logic回归分析资料
- 格式:ppt
- 大小:5.62 MB
- 文档页数:50
LOGISTIC回归分析前⾯的博客有介绍过对连续的变量进⾏线性回归分析,从⽽达到对因变量的预测或者解释作⽤。
那么如果因变量是离散变量呢?在做⾏为预测的时候通常只有“做”与“不做的区别”、“0”与“1”的区别,这是我们就要⽤到logistic分析(逻辑回归分析,⾮线性模型)。
参数解释(对变量的评价)发⽣⽐(odds): ODDS=事件发⽣概率/事件不发⽣的概率=P/(1-P)发⽣⽐率(odds ratio):odds ratio=odds B/odds A (组B相对于组A更容易发⽣的⽐率)注:odds ratio⼤于1或者⼩于1都有意义,代表⾃变量的两个分组有差异性,对因变量的发⽣概率有作⽤。
若等于1的话,该组变量对事件发⽣概率没有任何作⽤。
参数估计⽅法线性回归中,主要是采⽤最⼩⼆乘法进⾏参数估计,使其残差平⽅和最⼩。
同时在线性回归中最⼤似然估计和最⼩⼆乘发估计结果是⼀致的,但不同的是极⼤似然法可以⽤于⾮线性模型,⼜因为逻辑回归是⾮线性模型,所以逻辑回归最常⽤的估计⽅法是极⼤似然法。
极⼤似然公式:L(Θ)=P(Y1)P(Y2)...p(Y N) P为事件发⽣概率P I=1/(1+E-(α+βX I))在样本较⼤时,极⼤似然估计满⾜相合性、渐进有效性、渐进正太性。
但是在样本观测少于100时,估计的风险会⽐较⼤,⼤于100可以介绍⼤于500则更加充分。
模型评价这⾥介绍拟合优度的评价的两个标准:AIC准则和SC准则,两统计量越⼩说明模型拟合的越好,越可信。
若事件发⽣的观测有n条,时间不发⽣的观测有M条,则称该数据有n*m个观测数据对,在⼀个观测数据对中,P>1-P,则为和谐对(concordant)。
P<1-P,则为不和谐对(discordant)。
P=1-P,则称为结。
在预测准确性有⼀个统计量C=(NC-0.5ND+0.5T)/T,其中NC为和谐对数,ND为不和谐对数,这⾥我们就可以根据C统计量来表明模型的区分度,例如C=0.68,则表⽰事件发⽣的概率⽐不发⽣的概率⼤的可能性为0.68。
数据分析知识:数据分析中的Logistic回归分析Logistic回归分析是数据分析中非常重要的一种统计分析方法,它主要用于研究变量之间的关系,并且可以预测某个变量的取值概率。
在实际应用中,Logistic回归分析广泛应用于医学疾病、市场营销、社会科学等领域。
一、Logistic回归分析的原理1、概念Logistic回归分析是一种分类分析方法,可以将一个或多个自变量与一个二分类的因变量进行分析,主要用于分析变量之间的关系,并确定自变量对因变量的影响。
Logistic回归分析使用的是逻辑回归模型,该模型是将自变量与因变量的概率映射到一个范围为0-1之间的变量上,即把一个从负无穷到正无穷的数映射到0-1的范围内。
这样,我们可以用这个数值来表示某个事件发生的概率。
当这个数值大于0.5时,我们就可以判定事件发生的概率比较高,而当这个数值小于0.5时,我们就可以判定事件发生的概率比较小。
2、方法Logistic回归分析的方法有两种:一是全局最优化方法,二是局部最优化方法。
其中全局最优化方法是使用最大似然估计方法,而局部最优化方法则是使用牛顿法或梯度下降算法。
在进行Logistic回归分析之前,我们首先要对数据进行预处理,将数据进行清洗、变量选择和变量转换等操作,以便进行回归分析。
在进行回归分析时,我们需要先建立逻辑回归模型,然后进行参数估计和模型拟合,最后进行模型评估和预测。
在进行参数估计时,我们通常使用最大似然估计方法,即在估计参数时,选择最能解释样本观测数据的参数值。
在进行模型拟合时,我们需要选取一个合适的评价指标,如准确率、召回率、F1得分等。
3、评价指标在Logistic回归分析中,评价指标包括拟合度、准确性、鲁棒性、可解释性等。
其中最常用的指标是拟合度,即模型对已知数据的拟合程度,通常使用准确率、召回率、F1得分等指标进行评价。
此外,还可以使用ROC曲线、AUC值等指标评估模型的性能。
二、Logistic回归分析的应用1、医学疾病预测在医学疾病预测中,Logistic回归分析可以用来预测患某种疾病的概率,如心脏病、肺癌等。
Logistic回归分析报告结果解读分析Logistic回归常用于分析二分类因变量(如存活与死亡、患病与未患病等)与多个自变量得关系。
比较常用得情形就是分析危险因素与就是否发生某疾病相关联。
例如,若探讨胃癌得危险因素,可以选择两组人群,一组就是胃癌组,一组就是非胃癌组,两组人群有不同得临床表现与生活方式等,因变量就为有或无胃癌,即“就是”或“否”,为二分类变量,自变量包括年龄、性别、饮食习惯、就是否幽门螺杆菌感染等。
自变量既可以就是连续变量,也可以为分类变量。
通过Logistic回归分析,就可以大致了解胃癌得危险因素。
Logistic回归与多元线性回归有很多相同之处,但最大得区别就在于她们得因变量不同。
多元线性回归得因变量为连续变量;Logistic回归得因变量为二分类变量或多分类变量,但二分类变量更常用,也更加容易解释。
