元素性质的周期性变化
- 格式:doc
- 大小:41.50 KB
- 文档页数:1
4.2.1 元素性质的周期性变化规律基础落实知识要点一元素性质的周期性变化规律1.原子结构的变化规律(1)随着原子序数的递增,元素原子的核外电子排布呈现的变化,除第一周期外,同周期从左到右,最外层电子数从1→8。
(2)随着原子序数的递增,元素原子的半径呈现变化,同周期从左到右,随着原子序数的递增,原子半径逐渐(稀有气体除外)。
(3)随着原子序数的递增,元素的主要化合价呈周期性变化,最高正价从→,负价从→,(第二周期氧无最高正价、氟无正价)。
2.元素性质的变化规律随着原子序数的递增,同周期主族元素的金属性逐渐、非金属性逐渐,呈现周期性的变化。
知识要点二元素周期律1.内容:元素的性质随着原子序数的递增而呈的规律。
2.实质:元素性质的周期性变化是元素的必然结果。
对点题组题组一原子半径、化合价的变化规律1.(2019·淄博高一检测)原子序数为 11~17 的元素,随核电荷数的递增而逐渐减小的是()A.电子层数B.最外层电子数C.原子半径D.元素最高正化合价2.下列说法中正确的是()A.非金属元素呈现的最低化合价,其绝对值等于该元素原子的最外层电子数B.非金属元素呈现的最高化合价不超过该元素原子的最外层电子数C.最外层有2 个电子的原子都是金属原子D.金属元素只有正价和零价,而非金属元素既有正价又有负价又有零价3.原子N S O Si半径 r/10-10m 0.75 1.02 0.74 1.17根据以上数据,P原子的半径可能是()A.1.10×10-10mB.0.80×10-10mC.1.20×10-10mD.0.70×10-10m4.下列各组元素中,按从左到右的顺序,原子序数递增、元素的最高正化合价也递增的是()A.C、N、O、FB.Na、Be、B、CC.P、S、Cl、ArD.Na、Mg、Al、Si题组二元素性质的变化规律5.(2019·沈阳高一检测)如图是部分短周期元素原子(用字母表示)最外层电子数与原子序数的关系。
元素性质的周期性变化的规律元素性质的周期性变化是指元素的一些物理和化学性质随着元素原子序数的增加而出现规律性变化的现象。
这一周期性的变化反映了元素内电子结构的变化。
本文将从周期表的发现开始,介绍元素性质周期性变化的规律、主要原因以及应用。
周期表的发现元素周期表是化学家门捷列夫于1869年提出的化学元素分类图表。
在这个表中,元素按照原子序数的递增排列,同时可以根据元素的周期性变化进行分组。
化学家门捷列夫根据元素的性质绘制了第一版的周期表,并发现了元素周期性变化的规律。
1.原子半径:随着元素原子序数的增加,原子半径呈现周期性变化。
在同周期内,随着原子序数的增加,原子半径逐渐减小。
在同族内,随着原子序数的增加,原子半径逐渐增加。
2.电离能:电离能是指从一个原子或离子中移去一个电子所需要的能量。
随着元素原子序数的增加,第一电离能呈现周期性变化。
在同周期内,随着原子序数的增加,第一电离能逐渐增加。
在同族内,随着原子序数的增加,第一电离能逐渐减小。
3.电负性:电负性是指元素吸引和结合电子的能力。
随着元素原子序数的增加,电负性呈现周期性变化。
在同周期内,随着原子序数的增加,元素的电负性逐渐增加。
在同族内,随着原子序数的增加,元素的电负性逐渐减小。
4.酸性:酸性是指物质在溶液中释放出H+离子的能力。
随着元素原子序数的增加,酸性呈现周期性变化。
在同周期内,随着原子序数的增加,元素的酸性逐渐减弱。
在同族内,随着原子序数的增加,元素的酸性逐渐增强。
5.金属性:金属性是指元素的物理和化学性质,如导电性、延展性和反射性等。
随着元素原子序数的增加,金属性呈现周期性变化。
在同周期内,随着原子序数的增加,元素的金属性逐渐减弱。
在同族内,随着原子序数的增加,元素的金属性逐渐增强。
6.化合价:化合价是指一个原子和其他原子形成化合物时与其他原子相连的价数,即原子化学价。
随着元素原子序数的增加,化合价呈现周期性变化。
在同周期内,随着原子序数的增加,元素的最高可达价数逐渐增加。
