断裂力学复习要点与习题解析
- 格式:ppt
- 大小:2.05 MB
- 文档页数:53
第八章 断裂力学习题及解习题1、已知I 型裂纹问题的应力函数为()()()z Z y z Z z I I I Im Re +=ϕ,其中()()z Z z Z I I ,分别为复变函数()z Z I 的二次积分和一次积分,试求出对应的应力分量。
解:令()()()y x iv y x u z Z I ,,+=,那么()udy v dx i v dy udx dz z Z CCC++-=⎰⎰⎰按C-R 条件有yux v y v x u ∂∂-=∂∂∂∂=∂∂,。
那么有如下关系式 y Zx Z Z ∂∂=∂∂='Im Re Re , xZy Z Z ∂∂=∂∂-='Im Re Im , 由应力函数可得应力()⎪⎪⎭⎫ ⎝⎛+∂∂+∂∂∂∂=+∂∂=∂∂=I I I I I 222I 2xx Z y Z y y Z y Z y Z y y σIm Im Re Im Re ϕ ()'Im Re Re Re Im Re Im I I I I I I I xx Z y Z Z yZ y Z Z y Z y -=+∂∂=++-∂∂=σ ()⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂=+∂∂=∂∂=x Z y xZ x Z y Z x x σI I I I 222I 2yyIm Re Im Re ϕ得 ()'Im Re Im Re I I I I yy Z y Z Z y Z x+=+∂∂=σ ()⎪⎪⎭⎫ ⎝⎛-∂∂-∂∂-∂∂=⎥⎦⎤⎢⎣⎡+∂∂-∂∂=∂∂∂-=I I I I I I 2xyZ y Z y y Z x Z y Z y x y x Im Im Re Im Re ϕτ ()'Re Re Im Re Im I I I I I xy Z y xZ y Z Z y Z x -=∂∂-=--∂∂=τ 习题2、如图8-1所示无限大板中含有一长度为2a 的中心贯穿裂纹,设I 型裂纹问题的应力函数为()()()z Z y z Z z I I I Im Re +=ϕ(双向拉伸),或为()()())(2Im Re 22y x A z Z y z Z z I I I --+=ϕ(单向拉伸)。
岩石断裂力学复习题1. 弹性体内的裂纹大致上可以分哪三种,在答题纸上按顺序绘出如图 2 的弹性裂纹薄板,在什么样的边界力作用下,裂纹将是 II 型, I 型,III 型,并分别写出其相应的应力强度因子计算式。
I 型:边界条件: 当∞→z 时,0xx =σ,∞=y yy σσ,0xy =τ在裂纹面(y=0)上,0y y =σ,0xy =τ 应力强度因子:ay πσ∞I =KII 型:边界条件: 当∞→z 时,∞=ττxy ,0xx ==yy σσ在裂纹面(z=x ±i0,a <x )上,0y y ==xy τσ 应力强度因子:a πτ∞I I =K III 型:边界条件: 当∞→z 时,∞=ττyz ,0xy zz xx τσσσ===yy在裂纹面(z=x ±i0,a <x )上,0y y ==xy τσ 应力强度因子:a πτ∞I I I =K2. 由 Griffith 能量平衡理论,推导如果弹性薄板两端均匀施加拉应力为σ,薄板中间缺陷裂纹长度l 需小于多少裂纹才不会发生失稳扩展?已知弹性板的杨氏模量为E ,弹性板材料的表面能密度为Г。
解:由Griffith 能量平衡理论求临界裂纹长度:对于原场拉应力为σ,单位厚度的平板,当有长度为2a 的裂纹产生时,其总共释放的弹性势能为:'/c 22E a W πσ= (1)当长度为2a 的裂纹存在时,模型增加的表面能S 为:Γ=a 4S (2)当裂纹端部扩展一小段长度da (裂纹长度由2a 发展为2a+2da )时,如果弹性势能释放率dW c /da 大于或等于表面能的增加率dS/da 时,裂纹会失稳,并进一步扩展。
