高考数学复习点拨“割补法”求解不规则几何体体积
- 格式:pdf
- 大小:92.93 KB
- 文档页数:2
“割补法”求解不规则几何体体积我们通常把不是棱柱、棱锥、棱台和圆柱、圆锥、圆台等的几何体,称为不规则几何体.而解决不规则几何体的方法,常用割补法,即通过分割或补形,将它变成规则的几何体.我们可以从不规则几何体的来源上,即它是由何种常见的几何体所截得的来分类.一、来自三棱柱的截体例1 如图1,正四面体A BC D -中,E F G H ,,,分别是棱A B A C B D C D ,,,的中点,求证:平面EFH G 把正四面体分割成的两部分几何体的体积相等.分析:显然正四面体被分割成的两部分都是不规则的几何体,因此我们可使用割补法来推导.那么我们应选择割,还是补呢?如果选择补,那么补成什么样子呢?显然只能是正四面体,这就说明我们应该选择割.证明:连结C E C G A G A H ,,,,左右两个不规则几何体都被分割成了一个四棱锥和一个三棱锥,如图1.易证左右的两个四棱锥的体积相等,两个三棱锥的体积也相等,于是两部分体积相等.当然此题还有其他的分割方法,比如分成一个三棱柱和一个三棱锥等,也同样好证.二、来自正方体的截体例2 如图2,已知多面体ABC D EFG -中,A B A C A D ,,两两互相垂直,平面ABC ∥平面D E F G ,平面BEF ∥平面A D G C ,2AB AD D C ===,1AC EF ==,则该多面体的体积为( )A.2 B.4 C.6 D.8解法一(割):如图3,过点C 作C H D G ⊥于H ,连结EH ,这样就把多面体分割成一个直三棱柱D EH ABC -和一个斜三棱柱BEF C H G -.于是所求几何体的体积为:DEH BEF V S AD S DE =⨯+⨯△△11212212422⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 解法二(补):如图4,将多面体补成棱长为2的正方体,那么显然所求的多面体的体积即为该正方体体积的一半. 于是所求几何体的体积为31242V =⨯=.三、来自圆柱的截体例3 如图5,如图5,一圆柱被一平面所截,已知被截后几何体的最长侧面母线长为4,最短侧面母线长为1,且圆柱底面半径长为2,则该几何体的体积等于_______.解法一(割):如图6,该几何体的体积等于下面的圆柱的体积与上面的圆柱体积的一半之和.下面的圆柱的高就是该几何体的最短侧面母线长1,而上面的圆柱的高为3. 于是所求几何体的体积为221π212310π2V =⨯⨯+⨯⨯⨯=.解法二(补):如图7,将一个与已知的几何体完全相同的几何体,与已知的几何体拼在一起组成一个高为5的完整圆柱,那么所求几何体的体积就是这个大圆柱体积的一半.于是21π2510π2V =⨯⨯⨯=.例1、已知三棱锥的两个侧面都是边长为 的等边三角形,另一个侧面是等腰直角三角形。
第3讲割补思想在立体几何中的应用割补法是数学中最重要的思想方法之一,主要分为割形与补行,是将复杂的,不规则的不易认识的几何体或几何图形,分割或补充成简单的、规则的、易于认识的几何体或图形,从而达到解决问题的目的。
割补法重在割与补,巧妙对几何体过几何图形实割与补,变整体的为局部,化不规则为规则,化陌生为熟悉,化抽象为直观。
割补法在立体几何中体现的主要的题型就是几何体的切等问题。
【应用一】割的思想在多面体的体积及几何体的内切球中的运用割的思想主要体现两种题型:一是求复杂几何体的体积、表面积等问题,此类问题通过割把复杂的几何体割成几个简单的几何体。
二是求几何体内切球的半径、体积等问题。
此类问题主要是通过球心与几何体的各点割成锥,然后运用等积法求半径。
【例1.1】已知一个三棱锥的所有棱长均为2,则该三棱锥的内切球的体积为________.【例1.2】【2020年新课标3卷理科】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【思维提升】以三棱锥P -ABC 为例,求其内切球的半径.方法:等体积法,三棱锥P -ABC 体积等于内切球球心与四个面构成的四个三棱锥的体积之和;第一步:先求出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,球心为O ,建立等式:V P -ABC =V O -ABC +V O -PAB +V O -PAC +V O -PBC ⇒V P -ABC =13△ABC ·r +13S△PAB·r +13S △PAC ·r +13S △PBC ·r =13(S △ABC +S △PAB +S △PAC +S △PBC )·r ;第三步:解出r =3V P -ABC S O -ABC +S O -PAB +S O -PAC +S O -PBC =3VS 表.秒杀公式(万能公式):r =3V S 表【例1.3】(2023·河北唐山·统考三模)(多选)《九章算术》是我国古代的数学名著,书中提到底面为长方形的屋状的楔体(图示的五面体)EF ABCD -.底面长方形ABCD 中3BC =,4AB =,上棱长2EF =,且EF 平面ABCD ,高(即EF 到平面ABCD 的距离)为1,O 是底面的中心,则()A .EO 平面BCF【变式1.1】(2023·辽宁·辽宁实验中学校考模拟预测)如图①,在平行四边形ABCD中,AB ===ABD △沿BD 折起,使得点A 到达点P 处(如图②),=PC P BCD -的内切球半径为______.【变式1.2】(2023·辽宁沈阳·东北育才学校校考模拟预测)已知一正四面体棱长为4,其内部放置有一正方体,且正方体可以在正四面体内部绕一点任意转动,则正方体在转动过程中占据的空间体积最大为__________.【变式1.3】(2022·江苏通州·高三期末)将正方形ABCD 沿对角线BD 折成直二面角A ′-BD -C ,设三棱锥A ′-BDC 的外接球和内切球的半径分别为r 1,r 2,球心分别为O 1,O 2.若正方形ABCD 的边长为1,则21r r =________;O 1O 2=__________.【应用二】补的思想在立体几何中几何体外接球中的应用解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.2.记住几个常用的结论:(1)正方体的棱长为a,球的半径为R.①对于正方体的外接球,2R;②对于正方体的内切球,2R=a;③对于球与正方体的各棱相切,2R.(2)在长方体的同一顶点的三条棱长分别为a,b,c,球的半径为R,则2R=.(3)正四面体的外接球与内切球的半径之比为3∶1.3.