第二单元元素性质的递变规律【学海导航】元素的性质随着核电荷数的递增而呈现周期性的变化,这个规律叫做元素周期律。
一、原子核外电子排布的周期性元素按原子序数递增的顺序依次排列时,原子的最外层上的电子数,由1(s1)到8(s2p6),呈现出周期性变化。
相应于这种周期性变化,每周期以碱金属开始,以稀有气体结束。
元素的化学性质,主要取决于元素原子的电子结构,特别是最外层电子结构。
所以元素性质的周期性,来源于原子电子层结构的周期性。
根据元素原子的外围电子排布的特征,可将元素周期表分成五个区域:s区、p区、d 区、ds区、f区。
二、元素第一电离能的周期性变化1、定义:从气态的基态原子中移去一个电子变成+1价气态阳离子所需的最低能量,称为第Ⅰ电离能。
常用符号I1表示。
M(g)→ M+(g)+ e-,+1价气态阳离子移去一个电子变成+2价气态阳离子所需的最低能量,称为第Ⅱ电离能。
依次类推。
元素的第一电离能越小,表示它越容易失去电子,即该元素的金属性越强。
2、影响电离能的因素电离能的大小主要取决于原子的核电荷、原子半径及原子的电子构型。
一般说来,核电荷数越大,原子半径越小,电离能越大。
另外,电子构型越稳定,电离能也越大。
3. 电离能的周期性变化同周期中, 从左向右,核电荷数增大,原子半径减小, 核对电子的吸引增强, 愈来愈不易失去电子, 所以 I 总的趋势是逐渐增大。
但有些元素(如Be、Mg、N、P等)的电离能比相邻元素的电离能高些,这主要是这些元素的最外层电子构型达到了全充满或半充满的稳定构型。
同主族元素自上而下电离能依次减小。
但在同一副族中,自上而下电离能变化幅度不大,且不甚规则。
4.电离能与价态之间的关系失去电子后, 半径减小, 核对电子引力大, 更不易失去电子, 所以有: I1 < I2 < I3 < I4…., 即电离能逐级加大.三、元素电负性的周期性变化1、定义:电负性: 表示一个元素的原子在分子中吸引电子的能力. 元素的电负性越大,表示原子吸引成键电子的能力越强,该元素的非金属性也就越强;电负性越小,该元素的金属性越强。
化学元素的周期性规律性质化学元素是构成物质的基本单位,它们的性质和行为对于化学研究和工业应用至关重要。
化学元素的周期性规律性质是指元素周期表中元素性质的有规律的周期性变化。
本文将探讨化学元素的周期性规律性质,并分析其对于化学研究和应用的意义。
1. 原子半径周期性变化原子半径是指元素的原子的半径大小。
在周期表中,元素的原子半径呈现一定的周期性变化规律。
一般来说,从左至右,原子半径逐渐减小,因为电子层的数量增加,但核电荷不变,所以电子云受到的吸引力增强,原子半径减小。
而从上至下,原子半径逐渐增大,因为电子层数目增加,电子云远离原子核,原子半径增大。
这一周期性变化对于元素的化学反应和物理性质有重要影响。
2. 电离能周期性变化电离能是指在气态下,一个原子中最外层电子脱离原子形成阳离子所需的能量。
周期表中,电离能呈现一定的周期性变化规律。
从左至右,电离能逐渐增大,因为原子半径减小,原子核对最外层电子的吸引力增强,电子更难被脱离。
而从上至下,电离能逐渐减小,因为原子半径增大,最外层电子与原子核之间的吸引力减弱,电子更容易被脱离。
电离能的周期性变化对于元素的化学反应和电子结合行为具有重要的影响。
3. 电负性周期性变化电负性是指原子吸引和保持共价化合物中的电子对的能力。
周期表中,电负性呈现一定的周期性变化规律。
从左至右,电负性逐渐增大,因为原子半径减小,核电荷增强导致原子对电子的吸引力增强。
而从上至下,电负性逐渐减小,因为原子半径增大,核电荷增强对电子的吸引力减弱。
电负性的周期性变化对于元素在化学反应中的电子转移和共价键形成具有重要影响。
4. 金属性和非金属性的周期性变化周期表中的元素可以分为金属和非金属。
从左至右,金属性逐渐减弱,非金属性逐渐增强。
金属具有良好的导电性和热导性,而非金属多为绝缘体或者半导体。
金属与非金属在化学反应中表现出不同的性质和行为,这一周期性变化对于元素的化学性质具有重要的指导意义。
