北邮运筹学ch5_指派问题
- 格式:ppt
- 大小:3.10 MB
- 文档页数:12
运筹学课件ch5指派问题[全文] 指派问题assignment problem 运筹学课件一种特殊的线性规划问题,我们也经常遇到指派人员做某项工作的情况。
指派问题的许多应用都用来帮助管理人员解决如何为一项将要开展进行的工作指派人员的问题。
其他的一些应用如为一项任务指派机器、设备或者是工厂。
指派问题运筹学课件指派问题的形式表述:给定了一系列所要完成的任务(tasks)以及一系列完成任务的被指派者(assignees),所需要解决的问题就是要确定出哪一个人被指派进行哪一项任务。
指派问题模型运筹学课件指派问题的假设:被指派者的数量和任务的数量是相同的每一个被指派者只完成一项任务每一项任务只能由一个被指派者来完成每个被指派者和每项任务的组合有一个相关成本目标是要确定怎样进行指派才能使得总成本最小指派问题模型运筹学课件指派问题assignment problem 【例51></a>.14】人事部门欲安排四人到四个不同的岗位工作,每个岗位一个人(经考核四人在不同岗位的成绩(百分制)如表5-34所示,如何安排他们的工作使总成绩最好。
88809086丁90798382丙95788795乙90739285甲DCBA工作人员表5-34【解】设1 数学模型运筹学课件数学模型为:甲乙丙丁ABCD图5. 3指派问题assignment problem运筹学课件假设m个人恰好做m项工作,第i个人做第j项工作的效率为cij?0,效率矩阵为[cij](如表5-34),如何分配工作使效率最佳(min或max)的数学模型为指派问题assignment problem运筹学课件2 解指派问题的匈牙利算法匈牙利法的条件是:问题求最小值、人数与工作数相等及效率非负【定理5.1】如果从分配问题效率矩阵[cij]的每一行元素中分别减去(或加上)一个常数ui(被称为该行的位势),从每一列分别减去(或加上)一个常数vj(称为该列的位势),得到一个新的效率矩阵[bij],其中bij=cij,ui,vj,则[bij]的最优解等价于[cij]的最优解,这里cij、bij均非负(指派问题assignment problem【证】运筹学课件【定理5.2】若矩阵A的元素可分成“0”与非“0”两部分,则覆盖“0”元素的最少直线数等于位于不同行不同列的“0”元素(称为独立元素)的最大个数( 如果最少直线数等于m,则存在m个独立的“0”元素,令这些零元素对应的xij等于1,其余变量等于0,这时目标函数值等于零,得到最优解(两个目标函数相差一个常数 u+v,约束条件不变,因此最优解不变。
第一章绪论1、指派问题的背景及意义指派问题又称分配问题,其用途非常广泛,比如某公司指派n个人去做n 件事,各人做不同的一件事,如何安排人员使得总费用最少?若考虑每个职工对工作的效率(如熟练程度等),怎样安排会使总效率达到最大?这些都是一个企业经营管理者必须考虑的问题,所以该问题有重要的应用价值.虽然指派问题可以用0-1规划问题来解,设X(I,J)是0-1变量, 用X(I,J)=1表示第I个人做第J件事, X(I,J)=0表示第I个人不做第J件事. 设非负矩阵C(I,J)表示第I个人做第J件事的费用,则问题可以写成LINGO程序SETS:PERSON/1..N/;WORK/1..N/;WEIGHT(PERSON, WORK): C, X ;ENDSETSDATA:W=…ENDDATAMIN=@ SUM(WEIGHT: C*X);@FOR(PERSON(I): @SUM(WORK(J):X(I,J))=1);@FOR(WORK(J): @SUM(PERSONM(I):X(I,J))=1);@FOR(WEIGHT: @BIN(X));其中2*N个约束条件是线性相关的, 可以去掉任意一个而得到线性无关条件.