构造法在定几何体外接球球心中的应用(1)正四面体、三条侧棱两两垂直的正三棱锥、四个面都是直角三角形的三棱锥,可将三棱锥补形成长方体或正方体;(2)同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥,可将三棱锥补形成长方体或正方体;(3)若已知棱锥含有线面垂直关系,则可将棱锥补形成长方体或正方体;(4)若三棱锥的三个侧面两两垂直,则可将三棱锥补形成长方体或正方体【例2.1】(2022·广东潮州·高三期末)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A-BCD中,AB⊥平面BCD,CD⊥AD,AB=BD,已知动点E从C点出发,沿外表面经过棱AD上一点到点B,则该棱锥的外接球的表面积为_________.【思维提升】墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R =a 2+b 2+c 2.),秒杀公式:R 2=a 2+b 2+c 24.可求出球的半径从而解决问题.有以下四种类型:【例2.2】(2022·广东·铁一中学高三期末)已知四面体A BCD -中,5AB CD ==,10AC BD ==,13BC AD ==,则其外接球的体积为______.【思维提升】棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长,即2222R a b c =++(长方体的长、宽、高分别为a、b、c).秒杀公式:R2=x2+y2+z28(三棱锥的三组对棱长分别为x、y、z).可求出球的半径从而解决问题.【变式2.1】(2023·湖南邵阳·统考三模)三棱锥-P ABC 中,PA ⊥平面ABC ,4,223,PA AC AB AC AB ===⊥,则三棱锥-P ABC 外接球的表面积为__________.【变式2.2】已知三棱锥A BCD -,三组对棱两两相等,且1AB CD ==,3AD BC ==,若三棱锥A BCD -的外接球表面积为92π.则AC =________.【变式2.3】已知三棱锥A -BCD 的四个顶点A ,B ,C ,D 都在球O 的表面上,AC ⊥平面BCD ,BC ⊥CD ,且AC =3,BC =2,CD =5,则球O 的表面积为()A .12πB .7πC .9πD .8π【变式2.4】(2019全国Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为().A.62πD.6π8πB.64πC.6巩固练习1、【2019年新课标2卷理科】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.2、(2022·湖北江岸·高三期末)如图,该几何体是由正方体截去八个一样的四面体得到的,若被截的正方体棱长为2,则该几何体的表面积为()A.1233++D.63+C.633+B.12433、(2023·山西临汾·统考一模)《九章算术·商功》提及一种称之为“羡除”的几何体,刘徽对此几何体作注:“羡除,隧道也其所穿地,上平下邪.似两鳖臑夹一堑堵,即羡除之形.”羡除即为:三个面为梯形或平行四边形(至多一个侧面是平行四边形),其余两个面为三角形的五面几何体.现有羡除ABCDEF如图所示,底面ABCD为正方形,4EF=,其余棱长为2,则羡除外接球体积与羡除体积之比为()A.22πB.42πC.82πD.2π3A .18B .275、正四面体的各条棱长都为.6、在三棱锥A -BCD 中,AB =CD =2,AD =BC =3,AC =BD =4,则三棱锥BCD A -外接球的表面积为________.7、在三棱锥A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的体积为____.8、(2023·湖南郴州·统考三模)已知三棱锥-P ABC 的棱长均为4,先在三棱锥-P ABC 内放入一个内切球1O ,然后再放入一个球2O ,使得球2O 与球1O 及三棱锥-P ABC 的三个侧面都相切,则球2O 的表面积为__________.第3讲割补思想在立体几何中的应用割补法是数学中最重要的思想方法之一,主要分为割形与补行,是将复杂的,不规则的不易认识的几何体或几何图形,分割或补充成简单的、规则的、易于认识的几何体或图形,从而达到解决问题的目的。
图1-1图1-2A'高考数学核心思想方法:割补法(2)1内容概述在求不规则的几何体的体积时,有些题目采用“补形法”比较容易;有些题目采用“分割法”更为恰当;还有些题目既能采用“补形法”解决,也能采用“分割法”解决;还有些题目既要采用“补形法”,同时采用“分割法”才易解决.本讲将重点讲解割补法的灵活应用以及专题总结.2例题示范 例1 如图1-1,A A '⊥底面ABC,////AA BB CC ''',且345AB BC AC ===,,, 624AA BB CC '''===,,,求C B A A B C '''-的体积解:补上一个相同的几何体如图1-2所示,则新几何体的体积等于两个原几何体的体积.即=2V V 新原.因为A A '⊥底面ABC ,////AA BB CC ''',所以新几何体ABC DEF-图1-3图1-4为直三棱柱,且因为624AA BB CC '''===,,,所以 新几何体底面ABC 的高8AD =.345AB BC AC === ,,,222AB BC AC ∴+=,90ABC ︒∴∠= 1=S 482ABC V AD AB BC AD ∆∴⋅=⋅⋅=新 所以原几何体的体积为24.解:(法二)在AA '上取一点D 使2AD BB '==,在CC '上取一点E 使2CE BB '==,连结DB ',B E ',DE 平面如图示,////AA BB CC ''',A A '⊥底面ABCABC DB E '∴-为直三棱柱345AB BC AC === ,,,222AB BC AC∴+=,90ABC ︒∴∠= 1=S 122ABC DB E ABC VAD AB BC AD '-∆∴⋅=⋅⋅=, 过点B '作B F DE F '⊥于,如图1-4所示, A A '⊥底面ABC ,图2-1A A DB E ''∴⊥底面 A A B F ''∴⊥ A A DE D '⋂=B F DEC A '''∴⊥平面所以四棱锥B DEC A '''-的体积为 111=S ()12332B DEC A DEC A V BF AD CE DE BF '''''-''⋅=⋅+⋅⋅= 所以几何体C B A ABC '''-的体积为24B DEC A ABC DB EV V ''''--+=评析:本题所给几何体不是一个规则的几何体, 可以看成一个直三棱柱被一个平面所截而成的.