综上所述,周期表中化学元素的周期性规律性质对于我们理解元素的性质和行为具有重要的意义。
元素周期表的八大规律元素周期表是描述化学元素周期性及其物理及化学性质的一张表,它是化学科学的基础,对于化学家而言是无可替代的工具。
元素周期表中包含着很多规律,其中最重要的八大规律如下:1. 周期性规律:元素周期表的水平行称为周期,每个周期有着相同的周期性特征。
相邻的元素具有相同的原子核外层电子构态,因此具有相似的化学性质。
周期增加,元素原子半径逐渐减小,电子云密度增加,原子半径的变化量随原子序数的增加逐渐减小;2. 主族规律:主族元素的外层电子数为同一数字,因此它们具有相似的化学性质,比如同一主族元素的原子半径随着原子序数的增加呈现逐渐增加的趋势;3. 周期律规律:每个周期都有一个最多能容纳2n²(n为周期数)个电子的壳,因此周期表中的元素周期性地重复着原子核外层电子数目的增加以及原子性质的变化;4. 金属性规律:周期表中左下角为金属元素,右上角为非金属元素,中央为逐渐转变为金属的半金属元素。
金属元素具有良好的导热、导电性能,而非金属元素就没有;5. 氢氦规律:氢和氦两个元素在周期表中独立显示,氢氦组成的第一组与剩余各组的区别很大;6. 原子电负性规律:化学键的类型与它们围绕的元素原子电负性差异有关,原子电负性随着原子序数的增加而递增,而原子质量则随着原子序数的增加而递增;7. 原子半径规律:原子半径随着原子序数的增加呈现逐渐减小的趋势,但是由于电子壳层的分布不同,因此第一主量子数n的大小对原子半径的影响比其他量子数要大;8. 电离能规律:与原子半径相比,第一电离能的增加速度要更快。
由于原子核中的原子的密度增加,使得原子半径逐渐减小,原子中的电子与原子核之间的距离变小,因而需要更多的能量才能够将电子从原子中逸出。
元素周期表中的各种规律与元素基本特征密切相关,这些规律不仅揭示了元素物理和化学性质的发展变化趋势,而且为现代化学技术的发展做出了贡献。
元素性质的周期性变化规律一、教材分析本单元第一节第一课时已经学习了原子结构示意图的书写与核外电子排布规律,学生初步认识到从微观的角度了解不同元素原子结构的不同,初步建立起有关于“构”-“性”之间的认知模型。
第一节第二课时已经学习元素同期表编制时的规律,元素周期表中的位置可以体现出元素原子的结构,初步建立起有关于“构”-“位”之间的认知模型。
第一节第三课时以碱金属与卤族元素为例,构建了同主族元素性质变化的相似性与递变性规律,使学生初步建立起有关于“构”-“位”-“性”三者之间的认知模型,并学习了比较金属性与非金属性的方法。
本节在此基础上,以第三周期元素为代表,分微观与宏观两种角度,阐述元素结构的周期性变化规律与元素性质的周期性变化规律,从而归纳出元素周期律。
二、学情分析学生在第一节《原子结构与元素周期表》第一课时的学习中掌握了原子核外电子排布的规律,了解了元素周期表的排列规律。
在第一节《原子结构与元素周期表》第二时课的学习过程量,通过对碱金属和卤族元素的研究,学生也能够明确主族元素的电子层数、最外层电子数与其在周期表中的位置之间的关系,了解同主族元素性质的相似性和递变性,学生在碱金属和卤族元素的研究过程中,掌握了将结构与性质的关联的判断能力,但是,学生还没有认识到同周期元素性质的变化,还不能建立完整的元素周期律的概念。
三、素养目标【教学目标】1.结合有关数据和实验事实认识原子核外电子排布、元素最高化合价和最低化合价、原子半径等随元素原子序数递增而呈周期性变化的规律。
2.以第三周期元素为例,同周期元素的金属性、非金属性等随元素原子序数递增而呈周期性变化的规律,建构元素周期律。
3.完善元素“位置-结构-性质”的认知模型,基于元素性质的递变的本质原因,类比归纳出元素的性质。
4.加深对分类法,类比归纳法等科学方法的认知,提高逻辑推理能力,论证能力,从而发展证据推理与模型认识的化学学科核心素养。
【评价目标】1.宏观辨识与微观探析:从微观上理解同周期元素原子核外电子排布的相似性和递变规律,明确宏观上的元素性质与微观上的原子核外电子排布之间的关系,理解结构决定性质,性质反映结构的基本规律。