但是由于有N^2个0-1变量, 当N很大时,用完全枚举法解题几乎是不可能的. 而已有的0-1规划都是用隐枚举法做的,计算量较大. 对于指派问题这种特殊的0-1规划,有一个有效的方法——匈牙利算法,是1955年W. W. Kuhn利用匈牙利数学家D.König的二部图G的最大匹配的大小等于G的最小顶点覆盖的大小的定理提出的一种算法,这种算法是多项式算法,计算量为O(N3).匈牙利算法的基本原理是基于以下两个定理.定理1设C=(C ij)n×n是指派问题的效益矩阵,若将C中的任一行(或任一列)减去该行(或该列)中的最小元素,得到新的效率矩阵C’,则C’对应的新的指派问题与原指派问题有相同的最优解.证明:设X’是最优解, 即@SUM(WEIGHT: C*X’)<= @SUM(WEIGHT: C*X), 则当C中任一行或任一列减去该行或该列的最小数m时,得到的阵C’还是非负矩阵, 且@SUM(WEIGHT: C’*X’)<=@SUM(WEIGHT: C*X)-m=@SUM(WEIGHT: C’*X)定理2效率矩阵C中独立的0元素的最多个数等于覆盖所有0元素的最少直线数. 当独立零元素的个数等于矩阵的阶数时就得到最优解.3、理论基础定义:图G的一个匹配M是图G中不相交的边的集合. 属于匹配M中的边的所有端点称为被该匹配M饱和, 其他的顶点称为M-未饱和的. 如果一个匹配M 饱和了图G的所有顶点,则称该匹配M是一个完全匹配. 可见顶点数是奇数的图没有完全匹配. 一个匹配M称为是极大匹配, 如果它不能再扩张成更大的一个匹配. 一个匹配称为是最大匹配, 如果不存在比它更大的匹配.定义:对于一个匹配M, 图G的一个M-交替路是图G中的边交替地在M中及不在M中的边组成. 从M-未饱和点出发到M-为饱和点结束的M-交替路称为一条M-增广路. 把M-增广路中不是M中的边改成新的匹配M’中的边, 把M-增广路中M中的边不作为M’中的边, 在M-增广路以外的M中的边仍作为M’中的边, 则M’的大小比M大1. 故名M-增广路. 因此最大匹配M不存在M-增广路.定义:若图G和图H有相同的顶点集V, 我们称G和H的对称差,记为G∆H,是一个以V为顶点集的图, 但其边集是G和H的边集的对称差: E(G∆H)=E(G) ∆E(H)=E(G)⋂E(H)-(E(G)⋃E(H))=(E(G)-E(H)) ⋂ (E(H)-E(G))定理: (Berge, 1957) 图G的一个匹配M是最大匹配,当且仅当G中没有M-增广路.证明: 我们只要证明, G中没有M-增广路时, M是最大匹配. 用反证法, 若有一个比M大的匹配M’. 令G的一个子图F, E(F)=M∆M’, 因M和M’都是匹配, F的顶点的最大度数至多是2, 从而F由不相交的路和环组成, 它们的边交替地来自M和M’, 于是F中的环的长度是偶数. 由于M’比M大, F中存在一个连通分支,其中M’中的边数大于M中的边数. 这个分支只能是起始和终止的边都在M’中. 而这就是一条G中的M-增广路. 与假设矛盾. 证毕.定理(Hall, 1935)设G是一个二部图, X和Y是其二分集, 则存在匹配M 饱和X当且仅当对于X中的任意子集S, Y 中与S中的点相邻的点组成的集合N(S)中元素的个数大于等于集合S中元素的个数.证明:必要性是显然的. 对于充分性, 假设 |N(S)|≥|S|, ∀S⊂X, 考虑G的一个最大匹配M, 我们用反证法,若M没有饱和X, 我们来找一个集合S不满足假设即可. 