有机碳测定的几种方法
- 格式:docx
- 大小:46.77 KB
- 文档页数:6
从表3—4 中,可以看出每种氧化还原指示剂都有自己的标准电位(E 0),邻啡罗啉 (E 0=1.11V ),2-羧基代二苯胺(E 0=1.08V ),以上两种氧化还原指示剂的标准电位(E 0),正落在滴定曲线突跃范围之内,因此,不需加磷酸而终点容易掌握,可得到准确的结果。
例如:以邻啡罗啉亚铁溶液(邻二氮啡亚铁)为指示剂,三个邻啡罗啉(C 2H 8N 2)分子与一个亚铁离子络合,形成红色的邻啡罗啉亚铁络合物,遇强氧化剂,则变为淡蓝色的正铁络合物,其反应如下:[(C 2H 8N 2)3Fe]3++e [(C 2H 8N 2)3Fe]2+淡蓝色 红色滴定开始时以重铬酸钾的橙色为主,滴定过程中渐现Cr 3+的绿色,快到终点变为灰绿色,如标准亚铁溶液过量半滴,即变成红色,表示终点已到。
但用邻啡罗啉的一个问题是指示剂往往被某些悬浮土粒吸附,到终占时颜色变化不清楚,所以常常在滴定前将悬浊液在玻璃滤器上过滤。
从表3-4中也可以看出,二苯胺、二苯胺磺酸钠指示剂变色的氧化还原标准电位(E 0)分别为0.76V 、0.85V 。
指示剂变色在重铬酸钾与亚铁滴定曲线突跃范围之外。
因此使终点后移,为此,在实际测定过程中加入NaF 或H 3PO 4络合Fe 3+,其反应如下:Fe 3++2PO 43- Fe (PO 4)23-Fe 3++6F - [FeF 6] 3- 加入磷酸等不仅可消除Fe 3+的颜色,而且能使Fe 3+/ Fe 2+体系的电位大大降低,从而使滴定曲线的突跃电位加宽,使二苯胺等指示剂的变色电位进入突跃范围之内。
根据以上各种氧化还原指示剂的性质及滴定终点掌握的难易,推荐应用2-羧基二苯胺。
价格便宜,性能稳定,值得推荐采用。
3.2.1.2主要仪器 油浴消化装置(包括油浴锅和铁丝笼)、可调温电炉、秒表、自动控温调节器。
3.2.1.3试剂(1)0.008mol ·L -1(1/6K 2Cr 2O 7)标准溶液。
各种有机碳测定方法一、引言有机碳是地球上生命的重要组成部分,它广泛存在于土壤、水体、大气和生物体中。
准确测定有机碳的含量对于理解地球碳循环、评估环境质量、监测污染状况以及指导农业生产等方面都具有重要意义。
随着科技的发展,越来越多的有机碳测定方法被开发出来,每种方法都有其独特的优缺点。
本文将对目前常用的几种有机碳测定方法进行介绍和比较,并探讨未来可能的发展方向。
二、有机碳测定方法1.燃烧氧化-非分散红外法(Combustion Oxidation-Non-Dispersive Infrared,CO-NDIR)CO-NDIR法是测定溶解有机碳(DOC)的常用方法。
其原理是将样品中的有机碳燃烧成二氧化碳,然后用非分散红外检测器测定二氧化碳的浓度。
该方法具有较高的灵敏度和准确性,但需要使用大量酸碱试剂,且操作过程较为繁琐。
2.高效液相色谱法(High Performance Liquid Chromatography,HPLC)HPLC是一种分离和分析有机化合物的常用方法。
通过将样品中的有机物分离,然后用紫外-可见光检测器或荧光检测器测定各组分的浓度。
该方法适用于测定复杂有机混合物中的有机碳,但分析时间较长,且对样品的前处理要求较高。
3.元素分析仪法(Elemental Analyzer,EA)EA是一种能够同时测定样品中碳、氢、氮、硫等元素的仪器。
通过燃烧样品生成二氧化碳和水蒸气,然后分别用非分散红外检测器和热导检测器测定二氧化碳和水蒸气的浓度。
该方法具有较高的精度和灵敏度,但仪器价格昂贵,且对样品的前处理要求较高。
4.同位素分析法(Isotope Analysis)同位素分析法是通过测定有机物中碳同位素丰度来推算有机碳的来源和组成。
该方法具有很高的分辨率和精度,能够提供有机碳的生物地球化学过程信息,但仪器设备昂贵,且对样品的要求较高。
三、各种方法的比较与选择表1 各种有机碳测定方法的比较与选择方法优点缺点应用范围CO-NDIR 高灵敏度、高准确性需要大量酸碱试剂、操作繁琐溶解有机碳的测定HPLC 可分离复杂有机混合物分析时间长、样品前处理要求高有机碳组分的分离与测定EA 高精度、高灵敏度仪器价格昂贵、样品前处理要求高有机元素的同时测定同位素分析法高分辨率、提供有机碳来源信息仪器设备昂贵、样品要求高有机碳的生物地球化学过程研究根据不同的应用需求和实际情况,可以选择适合的有机碳测定方法。
土壤有机碳的测定
土壤有机碳的测定方法:
1,经典测定的方法有干烧法(高温电炉灼烧)或湿烧法(重铬酸钾氧化)。
放出的CO2,一般用苏打石灰吸收称重,或用标准氢氧化钡溶液吸收,再用标准酸滴定。
用上述方法测定土壤有机碳时,也包括土壤中各元素态碳及无机碳酸盐。
因此,在测定石灰性土壤有机碳时,必须先除去CaCO3。
除去CaCO3的方法,可以在测定前用亚硫酸处理去除之,或另外测定无机碳和总碳的含量,从全碳结果
中减去无机碳。
干烧法和湿烧法测定CO2的方法均能使土壤有机碳全部分解,不受还原物质的影响,可获得准确的结果,可以作为标准方法校核时用。
由于测定时须要一些
特殊的仪器设备,而且很费时间,所以一般实验室都不用此法。