根据题目特点我们既可以选择“补形法”补成直三棱柱,如图1-2所示,计算出直三棱柱的体积,再利用直三棱柱和已知几何体的关系求解;也可以采用“分割法”,把所给几何体分割成直三棱柱和四棱锥,如图1-3所示来解决 . 本题解法一采取的解题方法为补形法,解法二所采取的解题方法为分割法.两种方法都比较自然,由于题目所给条件,本题采用解法一较为简捷. 例2 如图2-1,A A '⊥平面ABC ,//////AA BB CC DD '''',四边形ABCD 为正方形,且213AB AA CC BB ''''=====,,DD ,求几何D C B A ABCD ''''-的体积图2-2解:在DD '上截取DE AA CC ''==,延长BB '至F ,使BB CC ''=. A A '⊥ 平面ABC ,//////AA BB CC DD '''',四边形ABCD 为正方形,且2AB AA CC ''===,ABCD A EC F ''∴-正方体.A C E A C F S S ''''∆∆∴=13BB ''== ,DD1B F E ''∴==D所以所求几何体的体积ABCD A EC F F A B C D A C E V V V V ''''''''---=-+3311833A C E A C F AB S D E S B F AB ''''∆∆''=-⋅⋅+⋅⋅== 评析:本题所给几何体可以看成用一个平面截长方体而成.由于A A C C ''=,因此可以考虑在DD '上截取DE AA CC ''==,延长BB '至F ,使BB CC ''=,这样就出现了一个正方体A B C D A E C ''-.与几何体D C B A A B C D ''''-相比,正方体ABCD A EC F ''-多出一个三棱锥F A B C '''-,少了一个三棱锥D A C E '''-,这样我们用正方体ABCD A EC F ''-的体积减去三棱锥F A B C '''-的体积同时加上三棱锥D A C E '''-的体积就是所求不规则几何体的体积. 本题灵活运用“割补思想”采用“补形法”与“分割法”相结合的解题策略,化难为易.近几年高考中求几何体体积经常以三视图的形式呈现,这样既考察三视图,又考察空间几何体的体积计算.本题可以用三视图的形式。
专题07 立体几何小题常考全归类【命题规律】高考对该部分的考查,小题主要体现在两个方面:一是有关空间线面位置关系的命题的真假判断;二是常见一些经典常考压轴小题,难度中等或偏上.【核心考点目录】核心考点一:球与截面面积问题核心考点二:体积、面积、周长、角度、距离定值问题 核心考点三:体积、面积、周长、距离最值与范围问题 核心考点四:立体几何中的交线问题核心考点五:空间线段以及线段之和最值问题 核心考点六:空间角问题 核心考点七:轨迹问题核心考点八:以立体几何为载体的情境题 核心考点九:翻折问题【真题回归】1.(2022·北京·高考真题)已知正三棱锥-P ABC 的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为( ) A .34π B .πC .2πD .3π2.(2022·浙江·高考真题)如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤3.(多选题)(2022·全国·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =4.(多选题)(2022·全国·高考真题)已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒5.(多选题)(2021·全国·高考真题)在正三棱柱111ABC A B C 中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值 C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 6.(2020·海南·高考真题)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 5BCC 1B 1的交线长为________.【方法技巧与总结】1、几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和. (2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应弄清各构成部分,并注意重合部分的删、补. 2、几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉3、求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆 锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形.4、球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d .注意:解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的位置关系和数量关系;选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.5、立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.6、解决立体几何问题的思路方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题;涉及某些角的三角函数的最值,借助模型求解,如正四面体模型、长方体模型和三余弦角模θαβ=cos cos cos (θ为平面的斜线与平面内任意一条直线l 所成的角,α为该斜线与该平面所成的角,β为该斜线在平面上的射影与直线l 所成的角).7、立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.8、解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.9、以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等; (2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等; (3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.10、以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【核心考点】核心考点一:球与截面面积问题 【规律方法】 球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d . 