静止状态,现释放圆环P ,让其沿与水平面成θ角的绳索无摩擦下滑,在圆环P 下滑过程中绳索处于绷紧状态(可认为是一直线),若圆环和物体下滑时不振动,稳定后,下列说法正确的是( )A.Q 的加速度一定小于g sin θB.悬线所受拉力为G sin θC.悬线所受拉力为G cos θD.悬线一定与绳索垂直【题型3】如图所示,质量为m的人站在自动扶梯上,扶梯正以加速度a向上做减速运动,a与水平方向的夹角为α.求人受到的支持力和摩擦力.【题型4】如图所示,质量为m2的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为m1的物体1,跟物体1相连接的绳与竖直方向成θ角不变,下列说法中正确的是()A.车厢的加速度大小为g tanB.绳对物体1的拉力为m1g cosθC.车厢底板对物体2的支持力为(m2-m1)gD.物体2受车厢底板的摩擦力为0针对训练1.如图所示,一倾角为α的光滑斜面向右做匀加速运动,物体A相对于斜面静止,则斜面运动的加速度为()A.g sin αB.g cosC.g tan αD.gtan α2.如图所示,用橡皮筋将一小球悬挂在小车的架子上,系统处于平衡状态,现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定地偏离竖直方向某一角度(橡皮筋在弹性限度内)。