1、Logistic回归得用法一般而言,Logistic回归有两大用途,首先就是寻找危险因素,如上文得例子,找出与胃癌相关得危险因素;其次就是用于预测,我们可以根据建立得Logistic 回归模型,预测在不同得自变量情况下,发生某病或某种情况得概率(包括风险评分得建立)。
2、用Logistic回归估计危险度所谓相对危险度(risk ratio,RR)就是用来描述某一因素不同状态发生疾病(或其它结局)危险程度得比值。
Logistic回归给出得OR(odds ratio)值与相对危险度类似,常用来表示相对于某一人群,另一人群发生终点事件得风险超出或减少得程度。
如不同性别得胃癌发生危险不同,通过Logistic回归可以求出危险度得具体数值,例如1、7,这样就表示,男性发生胃癌得风险就是女性得1、7倍。
这里要注意估计得方向问题,以女性作为参照,男性患胃癌得OR就是1、7。
如果以男性作为参照,算出得OR将会就是0、588(1/1、7),表示女性发生胃癌得风险就是男性得0、588倍,或者说,就是男性得58、8%。
第十二章Logistic 回归分析一、Logistic 回归概述:Logistic 回归主要用于筛选疾病的危险因素、预后因素或评价治疗措施; 通常以疾病的死亡、痊愈等结果发生的概率为因变量,以影响疾病发生和预后的 因素为自变量建立模型。
、Logistic 回归的分类及资料类型:第一节非条件Logistic 回归分析、Logistic 回归模型:Logistic 回归模型:exp ( • :i X i ——亠」p X p )p 二1 +exp ( B o + B i X i i + Pp X p ) 1二、回归系数的估计(参数估计):回归模型的参数估计:Logistic 计法。
二、假设检验: 1. Logistic 回归方程的检验:•检验模型中所有自变量整体来看是否与所研究事件的对数优势比存在线性 关系,也即方程是否成立。
检验的方法有似然比检验、比分检验(score test )和Wald 检验(wald test )。
上述三种方法中,似然比检验最可靠。
•似然比检验(likehood ratio test ):通过比较包含与不包含某一个或几 个待检验观察因素的两个模型的对数似然函数变化来进行,其统计量为 G=-2l n(L)(又称Devia nee )。
无效假设H O : B =0。
当H 0成立时,检验统计量 G 近似服从自由度为N-P-1的X 2分布。
当G 大于临界值时,接受H,拒绝无效假设, 认为从整体上看适合作Logistic 回归分析,回归方程成立。
2. Logistic 回归系数的检验:•为了确定哪些自变量能进入方程,还需要对每个自变量的回归系数进行假 设检验,判断其对模型是否有贡献。
•检验方法常用 WaldX 检验,无效假设H0 B =0。
当X 2大于临界值时,拒 绝无效假设,自变量能进入方程。
1亠elogit (P )= ln (±)=B o +B * 1 x 1 + , + B n x n回归模型的参数估计通常利用最大似然估3.Logistic 回归模型的拟合优度检验:•Logistic 回归模型的拟合优度检验是通过比较模型预测的与实际观测的事件发生与不发生的频数有无差别来进行检验。
logistic回归模型讲稿Logitic回归分析模型2022-10-241各位老师,同学们大家上午好:非常感谢大家抽出宝贵的时间来参加沙龙,感谢我的导师对沙龙内容及PPT制作过程中的悉心指导,今天和大家一起分享的是在课题中用到的一种统计学分析方法,Logitic回归分析。
2这是CNKI学术搜索给出的近年来Logitic回归分析方法的学术关注度,由此可见,Logitic回归分析方法在当前学术研究中应用比较广泛、流行,关注度比较高,是进行科研数据分析不可缺少的利器。
3下面我将分以下几个部分对回归模型做详细的介绍:1.Logitic回归的基本概念与原理;2.Logitic回归的应用范畴;3.Logitic回归的类型及实例分析;这是本次沙龙的重点部分。
4.应用Logitic回归的注意事项;5.小结与答疑。
4首先来了解一下Logitic回归模型的基本概念与原理:Logitic回归又称「Logitic回归分析」,是一种「概率型非线性回归」,主要用于危险因素分析以及预后评估等方面,是目前流行病学和医学中最常用的分析方法之一。
近年来已逐渐成为发表高质量SCI论文必不可少的重要统计学分析利器。
Logitic回归本质上是一种用于研究二分类(或多分类)结局(y,因变量)与有关影响因素(某,自变量)之间关系的多因素分析方法。
5用比较通俗的话来解释它的基本原理,也就是说:用一组观察数据拟合Logitic模型,然后揭示若干个自变量某与一个因变量y之间的关系,结果反应了y对某的依存关系。
统计学的东西比较抽象,下面通过两张图再来重复解说一下。
6(1)与某一事件或某一疾病的结局有关的,存在很多可疑的影响因素,在这些可疑因素中包括促使结局发生的有关的一些危险因素、也包括抑制结局发生的有关的一些保护因素。
那么这些因素到底哪些是危险因素,哪些是保护因素呢?它们的危险及保护的程度大概有多少呢?7通过Logitic回归分析我们就可以看到详细的结果。