2,高温电炉灼烧和气相色谱装置相结合制成碳氮自动分析仪。
已应用于土壤分析中,但由于仪器的限制,所以未能被广泛采用。
3,容量分析法。
虽然各种容量法所用的氧化剂及其浓度或具体条件有差异,但其基本原理是相同的。
土壤有机碳(SOC)是表征土壤肥力变化的一个重要指标,它深刻地影响着土壤的物理、化学和生物学性质,是作物高产稳产和农业可持续发展的基础。
总有机碳测定方法总有机碳(TOC)测定是一种常用的分析方法,用于确定有机物样品中的总有机碳含量。
TOC测定方法广泛应用于环境保护、水质分析、土壤科学等领域。
本文将介绍几种常见的TOC测定方法。
传统的TOC测定方法之一是湿化学氧化法。
该方法通过将样品溶解在强碱性溶液中,然后与酸性氧化剂如二氧化氯反应,将有机物氧化为二氧化碳。
最后,利用酸性溶液中的指示剂或气体浓度法测定生成的二氧化碳的浓度。
湿化学氧化法的优点是简单易行,且适用于各种样品类型,但在处理高盐度样品时可能会遇到困难。
干燥化学氧化法是一种改进的TOC测定方法。
它通过将样品与氧化剂如高浓度硝酸或过硫酸铵一起加热,使有机物在高温下氧化为二氧化碳。
接下来,可以使用红外光谱法、热导法或气相色谱法等技术来测定二氧化碳的浓度。
干燥化学氧化法的优点是准确度高,适用于高盐度样品,并且可以进行自动化处理。
除了化学氧化法,还有热色谱法这样的物理测定方法。
热色谱法利用样品中的有机物在高温下挥发为气体,然后通过色谱柱分离和检测获得有机物的浓度。
这种方法的优点是准确度高、分析速度快,但对于不能挥发的有机物可能不适用。
此外,还有一些改进的TOC测定方法,如紫外光照射法和微波消解法。
紫外光照射法利用紫外光将样品中的有机物氧化为二氧化碳。
微波消解法则使用微波辐射加热样品,并与氧化剂反应将有机物氧化为二氧化碳。
这些方法通常具有高效、快速、易操作的特点,但也可能在处理一些特定样品时面临挑战。
总之,总有机碳测定是一种重要的分析方法,在许多科学研究和环境监测中都得到广泛应用。
不同的TOC测定方法各有优缺点,适用于不同的样品类型和分析需求。
通过选择合适的测定方法,可确保准确、可靠地测定样品中的总有机碳含量。
沉积物中有机碳的多种测定方法紫外分光光度法:这种方法通过测定有机碳吸收紫外光的强度来测定有机碳含量。
该方法简单、快速,适用于测定大量样品的有机碳含量。
酸解法:这种方法通过将沉积物中的有机碳转化为甲烷,再测定甲烷的含量来测定有机碳含量。
该方法精度高,适用于测定低含量的有机碳。
炭化法:这种方法通过将沉积物中的有机碳炭化后测定炭的质量,来测定有机碳含量。
该方法精度较高,但操作较复杂,适用于测定低含量的有机碳。
光合作用法:这种方法通过测定沉积物中有机碳在受光照射后产生的氧气来测定有机碳含量。
该方法精度较高,但操作较复杂,适用于测定低含量的有机碳。
热解法:这种方法通过将沉积物中的有机碳热解后测定热解气体中的甲烷,来测定有机碳含量。
氧化法:这种方法通过将沉积物中的有机碳氧化成二氧化碳,再测定二氧化碳的含量来测定有机碳含量。
原子吸收光谱法:这种方法通过测定沉积物中有机碳的原子吸收光谱来测定有机碳含量。
质谱法:这种方法通过测定沉积物中有机碳的质谱来测定有机碳含量。
电感耦合等离子体质谱法:这种方法通过测定沉积物中有机碳的电感耦合等离子体质谱来测定有机碳含量。
热力学分析法:这种方法通过测定沉积物中有机碳在受热或加热的过程中所释放的热量,来测定有机碳含量。
傅里叶变换红外光谱法:这种方法通过测定沉积物中有机碳的傅里叶变换红外光谱来测定有机碳含量。
光谱法:这种方法通过测定沉积物中有机碳的光谱,包括紫外-可见光谱、近红外光谱、红外光谱、拉曼光谱等,来测定有机碳含量。
分子吸附法:这种方法通过测定沉积物中有机碳对分子吸附剂的吸附能力,来测定有机碳含量。
高效液相色谱法:这种方法通过将沉积物中的有机碳分离出来,再进行高效液相色谱分析,来测定其含量原子荧光光谱法:这种方法通过测定沉积物中有机碳的原子荧光光谱来测定有机碳含量。
核磁共振法:这种方法通过测定沉积物中有机碳的核磁共振信号来测定有机碳含量。
内爆法:这种方法通过将沉积物中的有机碳爆炸,再测定爆炸产生的气体中的甲烷来测定有机碳含量。
海洋沉积物中有机碳几个主要测定方法的比较1.传统测量方法:传统的测量方法主要是采用湿燃烧法或干燥燃尽法。
湿燃烧法是将沉积物样品与氢氧化钠一起加热,使样品中的有机物燃烧生成CO2,通过测定CO2的体积或质量来计算有机碳的含量。
干燥燃尽法是将沉积物样品干燥,并在高温下燃尽有机物,从而得到有机物质的质量。
这两种方法在测定有机碳含量时都需要对样品进行预处理,并且操作比较繁琐,需要较长的时间。
2.气体分析法:气体分析法主要是利用气体分析仪器对样品中产生的气体进行测定,常用的方法有红外光谱法和气相色谱法。
红外光谱法是利用红外光谱仪测定CO2的吸收峰来计算有机碳含量。
气相色谱法是通过气相色谱仪分离和测定样品中的气相有机物,然后根据测得的相关峰面积来计算有机碳含量。
这两种方法操作简便,分析快速,但由于仪器的限制,无法测定样品中固相有机碳的含量。