【典型例题】例1.(2022·全国·高三阶段练习)已知四棱锥P -ABCD 的底面ABCD 是矩形,且该四棱锥的所有顶点都在球O 的球面上,P A ⊥平面ABCD , 22,PA AB BC === ,点E 在棱PB 上,且2EB PE =, 过E 作球O 的截面,则所得截面面积的最小值是____________. 例2.(2022·湖北省红安县第一中学高三阶段练习)球体在工业领域有广泛的应用,某零件由两个球体构成,球1O 的半径为10,,P Q 为球1O 表面上两动点,16,PQ M =为线段PQ 的中点.半径为2的球2O 在球1O 的内壁滚动,点,,A B C 在球2O 表面上,点2O 在截面ABC 上的投影H 恰为AC 的中点,若21O H =,则三棱锥M ABC -体积的最大值是___________. 例3.(2022·江西·高三阶段练习(理))如图,正方体1111ABCD A B C D -的棱长为6,11113C E CD =,点F 是CD 的中点,则过1B ,E ,F 三点的平面α截该正方体所得截面的面积为_________.例4.(2022·北京市十一学校高三阶段练习)如图,在棱长为2的正方体1111ABCD A B C D -中,,M N 分别是棱1111,A B A D 的中点,点P 在线段CM 上运动,给出下列四个结论:①平面CMN 截正方体1111ABCD A B C D -所得的截面图形是五边形; ②直线11B D 到平面CMN 2; ③存在点P ,使得1190B PD ∠=; ④1PDD △45. 其中所有正确结论的序号是__________.核心考点二:体积、面积、周长、角度、距离定值问题 【规律方法】几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥, 有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉【典型例题】例5.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关例6.(2022·山西运城·模拟预测(文))如图,正方体1111ABCD A B C D -的棱长为1,线段1CD 上有两个动点E ,F ,且12EF =,点P ,Q 分别为111A B BB ,的中点,G 在侧面11CDD C 上运动,且满足1B G ∥平面1CD PQ ,以下命题错误的是( )A .1AB EF ⊥B .多面体1AEFB 的体积为定值C .侧面11CDD C 上存在点G ,使得1B G CD ⊥ D .直线1B G 与直线BC 所成的角可能为6π例7.(2022·全国·高三专题练习)如图所示,在正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,给出下面几个命题:①四边形1BFD E 一定是平行四边形; ②四边形1BFD E 有可能是正方形;③平面1BFD E 有可能垂直于平面1BB D ;④设1D F 与DC 的延长线交于M ,1D E 与DA 的延长线交于N ,则M 、N 、B 三点共线; ⑤四棱锥11B BFD E -的体积为定值. 以上命题中真命题的个数为( ) A .2B .3C .4D .5核心考点三:体积、面积、周长、距离最值与范围问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例8.(2022·全国·高三专题练习)如图,正方形EFGH 的中心为正方形ABCD 的中心,22AB =P EFGH -(A ,B ,C ,D 四点重合于点P ),则此四棱锥的体积的最大值为( )A 1286B 1285C .43D 15例9.(2022·江西南昌·三模(理))已知长方体1111ABCD A B C D -中,2AB =,22BC =13AA =,P 为矩形1111D C B A 内一动点,设二面角P AD C --为α,直线PB 与平面ABCD 所成的角为β,若αβ=,则三棱锥11P A BC -体积的最小值是( ) A 2 B .321C 2D 32例10.(2022·浙江·高三阶段练习)如图,在四棱锥Q EFGH -中,底面是边长为22方形,4QE QF QG QH ====,M 为QG 的中点.过EM 作截面将此四棱锥分成上、下两部分,记上、下两部分的体积分别为1V ,2V ,则12V V 的最小值为( )A .12 B .13C .14D .15例11.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关核心考点四:立体几何中的交线问题 【规律方法】 几何法 【典型例题】例12.(2022·浙江宁波·一模)在棱长均相等的四面体ABCD 中,P 为棱AD (不含端点)上的动点,过点A 的平面α与平面PBC 平行.若平面α与平面ABD ,平面ACD 的交线分别为m ,n ,则m ,n 所成角的正弦值的最大值为__________.例13.(2022·全国·高三专题练习)已知一个正四面体的棱长为2,则其外接球与以其一个顶点为球心,1为半径的球面所形成的交线的长度为___________.例14.(2022·福建福州·三模)已知正方体1111ABCD A B C D -31A 为球心,半径为2的球面与底面ABCD 的交线的长度为___________.例15.(2022·陕西·武功县普集高级中学高三阶段练习(理))如图,在四面体ABCD 中,DA ,DB ,DC 两两垂直,2DA DB DC ===D 为球心,1为半径作球,则该球的球面与四面体ABCD 各面交线的长度和为___.核心考点五:空间线段以及线段之和最值问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例16.(2022·全国·高三专题练习)已知正三棱锥S ABC -2,外接球表面积为3π,2SA <点M ,N 分别是线段AB ,AC 的中点,点P ,Q 分别是线段SN 和平面SCM 上的动点,则AP PQ +的最小值为( ) A 262-B 62+C 32D 2例17.