则裂纹扩展的条件可表达为:da dSda dW c = (3)将式(1),(2)代入(3),可得远场力σ作用下,使裂纹失稳并扩展的裂纹临界长度a0为:2/'20a πσΓ=E (4)3. 什么是裂纹的应力强度因子的?其一般表达式是什么?量纲是什么?应力强度因子与弹性板材料的表面能密度间有何关系。
断裂力学习题一、问答题1什么是裂纹?2试述线弹性断裂力学的平面问题的解题思路。
3、断裂力学的任务是什么?4、试述可用于处理线弹性条件下裂纹体的断裂力学问题两种方法:5、试述I型裂纹双向拉伸问题中的边界条件,如何根据该边界条件确定一复变函数,并由此构成应力函数,最后写出问题的解。
6、什么是应力场强度因子K i?什么是材料的断裂韧度K ic?对比单向拉伸条件下的应力二及断裂强度极限二b,,说明K i与K ic的区别与联系?7、在什么条件下应力强度因子K的计算可以用叠加原理8试说明为什么裂纹顶端的塑性区尺寸平面应变状态比平面应力状态小?9、试说明应力松驰对裂纹顶端塑性区尺寸有何影响。
10、K准则可以解决哪些问题?11、何谓应力强度因子断裂准则?线弹性断裂力学的断裂准则与材料力学的强度条件有何不同?12、确定K的常用方法有哪些?13、什么叫裂纹扩展能量释放率?什么叫裂纹扩展阻力?14、从裂纹扩展过程中的能量变化关系说明裂纹处于不稳定平衡的条件是什么?15、什么是格里菲斯裂纹?试述格氏理论。
16、奥罗万是如何对格里菲斯理论进行修正的?17、裂纹对材料强度有何影响?18、裂纹按其力学特征可分为哪几类?试分别述其受力特征19、什么叫塑性功率?20什么是G准则?21、线弹性断裂力学的适用范围。
22、“小范围屈服”指的是什么情况?线弹性断裂力学的理论公式能否应用?如何应用?23、什么是Airry应力函数?什么是韦斯特加德(Westergaard应力函数?写出Westergaarc应力函数的形式,并证明其满足双调和方程。
24、裂纹按其几何特征可分为哪几类?25、判断下图所示几种力情况下,裂纹扩展的类型 26、D-B 模型的适用条件是什么?27、什么叫裂纹的亚临界扩展?什么叫门槛值?28、什么叫腐蚀?什么叫应力腐蚀?什么叫腐蚀临界应力强度因子K i sc ?29、什么叫应力疲劳?什么叫应变腐蚀?两者的裂纹扩展速率表达式是否相同?为什 么? 30、 什么叫腐蚀疲劳?31、 试述金属材料疲劳破坏的特点32、现有的防脆断设计方法可分为哪几种?33、 什么是疲劳裂纹门槛值,哪些因素影响其值的大小 ?它有什么实用价值? 34、应力腐蚀裂纹扩展的特征?第二类椭圆积分 ①°的值a/c ①0a/c ①0 a/c ①00 1.0000 0.35 1.1227 0.70 1.3456 0.5 1.0045 0.40 1.1507 0.75 1.3815 0.10 1.0148 0.45 1.1802 0.80 1.4148 0.15 1.0314 0.50 1.2111 0.85 1.4769 0.20 1.0505 0.55 1.2432 0.90 1.4935 0.25 1.0723 0.60 1.2764 0.95 1.5318 0.301.09650.651.31051.001.57087\ 7\压力容器二、计算题:1 有一材料E =2 1011N /m2,表面能密度咐=8N/m,外加拉应力;:.,7 io7N/m2。
Sv BA+Q s V=:;S(V A'V)、计算题(本大题共3小题,每小题20 分, 总计60分)1、利用叠加原理:微段「集中力qdx「dK i2q、、dx ,二(a2 _x2)二K]2q. ------------- dx.二(a2 -x2)10分BDT2dx1x1一、简答题(本大题共5小题,每小题6分,总计30分)1、(1)数学分析法:复变函数法、积分变换;(2)近似计算法:边界配置法、有限元法;(3)实验应力分析法:光弹性法.(4)实验标定法:柔度标定法;2、假定:(1)裂纹初始扩展沿着周向正应力;一、为最大的方向;(2)当这个方向上的周向正应力的最大值C[)max达到临界时,裂纹开始扩展•S3、应变能密度:W,其中S为应变能密度因子,表示裂纹尖端附近应力场r密度切的强弱程度。