3.光谱分析法:光谱分析法利用样品中有机物的吸收和发射特性来测定有机碳含量,常用的方法有紫外吸收光谱法和荧光光谱法。
紫外吸收光谱法是利用样品中有机物的紫外吸收特性来计算有机碳含量。
荧光光谱法是利用样品中有机物的荧光特性来计算有机碳含量。
这两种方法操作简便,无需样品的预处理,但对样品的适用性有一定的限制。
4.核磁共振法:核磁共振技术主要是利用核磁共振仪对样品中的有机物进行分析和测定,核磁共振法可以提供有机物的化学结构信息,对有机碳的测定准确度较高。
但由于核磁共振仪的高昂费用和对操作技术的要求较高,所以在实际应用中较少使用。
综上所述,不同的测定方法有各自的优势和适用性。
在选择测定方法时,需要考虑样品的性质、分析时间、精度要求以及实验条件等因素。
对于一般的常规分析,传统测量方法和气体分析法是较常用的方法;而对于复杂样品的分析,光谱分析法和核磁共振法则能提供更准确的结果。
在今后的研究中,随着仪器技术和方法的不断进步,我们可以期待更多先进的测定方法的出现,从而更好地揭示海洋中有机碳的含量和分布规律。
toc的检测方法
TOC(Total Organic Carbon,总有机碳)是指水样中所有有机碳的总量,包括溶解态和悬浮态的有机碳。
TOC检测方法通常有以下几种:
1.氧化-燃烧法(Combustion Method):
•原理:将水样中的有机碳氧化为二氧化碳 (CO2),再利用特定的检测设备测量产生的CO2,从而计算出样品中的有机碳含量。
•步骤:水样首先经过酸化处理,然后通过氧化剂 (如高温和高浓度的氧气或过氧化氢)将有机碳氧化为CO2,再通过检测装置 (如红外分析仪)测量CO2含量。
2.高温催化氧化法 (High-Temperature Catalytic Oxidation):
•原理:将水样中的有机碳在高温条件下通过催化剂氧化为CO2。
•步骤:将水样注入反应器中,利用催化剂 (如白金或钯)在高温条件下氧化有机物为CO2,再通过CO2传感器或检测设备测量CO2的含量。
3.二氧化碳传导法(CO2 Conductivity Method):
•原理:通过水样中产生的CO2使水的电导率发生变化来测定有机碳含量。
•步骤:将水样中的有机碳氧化为CO2,CO2与水反应生成碳酸根离子 (CO3^2-)和氢离子 (H^+),导致水的电导率发生变化,通过电导率测量设备来测定有机碳含量。
4.紫外光氧化法(UV Oxidation Method):
•原理:通过紫外光氧化水样中的有机物,产生CO2,然后用CO2检测设备测定含量。
•步骤:使用UV光源对水样进行光氧化,将有机物氧化为CO2,然后通过CO2检测设备或传感器测量CO2含量。
选择何种方法取决于样品的性质、目标检测的灵敏度要求、实验室设备和预算等因素。
有机碳测定方法
有机碳是指在自然界和人工环境中存在的碳元素的有机化合物。
有机碳的测定对于环境监测、土壤肥力评价、水质评价等具有重要
意义。
本文将介绍几种常用的有机碳测定方法,以供参考。
首先,常用的有机碳测定方法之一是高温燃烧法。
该方法是将
样品在高温下燃烧,使有机碳转化为二氧化碳,然后通过适当的装
置将生成的二氧化碳吸收或捕集起来,最后通过化学分析确定有机
碳的含量。
这种方法操作简便,准确度高,适用于各种类型的有机
碳样品。
其次,另一种常用的有机碳测定方法是湿氧化法。
该方法是将
样品与含有氧化剂的溶液混合,在高温下进行氧化反应,将有机碳
氧化为二氧化碳,然后通过适当的分析方法确定二氧化碳的含量,
从而计算出有机碳的含量。
这种方法适用于含有机质较多的样品,
如土壤、沉积物等。
此外,还有一种常用的有机碳测定方法是光谱法。
光谱法是利
用有机碳在特定波长下的吸光特性进行测定,通过测量样品在特定
波长下的吸光度,然后通过标准曲线或计算公式确定有机碳的含量。
这种方法操作简便,无需样品的预处理,适用于大批量样品的快速测定。
最后,还有一种常用的有机碳测定方法是化学分析法。
化学分析法是利用化学反应将有机碳转化为其他化合物,然后通过适当的化学分析方法进行测定。
这种方法操作相对复杂,但可以对不同类型的有机碳进行准确测定。
综上所述,有机碳的测定方法有多种多样,选择合适的方法需要根据样品的性质和实验的要求来确定。
希望本文介绍的有机碳测定方法能够对您有所帮助。
总有机碳含量测定方法分析总有机碳(TotalOrganicCarbon,简称TOC)是指在物质中,化学复合物中所含有的所有有机碳的含量总和,其中包括水中溶解的有机碳,以及物质的有机质部分。
TOC在环境监测和分析领域有很重要的意义,它可以反映水体中溶解的有机物的含量,作为水体的污染物源的参考指标。
TOC的分析主要采用光度法、IKI法和UV法,是采用中考察有机物在挥发性有机物氧化和抑制氧化时所释放或抑制电子的特殊光学反应,在一定体系中定量分析有机物含量的技术手段。
一、光度法光度法是在有机物氧化和非氧化过程中,由于所释放的电子能量与某一参照物的吸收光谱有关,利用相应的光谱技术对物质中的TOC 含量进行测定的方法,是TOC自他物质的分析方法中应用最广泛的方法之一。
它采用特定波长的激发光照射液体样品,使分子转变到吸收能量高于本态能量的激发态,随后放散出电子,在电荷重组中释放吸收光谱,由此通过计算求出总有机碳含量。