(2022·全国·高三专题练习)在棱长为3的正方体1111ABCD A B C D -中,点E 满足112A E EB =,点F 在平面1BC D 内,则1A F EF +的最小值为( )A 29B .6C 41D .7例18.(2022·全国·高三专题练习)如图所示,在直三棱柱111ABC A B C -中,11AA =,3AB BC ==1cos 3ABC ∠=,P 是1A B 上的一动点,则1AP PC +的最小值为( )A 5B 7C .13+D .3核心考点六:空间角问题 【规律方法】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的. (3)计算:在证明的基础上计算得出结果. 简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin hl,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°. 4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【典型例题】例19.(2022·浙江金华·高三期末)已知正方体1111ABCD A B C D -中,P 为1ACD △内一点,且1113PB D ACD S S =△△,设直线PD 与11A C 所成的角为θ,则cos θ的取值范围为( )A .3⎡⎢⎣⎦B .3⎡⎤⎢⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦例20.(2022·浙江·效实中学模拟预测)在等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,AC 交BD 于O 点,ABD △沿着直线BD 翻折成1A BD ,所成二面角1A BD C --的大小为θ,则下列选项中错误的是( )A .1A BC θ∠≤B .1AOC θ∠≥ C .1A DC θ∠≤D .11A BC A DC θ∠+∠≥例21.(2022·浙江·湖州中学高三阶段练习)如图,ABC 中,90C ∠=︒,1AC =,3BC =D 为AB 边上的中点,点M 在线段BD (不含端点)上,将BCM 沿CM 向上折起至'B CM △,设平面'B CM 与平面ACM 所成锐二面角为α,直线'MB 与平面AMC 所成角为β,直线MC 与平面'B CA 所成角为γ,则在翻折过程中,下列三个命题中正确的是( )①3tan βα,②γβ≤,③γα>. A .①B .①②C .②③D .①③例22.(2022·浙江·高三专题练习)已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF △沿着EF 翻折至P 点处,如图所示,记二面角P EF B --的平面角为α,二面角P FC B --的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥例23.(2022·全国·高三专题练习)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角是γ则三个角α,β,γ中最小的角是( ) A .αB .βC .γD .不能确定核心考点七:轨迹问题 【规律方法】解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.【典型例题】例24.(2022·北京·昌平一中高三阶段练习)设正方体1111ABCD A B C D -的棱长为1,E ,F 分别为AB ,1BD 的中点,点M 在正方体的表面上运动,且满足FM DE ⊥,则下列命题:①点M 可以是棱AD 的中点; ②点M 的轨迹是菱形; ③点M 轨迹的长度为25 ④点M 5. 其中正确的命题个数为( ) A .1B .2C .3D .4例25.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D -的边长为2,点E ,F 分别为棱CD ,1DD 的中点,点P 为四边形11CDD C 内(包括边界)的一动点,且满足1B P ∥平面BEF ,则点P 的轨迹长为( ) A 2B .2C 2D .1例26.(2022·全国·模拟预测(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,P A ⊥平面ABCD ,且2PA =,点E ,F ,G 分别为棱AB ,AD ,PC 的中点,下列说法错误的是( )A .AG ⊥平面PBDB .直线FG 和直线AC 所成的角为π3C .过点E ,F ,G 的平面截四棱锥P ABCD -所得的截面为五边形D .当点T 在平面ABCD 内运动,且满足AGT △的面积为12时,动点T 的轨迹是圆例27.(2022·浙江温州·高三开学考试)如图,正方体1AC ,P 为平面11B BD 内一动点,设二面角11A BD P --的大小为α,直线1A P 与平面11BD A 所成角的大小为β.若cos sin βα=,则点P 的轨迹是( )A .圆B .抛物线C .椭圆D .双曲线例28.(2022·全国·高三专题练习)如图,正方体ABCD A B C D -''''中,M 为BC 边的中点,点P 在底面A B C D ''''和侧面CDD C ''上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是( )A .两段圆弧B .两段椭圆弧C .两段双曲线弧D .两段抛物线弧核心考点八:以立体几何为载体的情境题 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例29.(2022·宁夏·平罗中学高三阶段练习(理))设P 为多面体M 的一个顶点,定义多面体M 在P 处的离散曲率为()()1223111 1.2,3,32k i Q PQ Q PQ Q PQ Q i k π-∠+∠+⋯+∠=⋯≥其中,为多面体M 的所有与点P 相邻的顶点,且平面12Q PQ ,23Q PQ ,……,1k Q PQ 遍及多面体M 的所有以P 为公共点的面如图是正四面体、正八面体、正十二面体和正二十面体,若它们在各顶点处的离散曲率分别是a ,b ,c ,d ,则a ,b ,c ,d 的大小关系是( )A .a b c d >>>B .a b d c >>>C .b a d c >>>D .c d b a >>>例30.