现代控制理论第五章
- 格式:ppt
- 大小:1.41 MB
- 文档页数:74
第五章 Lyapunov稳定性分析和二次型最优控制5.1 概述本章首先讨论Lyapunov稳定性分析,然后介绍线性二次型最优控制问题。
我们将使用Lyapunov稳定性方法作为线性二次型最优控制系统设计的基础。
应用于线性定常系统的稳定性分析方法很多。
然而,对于非线性系统和线性时变系统,这些稳定性分析方法实现起来可能非常困难,甚至是不可能的。
Lyapunov稳定性分析是解决非线性系统稳定性问题的一般方法。
虽然在非线性系统的稳定性问题中,Lyapunov稳定性分析方法具有基础性的地位,但在具体确定许多非线性系统的稳定性时,却并不是直截了当的。
技巧和经验在解决非线性问题时显得非常重要。
在本章中,对于实际非线性系统的稳定性分析仅限于几种简单的情况。
本章5.1节为概述。
5.2节介绍Lyapunov意义下的稳定性定义。
5.3节给出Lyapunov稳定性定理,并将其应用于非线性系统的稳定性分析。
5.4节讨论线性定常系统的Lyapunov稳定性分析。
5.5节给出模型参考控制系统,首先用公式表示Lyapunov稳定性条件,然后在这些条件的限制下设计系统。
5.6节讨论线性二次型最优控制系统,将采用Lyapunov稳定性方程导出线性二次型最优控制的条件。
5.7节给出线性二次型最优控制问题的MATLAB解法。
5.2 Lyapunov意义下的稳定性问题对于一个给定的控制系统,稳定性分析通常是最重要的。
如果系统是线性定常的,那么有许多稳定性判据,如Routh-Hurwitz稳定性判据和Nyquist稳定性判据等可资利用。
然而,如果系统是非线性的,或是线性时变的,则上述稳定性判据就将不再适用。
本节所要介绍的Lyapunov第二法(也称Lyapunov直接法)是确定非线性系统和线性时变系统的最一般的方法。
当然,这种方法也可适用于线性定常系统的稳定性分析。
此外,它还可应用于线性二次型最优控制问题。
5.2.1 平衡状态、给定运动与扰动方程之原点考虑如下非线性系统),(t x f x = (5.1)式中x 为n 维状态向量,),(t x f 是变量x 1,x 2,…,x n 和t 的n 维向量函数。
5.1状态反馈与极点配置一、状态反馈系统的动态方程以单输入-多输出受控对象动态方程为例:(5-1)将对象状态向量通过待设计的参数矩阵即状态反馈行矩阵,负反馈至系统的参考输入,于是存在(5-2)这时便构成了状态反馈系统,见图5-1。
图5-1 状态反馈系统结构图(5-3)(5-4)式中v为纯量,为维向量,为维矩阵,为维向量,为维行矩阵,为维向量,为维矩阵。
为闭环状态阵,为闭环特征多项式。
二、用状态反馈使闭环极点配置在任意位置上的充要条件是:受控对象能控证明若式(5-1)所示对象可控,定可通过变换化为能控标准形,有若在变换后的状态空间内引维状态反馈矩阵:(5-5)其中分别为由状态变量引出的反馈系数,则变换后的状态反馈系统动态方程为:(5-6)(5-7)式中(5-8)该式与仍为能控标准形,故引入状态反馈后,系统能控性不变。
特征方程为:(5-9)显见,任意选择阵的个元素,可使特征方程的个系数满足规定要求,能保证特征值(即闭环极点)任意配置。
将逆变换代入式(5-6),可求出原状态空间内的状态反馈系统状态方程:(5-10)与式(5-3)相比,式(5-10)所示对象应引入状态反馈阵为:(5-11)需指出,当受控对象可控时,若不具有能控标准形形式,并不必象如上证明那样去化为能控标准形,只要直接计算状态反馈系统闭环特征多项式,这时,其系数为的函数,与给定极点的特征多项式系数相比较,便可确定。
能控的多输入-多输出系统,经如上类似分析可知,实现闭环极点任意配置的状态反馈阵K为维。
若受控对象不稳定,只要有能控性,完全可由状态反馈配置极点使系统稳定。
状态变量受控情况下,引入状态反馈表示增加一条反馈通路,它能改变反馈所包围环节的传递特性,即通过改变局部回路的极点来改变闭环极点配置。
不能控状态变量与控制量无关,即使引入状态反馈,对闭环极点位置也不会产生任何影响,这是因为传递函数只与系统能控、能观测部分有关的缘故。
若不能控状态变量是稳定的状态变量,那么系统还是能稳定的,否则,系统不稳定。