二、IKI法IKI法(Iodine-Chloramine-T法)是采用特定水溶液中的IKI (碘和氯胺T)氧化反应,来实现物质中有机碳的氧化。
氧化反应在反应体系中将溶解的含碳化合物消耗,从而测定含碳物质的含量。
IKI 法的优势是,它可以检测高至4%的含氮量,而且它能够在极短的时间内获得准确的结果,不会受高温等一些因素的影响。
三、UV法UV法(Ultraviolet Photometry法)是一种非常简单、快速的TOC测定方法。
这种方法是利用紫外光的吸收特性,在一定的波长范围内,有机物能够吸收紫外线,从而测定TOC的含量。
在实验中,样品在某个特定的紫外线波长的照射下,紫外照射的结果是有机物与参照物的吸收率之比。
通过比较紫外照射前后两份样品的紫外线吸收光谱,可以计算出TOC的含量。
四、典型应用总有机碳含量测定方法在不同的应用领域中有着广泛的应用。
在水处理中,TOC含量测定常常作为判断水样中有机污染程度的参考指标,以便对净水设备的工作状况进行评价。
总有机碳的测定方法机碳是指存在于有机物中的碳元素,通常被用作有机物质的定性和定量分析。
以下是几种常见的机碳的测定方法:1. 元素分析法:元素分析法是通过测定有机样品中碳的含量来确定机碳的测定方法。
使用该方法时,有机样品首先被干燥和研磨成粉末,并将样品置于燃烧器中进行燃烧。
通过测定被燃烧后产生的二氧化碳(CO2)的质量,即可计算出样品中的碳含量。
2. 光度法:光度法是通过测定有机物质在特定波长下的吸光度来确定机碳的测定方法。
该方法通常用于定量分析,通过测量样品溶液在特定波长下的吸光度,与已知机碳浓度的标准曲线进行比较,从而计算出样品中的机碳含量。
3. 捕收法:捕收法是通过使用特定的吸附剂来捕集有机物质中的机碳,然后再进行定量分析。
最常用的吸附剂是甲苯磺酸锂,有机样品与吸附剂在高温和高真空条件下反应,机碳会被捕集在吸附剂上。
然后,吸附剂与有机物质分离,并通过测定吸附剂中机碳的质量来计算机碳的含量。
4. 火焰光谱法:火焰光谱法是一种快速测定机碳的方法,通常用于有机物样品的质量检测。
该方法通过将有机样品喷入火焰中,使其燃烧产生特征的光谱信号。
这些光谱信号可以用于定量分析,从而确定样品中的机碳含量。
5. 湿法氧化法:湿法氧化法是通过在酸性条件下将有机样品与高氯酸或高氧化钾溶液反应来测定机碳。
反应过程中,有机物质被氧化成水和二氧化碳,水可以通过蒸发和收集测定,而二氧化碳可以通过冷凝和适当的吸收剂捕集来测定。
综上所述,机碳的测定方法有元素分析法、光度法、捕收法、火焰光谱法和湿法氧化法等多种。
这些方法在不同情况下有其适用性和限制性,根据测定的目的和样品的特性,选择合适的机碳测定方法进行定性和定量分析。
总有机碳测定方法总有机碳测定方法是一种测量土壤、水体、沉积物等样品中有机碳的方法。
土壤、沉积物和水体中的有机碳含量能够反映环境中的生态系统的变化。
因此,测定这些样品中的有机碳含量对环境研究和环境保护都非常重要。
总有机碳测定方法常用于环境监测、土壤质量评估和农业管理等方面。
本文将介绍常见的总有机碳测定方法。
1.燃烧法。
燃烧法是测定土壤、沉积物和水体中有机碳含量的传统方法之一、该方法通过将样品中的有机碳和无机碳分别燃烧成CO2和H2O,再通过测定释放的CO2体积来计算有机碳含量。
该方法对于不同类型的样品适应性较好,但需要高温燃烧,因此需要较长时间和较高成本。
2.分光光度法。
分光光度法是通过测量样品中特定波长的光线吸收程度来测定有机碳含量。
该方法速度快、精度高,可测定微量的有机碳含量,因此被广泛运用于地球科学、环境研究和水土保持等方面。
但该方法需要精密仪器,并且需要对样品进行预处理。
3.恒流量滴定法。
恒流量滴定法是利用电化学滴定的原理来测定土壤、水体、沉积物中有机碳含量的一种方法。
该方法对硫酸盐、铁和硫等干扰物的影响较小,且反应速度快,分析结果准确可靠。
该方法适用于含有大量无机碳的样品,但需要对样品进行预处理。
4.蒸馏-滴定法。
蒸馏-滴定法是测定水体中有机碳含量的方法之一,通过样品中的氢氧化物反应蒸馏,并将蒸馏液中的CO2与BaCl2反应,生成BaCO3,然后通过滴定计算样品中有机碳含量。
该方法操作简单,适用于测定含有较低有机碳浓度的水体样品。
但可能存在部分有机碳无法蒸馏出来的问题。
总之,总有机碳测定方法种类繁多,每种方法都有其适用场所和限制。
在进行有机碳测定时,需要选择适合自己实验要求和样品特点的方法,并严格按照方法标准进行操作,以获得准确可靠的分析结果。
总有机碳含量测定方法分析总有机碳(TOC)是指在环境样品中含量较高的有机物质,它们包括糖类、脂类、蛋白类、核酸类、有机酸类等有机物质的综合。
总有机碳的含量对环境的污染和生物活动起着重要的控制作用,它可以用来监测和评估环境和生物污染。
总有机碳的含量对环境的污染和生物活动起着重要的控制作用,所以进行常规的的总有机碳含量测定是必要的。
总有机碳含量测定的方法大致可以分为两种:化学法和物理法。
其中化学法包括碳化学法、氧化碳法、溶剂萃取法和气相色谱法等;物理法包括紫外吸收法和光散射法等。