4、当应力强度因子幅值小于某值时,裂纹不扩展,该值称为门槛值。
5、表观启裂韧度,条件启裂韧度,启裂韧度。
二、推导题(本大题10分)D-B模型为弹性化模型,带状塑性区为广大弹性区所包围,满足积分守恒的诸条件。
积分路径:塑性区边界。
AB上:平行于捲,有dx2 =0 , ds1 -BD上:平行于x1,有dx2J(Wdx2 -T 凹ds) T2 竺dX!x-i AB2007断裂力学考试试题B卷答案-sin2b JI令x=acosv= a ?—x? =acos 「dx = acosrdr a cosvd , a COST当整个表面受均布载荷时,6 r a .二 K ] = ?q £sin 」(却 = q V^10 分2、边界条件是周期的:a.T —,匚.b. 在所有裂纹 内部应力为零.y =0, -a ::: x ::: a,-a _2b ::: x ::: a_2b 在区间内二 y =0,・xy = 0c. 所有裂纹前端;7y - C单个裂纹时ZW —a 2又Z 应为2b 的周期函数=Z =■. (sin ——)2 -(sin ——)2 Y 2b 2b采用新坐标:『:=z - aJI-sin — ( a) 2b(-亠 a) 2 ■ a 2(sin )2- (sin )22b 2brU JI uJI ur 0 时,sin,cos 1 2b 2b 2b弹世31 It2b10分n 2a (sin a) 2b2b= sin ( a)二 sin cos a cos sin —a 2b 2b 2b 2bnncos — a sin ——a 2b 2b 2bil-fil-fiTF iTF i| +2'■ 2 2 :[sin (a)]=() cos a 2 cos asin 2b2b 2b 2b 2b帥莎(a)]2—(sin2b a[令cos asin a 2b 2b■: a . ■: a10分注 意 行 为 规 范2 2 2 2(二1 -;「2)(;「2-;「3)(二 3一;「1)2;「s对于I 型裂纹的应力公式:(J —(J cxy )1 2*xy-2 0 0cos-[1 二 sin ]2 2遵 守 考 场 纪 律二3 = 0 (平面应力,薄板或厚板表面)r =cos 2 [1 _3si n 2?]2 210分--平面应力下,I 型裂纹前端屈服区域的边界方管导核字主领审签-sin2b——cos ——sin 2b 2b 2b二 sin2b/ 兀a =二,2b tan —V2b2b-■■:a. tan ——Vn a 2b3、当复杂应力状态下的形状改变能密度等于单向拉伸屈服时的形 状改变能密度,材料屈服,即:10分当-0时,第3页 共3页一、简答题(80分)1•断裂力学中,按裂纹受力情况,裂纹可以分为几种类型?请画出这些类型裂纹的受力示意图。
断裂力学答案【篇一:08年a卷试题及答案哈工大断裂力学考试试题】txt>《断裂力学》试题 a卷答案一、简答题(80分)1. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型?请画出这些类型裂纹的受力示意图。
(15分)答:按裂纹受力情况把裂纹(或断裂)模式分成三类:张开型(i型)、滑开型(ii型)和撕开型(iii型),如图所示ii型-滑开型三型-撕开型2 请分别针对完全脆性材料和有一定塑性的材料,简述裂纹扩展的能量平衡理论?(15分)答:对完全脆性材料,应变能释放率等于形成新表面所需要吸收的能量率。
对于金属等有一定塑性的材料,裂纹扩展中,裂尖附近发生塑性变形,裂纹扩展释放出来的应变能,不仅用于形成新表面所吸收的表面能,更主要的是克服裂纹扩展所吸收的塑性变形能,即塑性功。
对金属材料,能量平衡理论这时需要更广泛的概念。