设u∈X是一个M-未饱和顶点, 令S⊂X和T⊂Y分别是从u出发的M-交替路上相应的点.我们来证明M中的一些边是T到S-u上的一个匹配. 因为不存在M-增广路,T中的每个点是M-饱和的. 这意味着T中的点通过M中的边到达S中的一个顶点. 另外, S-u中的每个顶点是从T中的一个顶点通过M中的一条边到达的. 因此M 中的这些边建立了T与S-u的一个双射, 即|T|=|S-u|. 这就证明了M中的这些边是T到S-u上的一个匹配,从而意味着T⊂N(S), 实际上, 我们可证明T=N(S). 这是因为连接S和Y-T中的点y的边是不属于M的, 因为不然的话, 就有一条到达y的M-增广路, 与y∉T矛盾. 故|N(S)|=|T|=|S-u|=|S|-1<|S|, 与假设矛盾.当X与Y的集合的大小相同时的Hall定理称为婚姻问题,是由Frobenius(1917)证明的.推论: k-正则的二部图(X的每一点和Y的每一点相关联的二部图)(k>0)存在完全匹配.证明: 设二分集是X,Y. 分别计算端点在X和端点在Y的边的个数, 得k|X|=k|Y|, 即|X|=|Y|.因此只要证明Hall的条件成立即可. 使X饱和的匹配就是完全匹配. 考虑∀S⊂X, 设连接S与N(S)有m条边, 由G的正则性, m=k|S|. 因这m条边是与N(S)相关联的, m≤k|N(S)|, 即k|S|≤ k|N(S)|, 即|N(S)|≥|S|. 这就是Hall的条件.用求M-增广路的方法来得到最大匹配是很费时的. 我们来给出一个对偶最优化问题.定义:图G的一个顶点覆盖是集合S⊂V(G), 使得G的每条边至少有一个端点在S中. 我们称S中的一个顶点覆盖一些边, 若这个顶点是这些边的公共端点.因为匹配的任意两条边不能被同一个顶点覆盖, 所以顶点覆盖的大小不小于匹配的大小: |S|≥|M|. 所以当|S|=|M| 时就同时得到了最大的匹配和最小的顶点覆盖.定理(König [1931],Egerváry[1931])二部图G的最大匹配的大小等于G的最小顶点覆盖的大小.证明: 设M是G的任一个匹配, 对应的二分集是X,Y. 设U是一个最小的顶点覆盖, 则|U|≥|M|, 我们只要由顶点覆盖U来构造一个大小等于|U|的匹配即完成证明. 令R=U⋃X, T=U⋃Y, 令H, H’分别是由顶点集R⋂(Y-T)及T⋂(X-R)诱导的G的子图. 我们应用Hall的定理来证明H有一个R到Y-T中的完全匹配,H’有一个从T到X-R中的完全匹配. 再因这两个子图是不相交的, 这两个匹配合起来就是G中的一个大小为|U|的匹配.因为R⋂T是G的一个覆盖, Y-T与X-R之间没有边相联接. 假设S⊂R, 考虑在H中S的邻接顶点集N(S), N(S) ⊂Y-T. 如果|N(S)|<|S|, 因为N(S)覆盖了不被T覆盖的与S相关联所有边, 我们可以把N(S) 代替S作为U中的顶点覆盖而得到一个更小的顶点覆盖. U的最小性意味着H中Hall条件成立. 对H'作类似的讨论得到余下的匹配. 证毕.最大匹配的增广路算法输入: 一个二分集为X,Y的二部图G,一个G中的匹配M, X中的M-未饱和顶点的集合U.思路: 从U出发探求M-交替路,令S⊂X,T⊂Y为这些路到达过的顶点集. 标记S中不能再扩张的顶点. 对于每个x∈(S⋂T)-U, 记录在M-增广路上位于x前的点.初始化: S=U,T=∅.叠代: 若S中没有未标记过的顶点, 结束并报告T⋂(X-S)是最小顶点覆盖而M是最大匹配.不然, 选取S中未标记的点x, 考虑每个y∈N(x)且xy∉M, 若y是M-未饱和的, 则得到一个更大的匹配,它是把xy加入原来的匹配M得到的,将x从S中去除. 