1.化学法碳化学法是指通过分析有机物发生化学变化,然后计算其有机碳含量,来测定总有机碳含量的方法。
该法的原理是,将样品溶于稀硝酸中,并加入过量的硝酸铵,在高温、低氧环境下,多种有机物都可以被氧化成有机碳,其残留物是氨水,最后将残留物过滤,然后用Kuldpermethionin进行校正,最终得出有机碳含量。
优点是法简单,耗费材料少,结果准确,能够准确、可靠地测定不同水溶液中的有机碳含量。
缺点是耗时多,稳定性差,只能用于测定简单的有机物。
2.相色谱法气相色谱法是利用一定的温度,把有机分子分解成电荷轻的气体(气相),通过柱式色谱仪,以电荷轻的速度分离各有机物质,再根据灵敏度检出,最终测定总有机碳含量的方法。
优点是性能稳定,分离出的有机物能够很好地被探测和计量出来,能够准确测定复合样品中有机物的含量;缺点是仪器及消耗品费用较高。
3.外吸收法紫外吸收法是一种以有机物对紫外线的吸收率来测定有机物质含量的方法。
该法可以检测出有机物质在水溶液中的溶解度,也可以用来测定有机物的总含量,并能够区分有机物的种类及浓度。
优点是快速,准确,量程大,可以同时测定多种有机物;缺点是受限于有机物对紫外线的特性,只能检测一定范围的有机物;另外,需要一定的校正和修正,才能得出准确的结果。
综上所述,总有机碳含量测定方法有碳化学法、气相色谱法、紫外吸收法三种,各有优缺点,在具体应用过程中,要根据实际情况,综合考虑各方面因素,选择合适的总有机碳含量测定方法,以保证测定的准确性和准确性。
总有机碳检测方法
总有机碳(TOC)是指水、土壤、岩石、化石燃料等中所含的所有有机碳的总量。
检测TOC的方法主要有以下几种:
1. 全自动气相色谱法(AutoGC): 样品经气相色谱仪分离后,通过燃烧检测器或者双吸收器检测器测定总有机碳的含量。
2. 光度测定法:包括高温氧化法、紫外光催化氧化法等。
高温氧化法是将样品在高温下氧化,然后通过光度法测定溶液中产生的气态CO2的含量,从而确定总有机碳的含量。
紫外光催化氧化法是利用紫外光催化剂催化样品中的有机物氧化生成CO2,然后通过红外光谱仪或者气相色谱仪测定出CO2的含量,再计算出总有机碳的含量。
3. 高温燃烧法:样品在高温下被完全燃烧氧化为CO2,然后通过传感器测定CO2的含量,从而计算出总有机碳的含量。
4. 白钛吸附法:将样品中的有机碳吸附在白钛剂上,经过适当的处理后,可以通过热重分析仪(Thermogravimetric Analyzer, TGA)测定样品中的有机碳的含量。
5. 有机元素分析法:将样品在高温下燃烧,然后通过气相色谱仪或者元素分析仪测定样品中的碳、氢等有机元素的含量,从而计算出总有机碳的含量。
这些方法各有优缺点,在不同领域和要求下选择适合的方法进行总有机碳的检测。
土壤有机碳含量测定方法
土壤有机碳含量测定方法主要有以下三种:
1. 测定CO2法:将土样中有机碳高温氧化后,测定释放出的CO2的量。
2. 湿烧法:土壤样品中的有机质(碳)与铬酸、磷酸溶液在160℃下进行消煮,氧化有机碳所产生的二氧化碳,被连接在烧瓶上的截流装置中的氢氧化钾所吸收,形成的碳酸盐用氯化钡溶液沉淀之,过量的标准氢氧化钾,以酚酞为指示剂,用标准酸回滴,即可从消耗的标准氢氧化钾量求出土壤有机碳含量。
3. 高温灼烧法:风干土壤样品在燃烧炉中加热至900℃以上,样品中有机碳
被氧化为二氧化碳,产生的二氧化碳用过量的氢氧化钡溶液吸收生成碳酸钡沉淀,反应后剩余的氢氧化钡用草酸标准溶液滴定,由空白滴定和样品滴定消耗的草酸标准溶液的体积差计算二氧化碳产生,根据二氧化碳产生量计算
土壤中的有机碳含量。
以上信息仅供参考,具体方法需要根据实际情况选择。
重铬酸钾外加热法(鲍士旦. 土壤农化分析[M ] . 北京: 中国农业出版社, 1999)一、原理在外加热条件下(油浴温度为180℃,沸腾5min,)用一定浓度的重铬酸钾-硫酸溶液氧化土壤有机质,剩余的重铬酸钾用硫酸亚铁滴定。
校正系数为1.1,计算有机碳量。
二、试剂1、0.8000mol L-1(1/6K2Cr2O7)标准溶液。
称取130℃烘干的重铬酸钾(K2Cr2O7,GB642-77,分析纯),39.2245g溶于水中,定容至1L。
2、H2SO4,浓硫酸(H2SO4,GB625-77,分析纯)3、0.2 mol L-1 Fe2SO4溶液,称取硫酸亚铁(Fe2SO4 ·7H2O,GB664-77,化学纯)56g溶于水,加浓硫酸5mL,稀释至1L。
4、指示剂2-羧基代二苯胺(邻苯氨基苯甲酸,C13H11O2N),称取0.25g试剂于小研钵中研细,然后倒在100mL小烧杯中,加入0.1 mol L-1NaOH溶液12mL,并用少量水清洗研钵残留试剂于100mL烧杯,水浴加热至溶解,冷却后稀释定容至250mL,放置澄清或过滤,用其清夜。
5、Ag2SO4,硫酸银(Ag2SO4,HG3-945-76,分析纯),研成粉末。
6、SiO2,二氧化硅(Q/HG22-562-76,分析纯),粉末状。
三、步骤1、称取100目的风干土样,(有机质高于50g/kg,称取0.1g,20~30g/kg,0.3g,小于20g/kg,0.5g以上),精确到0.0001。