这时,抵抗裂纹扩展能力=表面能+塑性变形能,对金属材料这是常数。
3. 请简述应力强度因子的含义,并简述线弹性断裂力学中裂纹尖端应力场的特点?(15)答:各种类型裂尖应力和位移场可表示为ij(i)k?2?rfij(?)i,j?1,2,3(i)ui(i)krgi(?) i?1,2,3(i)若角标ii, iii,代表ii型或iii型裂纹。
可见应力场有如下三个特点:1)r?0处,应力趋于无穷大,即在裂尖出现奇异点; 2)应力强度因子在裂尖为有限量;3)裂尖附近的应力分布是r和?的函数,与无限远处应力和裂纹长无关。
由上述裂尖应力场的特点可知,用应力为参量建立如传统的强度条件失去意义,但应力强度因子是有限量,它不代表某一点的应力,而代表应力场强度的物理量,用其作为参量建立破坏条件是合适的。
应力强度因子一般写为:k??y?a4. 简述脆性断裂的k准则及其含义?(15)答:k1?k1c为应力强度因子准则。
其中,k1为裂纹尖端的应力强度因子,是表示裂纹尖端应力场强度的一个参量,由载荷及裂纹体形状和尺寸决定,可以用弹性理论的方法进行计算;k1c称为材料的平面应变断裂韧度,是材料具有的一种机械性能,表示材料抵抗脆性断裂的能力,由试验测定。
断裂力学复习题1.裂纹按几何特征可分为三类,分别是(穿透裂纹)、(表面裂纹)和(深埋裂纹)。
按力学特征也可分为三类,分别是(张开型)、(滑开型)和(撕开型)。
2.应力强度因子是与(外载性质)、(裂纹)及(裂纹弹性体几何形状)等因素有关的一个量。
材料的断裂韧度则是(应力强度因子)的临界值,是通过(实验)测定的材料常数。
3.确定应力强度因子的方法有:(解析法),(数值法),(实测法)。
4.受二向均匀拉应力作用的“无限大”平板,具有长度为2a 的中心贯穿裂纹,求应力强度因子的表达式。
℃K 【解】将x 坐标系取在裂纹面上,坐标原点取在裂纹中心,则上图所示问题的边界条件为:① 当y = 0,x → ∞时,;σσσ==y x ② 在y =0,的裂纹自由面上,a x <;而在时,随,。
0,0==xy y τσa x >a x →∞→y σ可以验证,完全满足该问题的全部边界条件的解析函数为22℃ )(az zz Z -=σ(1)将坐标原点从裂纹中心移到裂纹右尖端处,则有z =ζ+a 或ζ= z -a ,代入(1),可得:)2()()(I a a Z ++=ζζζσζ于是有:aa a a a K πσζζσπζζζσπζζζ=++⋅=++⋅=→→)2()(2lim )2()(2lim 00℃5.对图示“无限大”平板Ⅱ型裂纹问题,求应力强度因子的表达式。
℃Krb 【解】将x 坐标系取在裂纹面上,坐标原点取在裂纹中心,则上图所示问题的边界条件为:① 当y = 0,x → ∞时,;ττσσ===xy y x ,0② 在y = 0,的裂纹自由面上,a x <;而在时,随,。
0,0==xy y τσa x >a x →∞→xy τ可以验证,完全满足该问题的全部边界条件的解析函数为22℃ )(a z zz Z -=τ(1)将坐标原点从裂纹中心移到裂纹右尖端处,则有z =ζ+a 或ζ= z -a ,代入(1),可得: )2()()(℃a a Z ++=ζζζτζ于是有:a a a a a K πτζζτπζζζτπζζζ=++⋅=++⋅=→→)2()(2lim )2()(2lim 00℃e i r6.对图示“无限大”平板Ⅲ型裂纹问题,求应力强度因子的表达式。
断裂力学基础目 录第一章 绪论第二章 线弹性断裂力学 第三章 弹塑性断裂力学 第四章 疲劳裂纹扩展第五章 复合型裂纹的脆性断裂理论 附 录 弹性力学基础第一章 绪 论ssss2a2bss2a?一、引例][s s ≤⎪⎭⎫ ⎝⎛+=b a 21maxs s Inglis(1913)用分子论观点计算出绝大部分固体材料的强度103MPa ,而实际断裂强度100MPa ?——材料缺陷第一章 绪论第一章 绪论 二、工程中的断裂事故1.1860~1870英国铁路事故死200人/年;2.1938年3月14日比利时费廉尔大桥断成三节,1947~1950比利时又有14座大桥脆性破坏; 3.美国二次大战期间2500艘自由轮,700艘严重破坏,其中145艘断成两段,10艘在平静海面发生。