(2022·广东·广州市从化区第三中学高三阶段练习)北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在每个顶点的曲率为233πππ-⨯=,故其总曲率为4π.给出下列三个结论:①正方体在每个顶点的曲率均为2π; ②任意四棱锥的总曲率均为4π;③若某类多面体的顶点数V ,棱数E ,面数F 满足2V E F -+=,则该类多面体的总曲率是常数.其中,所有正确结论的序号是( ) A .①②B .①③C .②③D .①②③例31.(2022·辽宁·沈阳二十中三模)我国南北朝时期的著名数学家祖暅原提出了祖暅原理:“幂势既同,则积不容异.”意思是,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等,即2311122323V R R R R R πππ=⋅-⋅=球.现将椭圆22149x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于( )A .32πB .24πC .18πD .16π例32.(2022·全国·高三专题练习)将地球近似看作球体.设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),ϕ为该地的纬度值,如图.已知太阳每年直射范围在南北回归线之间,即[]2326,2326δ''∈-︒︒.北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬395427'''︒,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为( )A .北纬5527'''︒B .南纬5527'''︒C .北纬5533'''︒D .南纬5533'''︒核心考点九:翻折问题 【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质. 【典型例题】例33.(2022·全国·高三专题练习)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒D .四面体PBCD 3例34.(2022·浙江·杭州高级中学模拟预测)如图,已知矩形ABCD 的对角线交于点,,1E AB x BC ==,将ABD △沿BD 翻折,若在翻折过程中存在某个位置,使得ABCE ,则x 的取值范围是( )A .03x <≤B .02x <≤C .01x <≤D .06x ≤<例35.(2022·全国·高三专题练习)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将ABE 沿AE 翻折,使得二面角B AE D --为直二面角,得到图2所示的四棱锥B AECD -,点F 为线段BD 上的动点(不含端点),则在四棱锥B AECD -中,下列说法正确的是( )A .B 、E 、C 、F 四点一定共面 B .存在点F ,使得CF ∥平面BAEC .侧面BEC 与侧面BAD 的交线与直线AD 相交 D .三棱锥B ADC -的体积为定值例36.(2022·全国·高三专题练习)已知直角梯形ABCD 满足:AD ∥BC ,CD ⊥DA ,且△ABC 为正三角形.将△ADC 沿着直线AC 翻折至△AD 'C 如图,且AD BD CD '''<<,二面角D AB C '﹣﹣、D BC A '﹣﹣、D AC B '﹣﹣的平面角大小分别为α,β,γ,直线D A ',D B ',D C '与平面ABC 所成角分别是θ1,θ2,θ3,则( )A .123θθθαγβ>>,>>B .123θθθαβγ<<,>>C .123θθθαβγ>>,<<D .123θθθαβγ<<,<<【新题速递】1.(2022·安徽·高三阶段练习)如图,在棱长为a 的正四面体ABCD 中,点111,,B C D 分别在棱,,AB AC AD 上,且平面111B C D 平面1,BCD A 为BCD △内一点,记三棱锥1111A B C D -的体积为V ,设1AD x AD=,关于函数()V f x =,下列说法正确的是( )A .12220,,,133x x ⎛⎫⎛⎫∀∈∃∈ ⎪ ⎪⎝⎭⎝⎭,使得()()21f x f x =B .函数()f x 在1,12⎛⎫⎪⎝⎭上是减函数C .函数()f x 的图象关于直线12x =对称 D .()00,1x ∃∈,使得()016A BCD f x V ->(其中A BCD V -为四面体ABCD 的体积)2.(2022·重庆市长寿中学校高三阶段练习)如图所示,在直角梯形BCEF 中,90,CBF BCE A ∠∠==、D 分别是BF 、CE 上的点,//AD BC ,且22AB DE BC AF ===(如图1).将四边形ADEF 沿AD 折起,连接BE BF CE 、、(如图2).在折起的过程中,下列说法中错误的个数是( )①AC //平面BEF ; ②B C E F 、、、四点不可能共面;③若EF CF ⊥,则平面ADEF ⊥平面ABCD ; ④平面BCE 与平面BEF 可能垂直. A .1B .2C .3D .43.(2022·四川·成都市第二十中学校一模(理))如图, 在棱长为 2 的正方体1111ABCD A B C D -中,E F G H P 、、、、均为所在棱的中点, 则下列结论正确的有( )①棱 AB 上一定存在点Q , 使得1QC D Q ⊥ ②三棱锥F EPH -的外接球的表面积为8π③过点 E F G ,,作正方体的截面, 则截面面积为33④设点 M 在平面11BB C C 内, 且1//A M 平面AGH , 则1A M 与AB 所成角的余弦值的最大22A .1 个B .2 个C .3 个D .4 个4.(2022·四川·成都市锦江区嘉祥外国语高级中学有限责任公司模拟预测(文))在棱长为2的正方体1111ABCD A B C D -中,N 为11B C 的中点,点P 在正方体各棱及表面上运动且满足AP CN ⊥,则点P 轨迹所围成图形的面积为( )A .25B .42C .23D .45.(2022·上海市实验学校高三阶段练习)直线m ⊥平面α,垂足是O ,正四面体ABCD 的棱长为4,点C 在平面α上运动,点B 在直线m 上运动,则点O 到直线AD 的距离的取值范围是( )A .425425⎡-+⎢⎣⎦B .222,222⎡⎤⎣⎦C .322322⎡-+⎢⎣⎦D .322,322⎡⎤⎣⎦6.