放入干燥的硬质试管,用移液管准确加入重铬酸钾标液5mL(若含氯化物,加入Ag2SO40.1g),,再用注射器注入5mL硫酸,小心旋转摇匀,管口盖上弯颈小漏斗,以冷凝蒸出水蒸气。
2、将试管放置在自动控温的铝块管坐中,维持温度170-180,液体沸腾发生气泡时开始计时,煮沸5min,取出。
(注意时间)3、冷却后,将试管内容物倾倒至250mL的三角瓶,用水清洗试管内部及小漏斗,三角瓶中液体约为60-70mL,保持混合液中硫酸浓度为2-3 mol L-1,加入12~15滴指示剂,用硫酸亚铁标定,颜色由棕红色-紫色-暗绿(灰蓝绿色)。
总有机碳含量测定方法分析总有机碳(TOC)是描述放射性污染物的重要参数,其含量直接反映了土壤、地下水、水体中的有机物的种类及比例。
准确的总有机碳测定方法对于环境监测及其他相关领域都有重要的意义和重要性。
一、总有机碳测定方法1.学漂白法:化学漂白法是一种常用的总有机碳测定方法,主要通过化学方法产生C-H键的破坏,将有机物质漂白为水。
然后通过计算漂出物的量以及漂出物的恢复数量来测定总有机碳的含量。
2.氧化氢法:过氧化氢法通过过氧化氢将有机物质氧化,产生甲醛、甲醇、水及其他有机物质。
然后通过测定水分质量,并将总有机碳计算出来。
3.外-可见分光光度法:利用紫外-可见分光光度法可以准确测量总有机碳的含量,该方法主要是将溶液中有机物质分子暴露在激发源处,利用几种激发源造成分子激发,然后将发出的光利用探测器放大,换算为实际的有机碳含量。
二、总有机碳的利用1.态系统监测:总有机碳含量可以反映其是否受到有害污染物的影响,因此,总有机碳测定方法对环境监测、土壤污染物的调查、水体污染的控制和防治等具有重要的作用。
2.质评价:总有机碳含量是水质评价的重要指标,可以用来直接反映水体中有机物质的含量,以此来评估水质是否符合国家或地方环境标准。
3.药测定:由于农药残留量的监测对确保人体健康及环境安全至关重要,所以农药残留量的测定也一直是环境监测的重要内容之一,而总有机碳测定方法在农药残留量的测定上也被广泛应用。
三、总有机碳测试设备1.有机碳计:总有机碳计是一台专用于总有机碳含量测定的仪器,它能够在十几分钟内完成总有机碳测定。
总有机碳计主要由恒温恒流泵、采样循环管线、高压回收管线等组成,能够满足各类环境中的总有机碳测定要求。
2.相色谱仪:气相色谱仪在总有机碳测定中的应用也是比较多的,它将含有有机物质的溶液进行混合并热处理,将有机物质气化,然后通过气相色谱仪的检测,结合回收因子的计算,来测量总有机碳的含量。
四、总有机碳测定方法的优缺点总有机碳含量测定方法具有精确度高、测定速度快、操作简便、范围广等优点,但也存在一定的缺点,如化学漂白法和过氧化氢法所耗费液体较大,而且有害物质也会有残留。
有机碳重铬酸钾外加热法(鲍士旦. 土壤农化分析)一、原理在外加热条件下(油浴温度为180℃,沸腾5min,)用一定浓度的重铬酸钾-硫酸溶液氧化土壤有机质,剩余的重铬酸钾用硫酸亚铁滴定。
校正系数为1.1,计算有机碳量。
二、试剂1、0.8000mol L-1(1/6K2Cr2O7)标准溶液。
称取130℃烘干的重铬酸钾(K2Cr2O7,GB642-77,分析纯),39.2245g溶于水中,定容至1L。
2、H2SO4,浓硫酸(H2SO4,GB625-77,分析纯)3、0.2 mol L-1 Fe2SO4溶液,称取硫酸亚铁(Fe2SO4 ·7H2O,GB664-77,化学纯)56g溶于水,加浓硫酸5mL,稀释至1L。
4、指示剂2-羧基代二苯胺(邻苯氨基苯甲酸,C13H11O2N),称取0.25g试剂于小研钵中研细,然后倒在100mL小烧杯中,加入0.1 mol L-1NaOH溶液12mL,并用少量水清洗研钵残留试剂于100mL烧杯,水浴加热至溶解,冷却后稀释定容至250mL,放置澄清或过滤,用其清夜。
5、Ag2SO4,硫酸银(Ag2SO4,HG3-945-76,分析纯),研成粉末。
6、SiO2,二氧化硅(Q/HG22-562-76,分析纯),粉末状。
三、步骤1、称取100目的风干土样,(有机质高于50g/kg,称取0.1g,20~30g/kg,0.3g,小于20g/kg,0.5g以上),精确到0.0001。
放入干燥的硬质试管,用移液管准确加入重铬酸钾标液5mL(若含氯化物,加入Ag2SO40.1g),,再用注射器注入5mL硫酸,小心旋转摇匀,管口盖上弯颈小漏斗,以冷凝蒸出水蒸气。
2、将试管放置在自动控温的铝块管坐中,维持温度170-180,液体沸腾发生气泡时开始计时,煮沸5min,取出。
(注意时间)3、冷却后,将试管内容物倾倒至250mL的三角瓶,用水清洗试管内部及小漏斗,三角瓶中液体约为60-70mL,保持混合液中硫酸浓度为2-3 mol L-1,加入12~15滴指示剂,用硫酸亚铁标定,颜色由棕红色-紫色-暗绿(灰蓝绿色)。
从表3—4 中,可以看出每种氧化还原指示剂都有自己的标准电位(E 0),邻啡罗啉 (E 0=1.11V ),2-羧基代二苯胺(E 0=1.08V ),以上两种氧化还原指示剂的标准电位(E 0),正落在滴定曲线突跃范围之内,因此,不需加磷酸而终点容易掌握,可得到准确的结果。