同时期大量的战机事故——广泛采用焊接工艺和高强度材料; 4.1954年1月10日英国大型喷气民航客机彗星号坠落,同时期共三架坠落;二、工程中的断裂事故5.1958美国北极星号导弹固体燃料发动机壳体爆炸; 6.1969年11月美国F3左翼脱落; 7.1972年我国歼5坠毁;8.近年来桥梁、房屋、锅炉和压力容器、汽车等第一章 绪论二、工程中的断裂事故 第一章 绪论 二、工程中的断裂事故9.2007年11月2日美国F15 空中解体;第一章 绪论三、断裂力学发展简史1.1913年,C. E. Inglis(英格列斯)将裂纹(缺陷)简化为椭圆形切口,用线弹性方法研究了含椭圆孔无限大板受均匀拉伸问题——按应力集中观点解释了材料实际强度远低于理论强度是由于固体材料存在缺陷的缘故。
2.1921 年,A. A. Griffith(格里非斯)用弹性体能量平衡的观点研究了玻璃、陶瓷等脆性材料中的裂纹扩展问题,提出了脆性材料裂纹扩展的能量准则,成为线弹性断裂力学的核心之一—能量释放率准则。
第一章 绪论 三、断裂力学发展简史3.1955~1957年,G. R. Irwin(欧文)通过对裂尖附近应力场的研究,提出了新的断裂参量—应力强度因子,并建立断裂判据,成为线弹性断裂力学的另一核心—应力强度因子断裂准则。
断裂力学期末考试试题含答案一、简答题(80分)1. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型,请画出这些类型裂纹的受力示意图。
(15分)2 请分别针对完全脆性材料和有一定塑性的材料,简述裂纹扩展的能量平衡理论,(15分)3. 请简述应力强度因子的含义,并简述线弹性断裂力学中裂纹尖端应力场的特点,(15)4. 简述脆性断裂的K准则及其含义,(15)5. 请简述疲劳破坏过程的四个阶段,(10)6. 求出平面应变状态下裂纹尖端塑性区边界曲线方程,并解释为什么裂纹尖端塑性区尺寸在平面应变状态比平面应力状态小,(5分)7. 对于两种材料,材料1的屈服极限和强度极限都比较高,材料,,sb 2的和相对较低,那么材料1的断裂韧度是否一定比材料2的高,,,sb 试简要说明断裂力学与材料力学设计思想的差别, (5分)二、推导题(10分)请叙述最大应力准则的基本思想,并推导出I-II型混合型裂纹问题中开裂角的表达式,三、证明题(10分),,,JwdyTuxds,,,,,(/)定义J积分如下,,围绕裂纹尖端的回路, ,,始于裂纹下表面,终于裂纹上表面,按逆时针方向转动,其中是w, 板的应变能密度,为作用在路程边界上的力,u是路程边界上的位移T ds矢量,是路程曲线的弧元素。
证明J积分值与选择的积分路程无关,并说明J积分的特点。
四、简答题(80分)1. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型,请画出这些类型裂纹的受力示意图。
(15分)答:按裂纹受力情况把裂纹(或断裂)模式分成三类:张开型(I型)、滑开型(II型)和撕开型(III型),如图所示y y yx o o o z x xI型,张开型 II型,滑开型三型,撕开型2 请分别针对完全脆性材料和有一定塑性的材料,简述裂纹扩展的能量平衡理论,(15分)答:对完全脆性材料,应变能释放率等于形成新表面所需要吸收的能量率。
对于金属等有一定塑性的材料,裂纹扩展中,裂尖附近发生塑性变形,裂纹扩展释放出来的应变能,不仅用于形成新表面所吸收的表面能,更主要的是克服裂纹扩展所吸收的塑性变形能,即塑性功。
断裂力学复习题1.裂纹按几何特征可分为三类,分别是(穿透裂纹)、(表面裂纹)和(深埋裂纹)。