不然, y是由M中的一条边wy相连接的, w∈X, 把y加入T(也有可能y本来就在T中), 把w加入S. w未标记, 记录w前的点是y. 对所有关联到x的边进行这样的探索后, 标记x. 再次叠代.定理: 增广路算法可以得到一个相同大小的匹配和顶点覆盖.证明: 考虑这个算法终止的情况, 即标记了S中所有的点. 我们要证明R=T⋂(X-S)是大小为|M|的一个顶点覆盖.从U出发的M-交替路只能通过M中的边进入X中的顶点, 所以S-U中的每个顶点通过M与T中的顶点匹配, 并且没有M中的边连接S和Y-T. 一旦一条M-交替路到达x∈S, 可以继续沿着任何未饱和的边进入T, 由于算法是对于x的所有邻域顶点进行探索才终止的,所以从S 到Y-T 没有未饱和边. 从而S 到Y-T 没有边, 证明了R 是一个顶点覆盖.因为算法是找不到M-增广路时终止, T 的每一个顶点是饱和的. 这意味着每个顶点y ∈T 是通过M 匹配与S 中的一个顶点. 由于U ⊂S, X-S 的每个顶点是饱和的, 故M 中与X-S 相关联的边不和T 中的点相连接. 即它们与是饱和T 的边不同的, 这样我们可见M 至少有|T|+|X-S|条边. 因不存在一个比顶点覆盖更大的匹配, 所以有|M|=|T|+|X-S|=|R|.设二部图G 的二分集X 和Y 都是n 个元素的点集, 在其边j i y x 上带有非负的权ij w , 对于G 的一个匹配M, M 上各边的权和记作w(M).定义: 一个n ×n 矩阵A 的一个横截(transversal)是A 中的n 个位置, 使得在每行每列中有且只有一个位置(有的文献中把横截化为独立零元素的位置来表示).定义: 指派问题就是给定一个图G=n n K ,(完全二部图, 即每个X 中的顶点和Y 中的每个顶点有边相连接的二部图)的边的权矩阵A, 求A 的一个横截, 使得这个横截上位置的权和最大. 这是最大带权匹配问题的矩阵形式.定义: 对于图G=n n K ,,设其二分集是X ,Y ,给定G 的边j i y x 的n ×n 权矩阵W={ij w }.考虑G 的子图v u G ,, 设其二分集是U ⊂X ,V ⊂Y, 边集是E(v u G ,), 对于子图v u G ,的带权覆盖u,v 是一组非负实数{i u },{j v },使得ij j i w v u ≥+,)(,v u j i G E y x ∈∀, v u G ,的带权覆盖的费用是∑∑+j i v u 记为C(u,v), 最小带权覆盖问题就是求一个具有最小费用C(u,v)的带权覆盖u,v.引理: 若M ⊂E(v u G ,)是一个带权二部子图v u G ,的最大匹配, 且u, v 是v u G ,的带权覆盖, 则C(u,v)≥w(M). 而且, C(u,v)=w(M)当且仅当ij j i w v u =+,M y x j i ∈∀. 这时M 是v u G ,最大带权匹配, u,v 是v u G ,的最小带权覆盖, 定义这时的v u G ,为G 的相等子图(equality subgraph ).证明: 因为匹配M 中的边是不相交的, 由带权覆盖的定义就得C(u,v)≥w(M). 而且C(u,v)=w(M)当且仅当ij j i w v u =+,M y x j i ∈∀成立. 因一般地有C(u,v)≥w(M).所以当C(u,v)=w(M)时. 意味着没有一个匹配的权比C(u,v)大, 也没有一个覆盖的费用比w(M)小.Kuhn 得到一个指派问题的算法,命名为匈牙利算法, 为的是将荣耀归于匈牙利数学家König 和Egerv áry.