元素的周期性与性质规律元素是构成物质的基本单位,它们以多种形式存在于自然界中。
然而,元素并非孤立存在,它们之间存在着一定的周期性和规律性。
本文将探讨元素的周期性和性质规律,并分析背后的原因。
1. 周期表及元素周期律周期表是一种以元素相似性为基础的排列方式,将元素按递增的原子序数进行分类。
根据周期表,元素周期律可归纳为以下几个规律:1.1 周期性表现元素周期表呈现出周期性的特征,即元素的性质随着原子序数增加而定期重复。
例如,钠、铜、银等元素在有限周期内具有相似的化学性质。
1.2 周期表族别元素周期表还将元素按相似性分为不同的族别。
同一族别的元素在化学性质上有相似之处,如第一族的碱金属元素具有活泼的金属性质。
2. 元素周期性规律元素周期性的规律主要表现在物理性质、化学性质和原子结构等方面。
2.1 原子半径元素周期表中,从左到右,在同一周期内,原子半径逐渐减小。
这是因为原子核的正电荷逐渐增加,吸引外层电子向原子核靠拢。
2.2 电离能电离能是指从一个电离态转变为另一个电离态所需的能量。
在周期表中,从左到右,在同一周期内,电离能逐渐增加。
这是因为原子核的正电荷逐渐增加,外层电子与原子核的吸引力增强。
2.3 电负性电负性是元素吸引共用电子对的能力。
在周期表中,从左到右,在同一周期内,电负性逐渐增加。
这是由于原子核的吸引力增加,更强烈地吸引周围的电子。
2.4 金属性在周期表中,从左到右,在同一周期内,金属性逐渐减弱,非金属性逐渐增强。
这是由于金属性元素倾向于失去电子,而非金属性元素倾向于获得电子。
3. 周期性规律背后的原因这些元素周期性规律的出现是由于原子结构和电子排布的变化所导致的。
3.1 原子核的正电荷原子核的正电荷随着原子序数的增加而增加,从而吸引外层电子向原子核靠拢,导致原子半径减小,电离能增加。
3.2 外层电子的屏蔽效应外层电子与原子核之间存在内层电子的屏蔽效应。
随着原子序数的增加,内层电子数量增多,屏蔽效应增强,减弱了原子核对外层电子的吸引力,导致电负性减小。
化学元素周期表的周期性趋势化学元素周期表是化学家们组织和分类元素的重要工具。
通过周期表,我们可以了解和预测不同元素的性质和行为。
其中,元素周期表的周期性趋势是一种有规律的现象,它描述了元素性质随着电子排布的不同而发生变化。
本文将探讨周期表中的主要周期性趋势,包括原子半径、电离能、电负性和化合价。
一、原子半径原子半径是指元素原子核和最外层电子之间的距离。
在周期表中,原子半径呈现出明显的趋势。
一般来说,原子半径随着周期增加而减小,原因是核电荷增加,外层电子数目不变,导致电子靠近原子核,减小了半径。
然而,在同一周期中,由于电子层数增加,电子云扩散,原子半径也会增加。
二、电离能电离能是指从一个原子中移除一个或多个电子所需的能量。
周期表中,电离能也呈现出一定的规律。
一般而言,随着周期数的增加,电离能逐渐增加。
原因是元素周期表中的元素电子层数增加,电子与核的吸引力增强,使得电离能变大。
此外,在同一周期中,由于核电荷增加,原子半径减小,电离能也会增加。
三、电负性电负性是描述一个原子在共价化合物中吸引电子的能力。
元素周期表中,电负性也呈现出一定的周期性趋势。
一般认为,从左上角到右下角,电负性逐渐增加。
原因是随着周期数和原子序数的增加,原子核电荷数增加,电子云靠近原子核,电负性增加。
四、化合价化合价是指一个原子与其他原子结合形成化合物时的“连接性”。
周期表中,化合价也存在一定的规律。
原子的化合价一般等于其最外层电子数目。
从周期表可以看出,元素周期表中的元素化合价有规律地变化,例如,主族元素的化合价一般是它们最外层电子的数目。
以上是化学元素周期表的主要周期性趋势。
这些趋势为研究元素的性质和行为提供了有效的参考。
通过对周期性趋势的了解,我们可以更好地理解元素的特性,预测元素的反应性和化学性质,并在实验和工程中应用这些知识。
综上所述,化学元素周期表的周期性趋势是一种重要的现象,它描述了元素性质在周期表中的有规律的变化。