按力学特征也可分为三类,分别是(张开型)、(滑开型)和(撕开型)。
2.应力强度因子是与(外载性质)、(裂纹)及(裂纹弹性体几何形状)等因素有关的一个量。
材料的断裂韧度则是(应力强度因子)的临界值,是通过(实验)测定的材料常数。
3.确定应力强度因子的方法有:(解析法),(数值法),(实测法)。
4.受二向均匀拉应力作用的“无限大”平板,具有长度为2a的中心贯穿裂纹,求应力强度因子的表达式。
【解】将x坐标系取在裂纹面上,坐标原点取在裂纹中心,则上图所示问题的边界条件为:① 当y = 0,x → ∞时,;② 在y = 0,的裂纹自由面上,;而在时,随,。
可以验证,完全满足该问题的全部边界条件的解析函数为(1)将坐标原点从裂纹中心移到裂纹右尖端处,则有z =ζ+a或ζ= z-a,代入(1),可得:于是有:5.对图示“无限大”平板Ⅱ型裂纹问题,求应力强度因子的表达式。
【解】将x坐标系取在裂纹面上,坐标原点取在裂纹中心,则上图所示问题的边界条件为:① 当y = 0,x → ∞时,;② 在y = 0,的裂纹自由面上,;而在时,随,。
可以验证,完全满足该问题的全部边界条件的解析函数为(1)将坐标原点从裂纹中心移到裂纹右尖端处,则有z =ζ+a或ζ= z-a,代入(1),可得:于是有:6.对图示“无限大”平板Ⅲ型裂纹问题,求应力强度因子的表达式。
【解】将x坐标系取在裂纹面上,坐标原点取在裂纹中心,则上图所示问题的边界条件为:① 当y = 0,x → ∞时,;② 在y = 0,的裂纹自由面上,;而在时,随,。
可以验证,完全满足该问题的全部边界条件的解析函数为(1)将坐标原点从裂纹中心移到裂纹右尖端处,则有z =ζ+a或ζ= z-a,代入(1),可得:于是有:7.“无限大”平板中,在长度为2a的中心贯穿裂纹表面上,距裂纹中点为x=±b处各作用一对集中力p,求应力强度因子的表达式。
第一章 断裂力学的基本概念宏观裂纹的产生:1) 制造时存在而无损检测漏检:大型锻件容易出现白点裂纹,夹杂裂纹;高强度钢易出现焊接裂纹2) 构件中原来存在的较小裂纹,在周期性的工作应力(疲劳应力)下逐渐发展长大的;3) 腐蚀性价值中工作的构件,在应力和介质联合作用下,小裂纹也会逐渐发展成宏观裂纹; 总之构件内部存在的宏观裂纹是造成构件低应力脆断的直接原因。
材料力学:研究不含宏观裂纹构件的强度、刚度和稳定性;断裂力学:研究含有宏观裂纹构件的安全性裂纹:夹渣、气孔、未焊透、大块夹杂;断裂韧性:只与材料本身、热处理、加工工艺有关;Y a K c Ic σ=是材料抵抗低应力脆性破坏的韧性参数Ic K 是材料性能,裂纹形状大小Y a 一定时,Ic K 越大,使裂纹快速扩展导致构件脆断所需应力c σ也越高,构件阻止裂纹失稳扩展的能力就越大。
应力场强度因子:Y a K I σ=断裂韧性Ic K 是应力强度因子I K 的临界值,I K 是裂纹前端应力场强度的度量,它和裂纹大小、形状以及外加应力都有关断裂力学的应用a Y K I σ⋅=Q Y π1.1=22212.0⎪⎪⎭⎫ ⎝⎛-Φ=s Q σσ: 形状因子 Φ是和椭圆轴比有关的椭圆积分,可查手册获得;第二章 线弹性断裂力学弹性力学的某些概念:应力分量:3应变分量:3胡克定律和广义胡克定律:平面应力:z 方向总力和为0,x,y 平面有正应力和切应力,这三个应力沿z 轴(厚度方向)都一样,与z 无关,仅是x,y 的函数,这种应力状态称为平面应力状态。
当板很薄时,可认为是平面应力状态。
0=z σ体内应变分量只有三个,厚度方向认为没有应变,这种应变状态称为平面应变状态。