例如:以邻啡罗啉亚铁溶液(邻二氮啡亚铁)为指示剂,三个邻啡罗啉(C 2H 8N 2)分子与一个亚铁离子络合,形成红色的邻啡罗啉亚铁络合物,遇强氧化剂,则变为淡蓝色的正铁络合物,其反应如下:[(C 2H 8N 2)3Fe]3++e [(C 2H 8N 2)3Fe]2+淡蓝色 红色滴定开始时以重铬酸钾的橙色为主,滴定过程中渐现Cr 3+的绿色,快到终点变为灰绿色,如标准亚铁溶液过量半滴,即变成红色,表示终点已到。
但用邻啡罗啉的一个问题是指示剂往往被某些悬浮土粒吸附,到终占时颜色变化不清楚,所以常常在滴定前将悬浊液在玻璃滤器上过滤。
从表3-4中也可以看出,二苯胺、二苯胺磺酸钠指示剂变色的氧化还原标准电位(E 0)分别为0.76V 、0.85V 。
指示剂变色在重铬酸钾与亚铁滴定曲线突跃范围之外。
因此使终点后移,为此,在实际测定过程中加入NaF 或H 3PO 4络合Fe 3+,其反应如下:Fe 3++2PO 43- Fe (PO 4)23-Fe 3++6F - [FeF 6] 3- 加入磷酸等不仅可消除Fe 3+的颜色,而且能使Fe 3+/ Fe 2+体系的电位大大降低,从而使滴定曲线的突跃电位加宽,使二苯胺等指示剂的变色电位进入突跃范围之内。
根据以上各种氧化还原指示剂的性质及滴定终点掌握的难易,推荐应用2-羧基二苯胺。
价格便宜,性能稳定,值得推荐采用。
3.2.1.2主要仪器 油浴消化装置(包括油浴锅和铁丝笼)、可调温电炉、秒表、自动控温调节器。
3.2.1.3试剂(1)0.008mol ·L -1(1/6K 2Cr 2O 7)标准溶液。
称取经130℃烘干的重铬酸钾(K 2Cr 2O 7,GB642-77,分析纯)39.2245g 溶于水中,定容于1000ml 容量瓶中。
(2)H 2SO 4。
浓硫酸(H 2SO 4,GB625-77,分析纯)。
(3)0.2mol ·L -1Fe SO 4溶液。
称取硫酸亚铁(Fe SO 4·7H 2O ,GB664-77,分析纯)56.0g 溶于水中,加浓硫酸5mL ,稀释至1mL 。
(4)指示剂①邻啡罗啉指示剂:称取邻啡罗啉(GB1293-77,分析纯)1.485g)与Fe SO 4·7H 2O0.695g ,溶于100mL 水中。
②2-羧基代二苯胺(O-phenylanthranilicacid ,又名邻苯氨基苯甲酸,C 13H 11O 2N ))指示剂:称取0.25g 试剂于小研钵中研细,然后倒入 100mL 小烧杯中,加入0.18mol ·L -1 NaOH 溶液12mL ,并用少量水将研钵中残留的试剂冲洗入100mL 小烧杯中,将烧杯放在水浴上加热使其溶解,冷却后稀释定容到250mL ,放置澄清或过滤,用其清液。
(5)Ag 2SO 4。
硫酸银(Ag 2SO 4,HG3-945-76,分析纯),研成粉末。
(6)SiO2。
二氧化硅(SiO2,Q/HG22-562-76,分析纯),粉末状。
3.2.1.4操作步骤称取通过0.149mm(100目)筛孔的风干土样0.1~1g(精确到0.0001g),放入一干燥的硬质试管中,用移液管准确加入0.8000mol·L-1(1/6K2Cr2O7)标准溶液5mL (如果土壤中含有氯化物需先加入Ag2SO40.1g),用注射器加入浓H2SO45mL充分摇匀,管口盖上弯颈小漏斗,以冷凝蒸出之水汽。
将8~10个试管放入自动控温的铝块管座中(试管内的液温控制在约170℃),[或将8~10个试管盛于铁丝笼中(每笼中均有1~2个空白试管),放入温度为185~190℃的石蜡油锅中,要求放入后油浴锅温度下降至170~180℃左右,以后必须控制电炉,使油浴锅内始终内维持在170~180℃],待试管内液体沸腾发生气泡时开始计时,煮沸5min,取出试管(用油浴法,稍冷,擦净试管外部油液)。
冷却后,将试管内容物倾入250mL三角瓶中,用水洗净试管内部及小漏斗,这三角瓶内溶液总体积为60~70mL,保持混合液中(1/2 H2SO4)浓度为2~3 mol·L-1,然后加入2-羧基代二苯胺指示剂12~15滴,此时溶液呈棕红色。
用标准的0.2 mol·L-1硫酸亚铁滴定,滴定过程中不断摇动内容物,直至溶液的颜色由棕红色经紫色变为暗绿(灰蓝绿色),即为滴定终点。
如用邻啡罗啉指示剂,加指示剂2~3滴,溶液的变色过程中由橙黄→蓝绿→砖红色即为终点。
记取Fe SO4滴定毫升数(V)。
每一批(即上述每铁丝笼或铝块中)样品测定的同时,进行2~3个空白试验,即取0.500g粉状二氧化硅代替土样,其他手续与试样测定相同。
记取Fe SO4滴定毫升数(V),取其平均值。
3.2.1.5结果计算土壤有机碳(g·kg-1)=式中:c——0.8000 mol·L-1(1/6K2Cr2O7)标准溶液的浓度;5——重铬酸钾标准溶液加入的体积(mL);V0——空白滴定用去FeSO4体积(mL);V——样品滴定用去FeSO4体积(mL);3.0——1/4碳原子的摩尔质量(g·mol-1);10-3——将mL换算为L;1.1——氧化校正系数;m——风干土样质量(g);k——将风干土样换算成烘干土的系数。