(2022·湖南·模拟预测)正三棱柱111ABC A B C 的底面边长是4,侧棱长是6,M ,N 分别为1BB ,1CC 的中点,若点P 是三棱柱内(含棱柱的表面)的动点,MP ∥平面1AB N ,则动点P 的轨迹面积为( ) A .53B .5C 39D 267.(2022·山西·高三阶段练习)已知正方体1111ABCD A B C D -的顶点都在表面积为12π的球面上,过球心O 的平面截正方体所得的截面为一菱形,记该菱形截面为S ,点P 是正方体表面上一点,则以截面S 为底面,以点P 为顶点的四棱锥的体积的最大值为( ) A .83B .73C .2D .538.(2022·浙江·高三阶段练习)在OAB △中,OA AB =,120OAB ∠=︒.若空间点P 满足1=2PABOABSS ,则直线OP 与平面OAB 所成角的正切的最大值是( )A .13B .12C 3D .19.(多选题)(2022·云南曲靖·高三阶段练习)已知正方体1111ABCD A B C D -的棱长为1,点P 为侧面11BCC B 内一点,则( )A .当1113C P C B =时,异面直线CP 与AD 所成角的正切值为2B .当11(01)C P C B λλ=<<时,四面体1D ACP 的体积为定值C .当点P 到平面ABCD 的距离等于到直线11A B 的距离时,点P 的轨迹为拋物线的一部分 D .当1112C P C B =时,四面体BCDP 的外接球的表面积为3π10.(多选题)(2022·辽宁·本溪高中高三阶段练习)如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,2AD DE ==,G 为线段AE 上的动点,则( )A .AE CF ⊥B .多面体ABCDEF 的体积为83C .若G 为线段AE 的中点,则GB //平面CEFD .点M ,N 分别为线段AF ,AC 上的动点,点T 在平面BCF 内,则MT NT +43 11.(多选题)(2022·广东·东涌中学高三期中)如图,已知正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别为AB ,AD ,1BB 的中点,点P 在11A C 上,//AP 平面EFG ,则以下说法正确的是( )A .点P 为11A C 的中点B .三棱锥P EFG -的体积为148C .直线1BB 与平面EFG 3D .过点E 、F 、G 作正方体的截面,所得截面的面积是3312.(多选题)(2022·安徽·阜阳师范大学附属中学高三阶段练习)已知ABC 为等腰直角三角形,AB AC =,其高3AD =,E 为线段BD 的中点,将ABC 沿AD 折成大小为32ππθθ⎛⎫< ⎪⎝⎭的二面角,连接BC ,形成四面体A BCD -,动点P 在ACD 内(含边界),且//PE 平面ABC ,则在θ变化的过程中( )A .AD BC ⊥B .E 点到平面ADC 的距离的最大值为322C .点P 在ADC △2D .当BP AC ⊥时,BP 与平面ADC 所成角的正切值的取值范围为)22,⎡+∞⎣13.(多选题)(2022·江苏省泰兴中学高三阶段练习)棱长为1的正方体1111ABCD A B C D -内部有一圆柱12O O ,此圆柱恰好以直线1AC 为轴,且圆柱上下底面分别与正方体中以1A C ,为公共点的3个面都有一个公共点,以下命题正确的是( )A .在正方体1111ABCD ABCD -内作与圆柱12O O 3B .无论点1O 在线段1AC 上如何移动,都有11BO B C ⊥C .圆柱12O O 的母线与正方体1111ABCD A B C D -所有的棱所成的角都相等D .圆柱12O O 外接球体积的最小值为π6 14.(多选题)(2022·江苏盐城·高三阶段练习)已知正四面体ABCD 的棱长为2球的球心为O .点E 满足(01)AE AB λλ=<<,(01)CF CD μμ=<<,过点E 作平面α平行于AC 和BD ,平面α分别与该正四面体的棱BC ,CD ,AD 相交于点M ,G ,H ,则( )A .四边形EMGH 的周长为是变化的B .四棱锥A EMGH -的体积的最大值为6481 C .当14λ=时,平面α截球O 47 D .当12λμ==时,将正四面体ABCD 绕EF 旋转90︒后与原四面体的公共部分体积为43 15.(2022·安徽·石室中学高三阶段练习)已知三棱锥V ABC -的高为3D E F ,,,分别为VC VA VB ,,的中点,若平面ABD ,平面BCE ,平面ACF 相交于O 点,则O 到平面ABC 的距离h 为___________.16.(2022·北京八十中高三期末)如图,在正方体ABCD —1111D C B A 中,E 为棱11B C 的中点.动点P 沿着棱DC 从点D 向点C 移动,对于下列四个结论:。
用割补法求几何体的体积――培养学生的空间想象能力内容提要:本文用图形割补的方法来求一些不规则的几何体体积,通过求几何体体积的过程,来培养和提高学生对空间图形的想象能力,进而得出培养和提高学生空间想象能力的途径。
关键字:割补法空间想象能力在高中立体几何的学习中,学生最大的困难在于缺乏良好的空间想象能力,由于目前我们只能在二维平面上通过空间图形的平面直观图来研究空间元素的位置关系和数量关系,这就造成学生难以摆脱在平面几何学习中培养起来的对平面图形的认知经验,具体表现在遇到立几问题时,不会识图,有些学生甚至看不出空间元素的前后位置关系,也不会合理作图。
特别是求几何体体积问题,对于不同的几何体或不规则的几何体,我们可联想熟悉的几何体去计算其体积,这就对学生的空间想象能力有很高的要求。
那么什么是空间想象能力呢?中学数学中的空间想象能力主要是指,学生对客观事物的空间形式进行观察、分析、抽象思考和创新的能力。
空间想象能力的提高必定AB要经过实际的训练,途径也有很多种。
本文就借助于求几何体的体积来提高学生的空间想象能力。
由于几何体的形状多种多样,所以体积的求法也各不相同。
针对一些不规则的几何体,直接运用体积公式可能比较困难,我们常对原几何体进行割补,转化为几个我们熟悉的几何体,其解法也会呈现一定的规律性:① 几何体的“分割”几何体的分割即将已给的几何体,按照结论的要求,分割成若干个易求体积的几何体,进而求之。
② 几何体的“补形”与分割一样,有时为了计算方便,可将已给的几何体补成易求体积的几何体,如长方体,正方体等等。
一、用割补法求锥体的体积例题一:已知三棱锥ABC P -,其中4=PA ,2==PC PB ,ο60=∠=∠=∠BPC APC APB 求:三棱锥ABC P -的体积。