指派问题的匈牙利算法(Kuhn[1955], Munkres[1957]):输入G=n n K ,的边的权矩阵A, 及G 的二分集X,Y.初始化: 任取一个可行的带权覆盖,例如)(max ij ji w u =,0=j v ,建立G 的相等子图v u G ,, 其二分集是X, Y ’⊂Y, 求v u G ,的一个最大匹配M. 这个匹配的权和w(M)=C(u,v), M 的带权覆盖是具有最小费用的.叠代: 如M 是G 的一个完全匹配, 停止叠代, 输出最大带权匹配M. 不然, 令U 是X 中的M-未饱和顶点. 令S ⊂X, T ⊂Y 是从U 中顶点出发的M-交替路到达的顶点的集合.令},:min{T Y y S x w v u j i ij j i -∈∈-+=ε.对于所有的S x i ∈, 将i u 减少ε, 对于所有的T y j ∈,将j v 增加ε,形成新的带权覆盖u ’,v ’及对应的新的相等子图v u G '',.如果这个新的相等子图含有M-增广路, 求它的最大匹配M ’, 不然不改变M 再进行叠代.定理: 匈牙利算法能找到一个最大权匹配和一个最小费用覆盖.证明: 算法由一个覆盖开始,算法的每个叠代产生一个覆盖,仅在相等子图有一个完全的匹配为止。
物流运筹学运输问题及指派问题第 3 章运输和指派问题本章知识结构本章教学目标与要求掌握产销平衡运输问题的数学模型及其特点; 掌握运输问题的表上作业法,包括初始调运方案的确定、检验数的计算、运输方案的调整方法; 掌握产销不平衡运输问题转化为产销平衡问题的处理办法;掌握运输问题在实践中的典型应用; 掌握标准指派问题的求解方法,会将各种非标准指派问题转化为标准指派问题。
导入案例运储物流的运输问题运输成本占物流总成本的35,-50,左右,占商品价格的4,-10,,运输对物流总成本的节约具有举足轻重的作用。
运储物流在物流运输管理中要着重考虑:运输方式的选择,运输路线的选择,编制运输计划等问题。
运输方式合适与否决定了运输时间的长短,决定了成本的高低,各种运输工具都有其使用的优势领域,对运输工具进行优化选择,按运输工具特点进行装卸运输作业,最大限度地发挥所用运输工具的作用;选择运输路线要与交通运输工具结合起来,尽量安排直达运输,以减少运输装卸、转运环节,缩短运输时间;编制运输计划还要从全局出发,深入调查研究,综合平衡,积极组织计划运输、合理运输、直达运输、均衡运输,按照成本最低的原则来制定合理的计划。
3.1 运输问题概述运输问题的典型提法是将某种物质从若干个产地调运到若干个销地,已知每个产地的产量和每个销地的销量,如何在许多可行调运方案中选择一个总运费最少的调运方案。
根据总产量与总销量是否相等的数量关系,运输问题通常可划分为产销平衡(相等)和产销不平衡(不相等)两大类别。
产销平衡的运输问题主要在这一节介绍,产销不平衡的运输问题将在后面节中讨论。
3.1.1 运输问题的引入在生产、交换活动中,不可避免地要进行物资调运工作。
某时期内将生产基地的煤、钢铁、粮食、矿砂、木材等各类物资,分别运送到需要这些物资的地区。
3.1 运输问题概述【例3.1】某物流公司从两个产地A1 内蒙、A2 山西将煤炭运往三个销地B1 北京、B2 山东、B3上海,各产地的产量、各销地的销量、各产地运往各销地的每单位煤炭运费数据见下表,问:应如何调运煤炭可使总运输费用最小, 销地产地 B1 B2 B3 产量 6 4 6 A1 200 x11x12 x13 6 5 5 A2 300 x21 x22 x23 销量 150 150 200 500 解: 此为产销平衡的运输问题(总产量总销设量)。