注释:注1.含有机质高于50g·kg-1者,称土样0.1g,含有机质高于20~30g·kg-1者,称土样0.3g,少于20g·kg-1者,称土样0.5g以上。
由于称样量少,称样时应用减重法以减少称样误差。
注2.土壤中氯化物的存在可使结果偏高。
因为氯化物也能被重铬酸钾所氧化,因此,盐土中有机质的测定必须防止氯化物的干扰,少量氯可加少量Ag2SO4,使氯根沉淀下来(生成AgCl)。
Ag2SO4的加入,不仅能沉淀氯化物,而且有促进有机质分解的作用。
据研究,当使用Ag2SO4时,校正系数为1.04,不使用Ag2SO4时校正系数为1.1。
Ag2SO的用量不能太多,约加0.1g,否则生成Ag2Cr2O7沉淀,影响滴定。
在氯离子含量较高时,可用一个氯化物近似校正系数1/12来校正之,由于Cr2O7-1与Cl-1及C的反应是定量的:Cr2O72-+6Cl-1+14H+→2Cr3++3Cl2+7H2O2Cr2O72-+3C+16H+→4Cr3+3CO2+8 H2O由上二个反应式可知C/4Cl-1=12/4×35.5≈1/12土壤含碳量(g·kg-1)=未经校正土壤含碳量(g·kg-1)-此校正系数在Cl:C比为5:1以下时适用。
注3.对于水稻土、沼泽土和长期渍水的土壤,由于土壤中含有较多的Fe2+、Mn2+及其它还原性物质,它们也消耗K2Cr2O7,可使结果偏高,对这些样品必须在测定前充分风干。
一般可把样品磨细后,铺成薄薄一层,在室内通风处风干10天左右即可使Fe2+全部氧化。
长期沤水的水稻土,虽经几个月风干处理,样品中仍有亚铁反应,对这种土壤,最好采用铬酸磷酸湿烧——测定二氧化碳法(见3.2.2)。
注4.这里为了减少0.4 mol·L-1(1/6K2Cr2O7)—H2SO4溶液的黏滞性带来的操作误差,准确加入0.800mol·L-1(1/6K2Cr2O7)水溶液5mL及浓H2SO45mL,以代替0.4 mol·L-1(1/6K2Cr2O7) 溶液10mL。
在测定石灰性土壤样品时,也必须慢慢加入K2Cr2O7—H2SO4溶液,以防止由于碳酸钙的分解而引起激烈发泡。
注5.最好不采用植物油,因为它可被重铬酸钾氧化,而可能带来误差。
而矿物油或石蜡对测定无影响。
油浴锅预热温度当气温很低时应高一些(约200℃)。
铁丝笼应该有脚,使试管不与油浴锅底部接触。
注6.用矿物油虽对测定无影响,但空气污染较为严重,最好采用铝块(有试管孔座的)加热自动控温的方法来代替油浴法。
注7.必须在试管内溶液表面开始沸腾才开始计算时间。
掌握沸腾的标准尽量一致,然后继续消煮5min,消煮时间对分析结果有较大的影响,故应尽量记时准确。
注8.消煮好的溶液颜色,一般应是黄色或黄中稍带绿色,如果经绿色为主,则说明重铬酸钾用量不足。
在滴定时消耗硫酸亚铁量小于空白用量的1/3时,有氧化不完全的可能,应弃去重做有机物的测定重铬酸钾容量法——稀释热法重铬酸钾容量法——稀释热法3.2.2.1方法原理基本原理、主要步骤与重铬酸钾容量法(外加热法)相同。
稀释热法(水合热法)是利用浓硫酸和重铬酸钾迅速混合时所产生的热来氧化有机质,以代替外加热法中的油浴加热,操作更加方便。
由于产生的热,温度较低,对有机质氧化程度较低,只有77%。
3.2.2.2试剂(1)1 mol·L-1(1/6K2Cr2O7) 溶液。
准确称取K2Cr2O7(分析纯,105℃烘干)49.04g,溶于水中,稀释至1L。
(2)0.4mol·L-1(1/6K2Cr2O7) 的基准溶液。
准确称取K2Cr2O7(分析纯)(在130℃烘3h)19.6132g于250mL烽杯中,以少量水溶解,将全部洗入1000mL容量瓶中,加入浓H2SO4约70mL,冷却后用水定容至刻度,充分摇匀备用[其中含硫酸浓度约为2.5mol·L-1(1/2 H2SO4)]。
(3)0.5 mol·L-1FeSO4溶液。
称取FeSO4·7H2O140g溶于水中,加入浓H 2SO415mL,冷却稀释至1L或称取Fe(NH4)2(SO4)2·6H2O196.1g溶解于含有200mL浓H2SO4的800 mL水中,稀释至1L。
此溶液的准确浓度以0.4mol·L-1(1/6K2Cr2O7) 的基准溶液标定之。
即准确分别吸取3份0.4mol·L-1(1/6K2Cr2O7) 的基准溶液各25mL于150mL三角瓶中,加入邻啡罗啉指示剂2~3滴(或加2羧基代二苯胺12~15滴),然后用0.5 mol·L-1FeSO4溶液滴定至终点,并计算出的准FeSO4确浓度。
硫酸亚铁(FeSO4)溶液在空气中易被氧化,需新鲜配制或以标准的K2Cr2O7溶液每天标定之。
其他试剂同3.2.1.3中(4)、(5)、(6)。
3.2.2.3操作步骤准确称取0.5000g土壤样品(注1)于500mL的三角瓶中,然后准确加入1mol·L-1(1/6K2Cr2O7) 溶液10mL于土壤样品中,转动瓶子使之混合均匀,然后加浓H2SO420mL,将三角瓶缓缓转动1min,促使混合以保证试剂与土壤充分作用,并在石棉板上放置约30min,加水稀释至250mL,加2羧基代二苯胺12~15滴,然后用0.5 mol·L-1FeSO4标准溶液滴定之,其终点为灰绿色。