【思路一】作BC 的中点D ,连接PD 、过P 作AD PH ⊥,垂足H易证PH 即为三棱锥ABC P -的高, 由棱锥体积公式 PH S V ABC ABC P ⋅=∆-31即得 三棱锥ABC P -的体积。
一题多解求不规则多面体体积——割补法的运用【摘要】高中教学中所涉及的几何体,大多是规则的,如柱体、锥体、台体、球体,主要采用直接公式法和等体积法直接求解其体积,但在平时的教学练习和高考试题中,经常遇到一些不规则的多面体,不易于直接求解,本文利用分割法与补形法多角度求解一个不规则多面体的体积,从而达到一题多解的目的。
【关键词】不规则多面体;分割法;补形法;一题多解体积在立体几何教学中中占有一定的地位,对于规则几何体,可以利用直接公式法和等体积转化法进行求解,不规则的几何体如何去求呢?其实,皆可以采用割补法,分割成一些简单的规则的几何体,然后采用公式法和等体积法求解。
割补思想,是立体几何的重要思想。
通过割补,将复杂的问题简单化。
解题时,要注重一题多解,多角度的割与补,以达到方法的灵活运用。
以下题为例:如图,已知四棱锥P-ABCD的底面ABCD是边长为1的正方形,PD底面ABCD,且PD=1,点E,F分别是棱PB,AD的中点.(II)求多面体PDFEC的体积.此题来自新课标2014宁夏海南模式高考模拟试题汇编试题3:哈尔滨市高考复习质量检测的第19题。
初看到这道题,多面体PDFEC比较复杂,学生很清楚采用割补法,但却一时无从下手。
我先给出标准答案:V多面体平PDFEC=VE-PDC+VE-PDF+VE-FCD沿截面分割成三部分,由于学生的空间想象能力有限,不易想清楚。
难道没有更好的方法吗?我鼓励学生大胆尝试,积极探索,但没有想到学生思维敏捷宽阔,交流热烈踊跃,方法丰富多样,竟然又给出四种不同的解法。
现将其整理如下:当这些学生一一阐述完自己的做法,几乎所有的学生都是激动的,对题目的惧怕心理一扫而光,原先“想不清楚的”一个不规则多面体,只要敢想,原来可以有这么多种求法。
针对这种现象,我又趁热打铁,设计如下题目:如图所示的几何体为一简单组合体,其底面ABCD为矩形,PD ⊥平面ABCD,EC∥PD,且PD=2EC.AB=3,AD=2,PD=2,求该简单几何体的体积。
利用“割补法”求几何体体积
孟铁军
【期刊名称】《赤峰学院学报:自然科学版》
【年(卷),期】1999(000)002
【摘要】"割补法"求几何体的体积是一种重要的方法,其基本思想是,把复杂几何体延伸或加补,构成简单几何体,或复杂几何体切割成简单几何体,下面举例说明此法的应用。
在教材中推导三棱锥的体积公式 V<sub>三棱锥</sub>=1/3S<sub>底</sub>h就是把三棱锥通过补形转化为三棱柱,然后再分割成三个等积的三棱锥而推出的,在此不再重述。
例1.如图1,在三棱锥 P—ABC 中,已知
PA⊥BC,PA=BC=1,PA、BC公垂线 ED=h,求证:三棱锥 P—ABC 的体积
V=1/61<sup>2</sup>h。
(87年高考题)1.割法
【总页数】2页(P80-81)
【作者】孟铁军
【作者单位】
【正文语种】中文
【中图分类】G634.6
【相关文献】
1.拼接巧处理,找外接球的球心——立体几何第一章空间几何体的表面积和体积中求多面体外接球的处理办法总结 [J], 高映俊;
2.拼接巧处理,找外接球的球心——立体几何第一章空间几何体的表面积和体积中
求多面体外接球的处理办法总结 [J], 高映俊;
3.割补法求体积的灵活运用 [J], 梁爽
4.求体积常用的数学思想——割补法 [J], 钱溧芬
5.四种方法求空间几何体的体积 [J], 廖庆伟
因版权原因,仅展示原文概要,查看原文内容请购买。
高考数学基础知识点归纳总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高考数学基础知识点归纳总结高考数学基础知识点归纳总结_高三数学知识点有很多的同学是非常的想知道,高三数学知识点有哪些,如何学好数学呢,那我们知道高考数学基础知识点归纳总结有哪些吗?下面是本店铺整理的高考数学基础知识点归纳总结,希望能够帮助到大家。
“割补法”求解不规则几何体体积
我们通常把不是棱柱、棱锥、棱台和圆柱、圆锥、圆台等的几何体,称为不规则几何体.而解决不规则几何体的方法,常用割补法,即通过分割或补形,将它变成规则的几何体.我们可以从不规则几何体的来源上,即它是由何种常见的几何体所截得的来分类.
一、来自三棱柱的截体
例1 如图1,正四面体A BCD 中,E F G H ,,,分别是棱
AB AC BD CD ,,,的中点,求证:平面
EFHG 把正四面体分割成的两部分几何体的体积相等.
分析:显然正四面体被分割成的两部分都是不规则的几何体,
因此我们可使用割补法来推导.那么我们应选择割,还是补呢?
如果选择补,那么补成什么样子呢?显然只能是正四面体,这就
说明我们应该选择割.
证明:连结CE CG AG AH ,,,,左右两个不规则几何体都被分割成了一个四棱锥和一
个三棱锥,如图
1.易证左右的两个四棱锥的体积相等,两个三棱锥的体积也相等,于是两
部分体积相等.
当然此题还有其他的分割方法,比如分成一个三棱柱和一个三棱锥等,也同样好证.二、来自正方体的截体
例2 如图2,已知多面体ABC DEFG 中,AB AC AD ,,两两互相垂
直,平面ABC ∥平面DE F G ,平面BEF ∥平面A DGC ,2AB AD DC ,1AC EF ,则该多面体的体积为(
)A.2 B.4 C.6
D.8 解法一(割):如图3,过点C 作CH
DG 于H ,连结EH ,这样就把多面体分割成一个直三棱柱
DEH ABC 和一个斜三棱柱BEF CHG .于是所求几何体的体积为:
DEH BEF V S AD S DE △△1
1212212422.
解法二(补):如图4,将多面体补成棱长为
2的正方体,那么显然所求的多面体的体积即为该正方体体积的一半.
于是所求几何体的体积为31
242V .
三、来自圆柱的截体
例3 如图5,如图5,一圆柱被一平面所截,已知被截后几何体的
最长侧面母线长为
4,最短侧面母线长为1,且圆柱底面半径长为2,则该几何体的体积等于_______.
解法一(割):如图6,该几何体的体积等于下面的圆柱的体积与上面的圆柱体积的一半之和.下面的圆柱的高就是该几何体的最短侧面母线长1,而上面的圆柱的高为3.
于是所求几何体的体积为221
π212310π2V .
解法二(补):如图7,将一个与已知的几何体完全相同的几何体,与已知的几何体拼在一起组成一个高为5的完整圆柱,那么
所求几何体的体积就是这个大圆柱体积的一半.于是
21
π2510π
2V。