()y x z σσυσ+=对试件来说,厚度很小就是平面应力状态;厚度很大就是平面应变状态;厚度中等,两外表面不受力属于平面应力状态;中间大部分地区由于受两端面的约束,沿厚度方向不能变形,故属于平面应变状态;三种裂纹组态:张开型裂纹(I):外加正应力和裂纹面垂直; 最容易引起低应力脆断; 滑开型裂纹(II):外加剪应力和裂纹面平行;撕开型裂纹(III):外加剪应力与裂纹面错开;裂纹顶端附近应力场复变函数求解;塑性区及其修正:裂纹尖端应力不可能无限大,材料一旦屈服,弹性规律就失效,若屈服区很小周围仍然是弹性区,经修正线性弹性断裂力学仍然有效;屈服判据:最大剪应力判据(屈雷斯加判据):在复杂加载条件下,当最大剪应力等于材料的极限剪应力(即单向拉伸剪应力)时,材料就屈服;22min max max σσστ-==s形状改变能判据(米塞斯判据):当复杂应力状态的形状改变能密度,等于单向拉压屈服时的形状改变能密度时,材料就屈服; ()()()22132322212s σσσσσσσ=-+-+-xy y x y x τσσσσσσ+-±+=2)(2221 ()⎩⎨⎧+=2130σσυσ我们把塑性屈服区中的最大主应力1σ叫有效屈服应力ys σ有效屈服应力(最大主应力)和ys σ的比值叫做塑性约束系数Lsys L σσ= 平面应力裂纹:1=L 平面应变裂纹:υ211-=L =3,因为前后表面是平面应力状态,裂纹钝化效应,L=1.5-2.0 I 型裂纹:一般取1.67裂纹前端屈服区大小()⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⇒==平面应变平面应力2220200122-121212s I s I ys I ys I K K r K r r K σπυσπσπσπσ 平面应变屈服尺寸远比平面应力屈服尺寸要小;屈服区内应力松弛的结果将导致屈服区进一步扩大2222211r R K K R s I s I =⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=平面应变平面应力σπσπ 应力松弛后塑性区扩大了一倍;塑性区修正:塑性区修正因子代入平面应变平面应变平面应力10.212-1.11.10.212-1.10.212-1.11.12412122s22s22s222>⎪⎪⎭⎫ ⎝⎛ΦΦ=Φ⋅=ΦΦ=⎪⎪⎭⎫ ⎝⎛Φ=⋅=⎪⎪⎭⎫ ⎝⎛Φ⋅=Φ⋅=⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==σσπσπσσσπσσσπσπσσπσπp p I I I s I s I y M a M a Q K Q Q aa K a K K K R r裂纹扩展的能量率I G 裂纹表面能为Γ,上下两个表面能为Γ2;金属材料裂纹扩展前要产生塑性变形,裂纹扩展单位面积塑性变形所消耗的能量为:p U ,实验表明,一般Γ-≈431010p U ;总起来,裂纹扩展单位面积所需要消耗的能量R (裂纹扩展的阻力)表示: p U R +Γ=2设裂纹扩展单位面积系统提供的动力为I G ,要使裂纹扩展必须:R G I ≥设系统能量为U ,裂纹扩展面积为A ∆,需要消耗的能量为A G A R I ∆=∆;系统势能下降U A G I ∆-=∆极限条件下:AU G I ∂∂-=就是裂纹扩展单位面积系统能量的下降率(系统能量的释放率),裂纹扩展的动力;单位厚度B=1: aU G I ∂∂-=就是裂纹扩展单位长度系统能量的下降率,称裂纹扩展力; 一般情况下,满足下式,裂纹就能扩展: da G dE dW I ≥-在裂纹失稳扩展,从而构件断裂的临界状态,裂纹扩展单位长度(或单位面积)所需要提供的能量(它等于扩展所消耗的能量)叫做临界裂纹扩展能量改变率,用Ic G 表示。
断裂力学期末考试试题含答案一、简答题(80分)1. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型,请画出这些类型裂纹的受力示意图。
(15分)2 请分别针对完全脆性材料和有一定塑性的材料,简述裂纹扩展的能量平衡理论,(15分)3。
请简述应力强度因子的含义,并简述线弹性断裂力学中裂纹尖端应力场的特点,(15)4。
简述脆性断裂的K准则及其含义,(15)5。
请简述疲劳破坏过程的四个阶段,(10)6。
求出平面应变状态下裂纹尖端塑性区边界曲线方程,并解释为什么裂纹尖端塑性区尺寸在平面应变状态比平面应力状态小,(5分)7. 对于两种材料,材料1的屈服极限和强度极限都比较高,材料,,sb 2的和相对较低,那么材料1的断裂韧度是否一定比材料2的高,,,sb 试简要说明断裂力学与材料力学设计思想的差别, (5分)二、推导题(10分)请叙述最大应力准则的基本思想,并推导出I-II型混合型裂纹问题中开裂角的表达式,三、证明题(10分),,,JwdyTuxds,,,,,(/)定义J积分如下,,围绕裂纹尖端的回路, ,,始于裂纹下表面,终于裂纹上表面,按逆时针方向转动,其中是w,板的应变能密度,为作用在路程边界上的力,u是路程边界上的位移Tds矢量,是路程曲线的弧元素。
证明J积分值与选择的积分路程无关,并说明J积分的特点。
四、简答题(80分)1。
断裂力学中,按裂纹受力情况,裂纹可以分为几种类型,请画出这些类型裂纹的受力示意图。
(15分)答:按裂纹受力情况把裂纹(或断裂)模式分成三类:张开型(I型)、滑开型(II 型)和撕开型(III型),如图所示y y yx o o o z x xI型,张开型 II型,滑开型三型,撕开型2 请分别针对完全脆性材料和有一定塑性的材料,简述裂纹扩展的能量平衡理论,(15分)答:对完全脆性材料,应变能释放率等于形成新表面所需要吸收的能量率.对于金属等有一定塑性的材料,裂纹扩展中,裂尖附近发生塑性变形,裂纹扩展释放出来的应变能,不仅用于形成新表面所吸收的表面能,更主要的是克服裂纹扩展所吸收的塑性变形能,即塑性功。
断裂力学习题一、问答题1、什么是裂纹?2、试述线弹性断裂力学的平面问题的解题思路。
3、断裂力学的任务是什么?4、试述可用于处理线弹性条件下裂纹体的断裂力学问题两种方法:5、试述I型裂纹双向拉伸问题中的边界条件,如何根据该边界条件确定一复变函数,并由此构成应力函数,最后写出问题的解。
6、什么是应力场强度因子K1?什么是材料的断裂韧度K1C?对比单向拉伸条件下的应力σ及断裂强度极限σb,,说明K1与K1C的区别与联系?7、在什么条件下应力强度因子K的计算可以用叠加原理8、试说明为什么裂纹顶端的塑性区尺寸平面应变状态比平面应力状态小?9、试说明应力松驰对裂纹顶端塑性区尺寸有何影响。
10、K准则可以解决哪些问题?11、何谓应力强度因子断裂准则?线弹性断裂力学的断裂准则与材料力学的强度条件有何不同?12、确定K的常用方法有哪些?13、什么叫裂纹扩展能量释放率?什么叫裂纹扩展阻力?14、从裂纹扩展过程中的能量变化关系说明裂纹处于不稳定平衡的条件是什么?15、什么是格里菲斯裂纹?试述格氏理论。
16、奥罗万是如何对格里菲斯理论进行修正的?17、裂纹对材料强度有何影响?18、裂纹按其力学特征可分为哪几类?试分别述其受力特征19、什么叫塑性功率?20什么是G准则?21、线弹性断裂力学的适用范围。
22、“小范围屈服”指的是什么情况?线弹性断裂力学的理论公式能否应用?如何应用?23、什么是Airry应力函数?什么是韦斯特加德(Westergaard)应力函数?写出Westergaard应力函数的形式,并证明其满足双调和方程。
24、裂纹按其几何特征可分为哪几类?25、判断下图所示几种力情况下,裂纹扩展的类型262728、什么叫腐蚀?什么叫应力腐蚀?什么叫腐蚀临界应力强度因子K ⅠSCC ?29、什么叫应力疲劳?什么叫应变腐蚀?两者的裂纹扩展速率表达式是否相同?为什么?30、什么叫腐蚀疲劳?31、试述金属材料疲劳破坏的特点 32、现有的防脆断设计方法可分为哪几种?33、什么是疲劳裂纹门槛值,哪些因素影响其值的大小?它有什么实用价值? 34、应力腐蚀裂纹扩展的特征?第二类椭圆积分Φ0的值二、计算题:1、有一材料211/102m N E ⨯=,表面能密度m N /8=γ,外加拉应力27/107m N ⨯=σ。