中值定理
- 格式:doc
- 大小:511.00 KB
- 文档页数:8
中值定理条件函数f(x)满足在闭区间[a,b]上连续;在开区间(a,b)内可导,在闭区间[a,b]上连续;在开区间(a,b)内可导的理由, 在闭区间[a,b]上连续的函数都有最大或最小值,而在开区间(a,b)内连续的函数不一定有最大或最小值.这是因为如果函数f(x) 在开区间(a,b)内连续在端点x=a处左连续,端点x=b处右连续不一定是在(a,b)内每一点连续,就是每一点处都连续也不代表左右极限都相等.中值定理“中值”指的是什么?指的是区间(a,b)的两个端点所连直线的斜率,这个定理就是说如果在闭区间上连续,开区间上可导,那么总有那么一个值能够使已知曲线的斜率和直线斜率相等,其他的斜率都会比这个大或者小。
事实上如果你看过罗尔定理,那么你就会更理解这个中值的意义了,在那个定理中,中值指的是斜率为0。
1.罗尔中值定理如果函数f(x)满足在闭区间[a,b]上连续;在开区间(a,b)内可导,在区间端点处的函数值相等,即f(a)=f(b),那么在(a,b)内至少有一点ξ(a<ξ<b),使等式f′(ξ)=0几何意义:在闭区间[a,b]上有一条连续曲线f(x),且除端点外每一点都可以作一条切线,当曲线两端点的纵坐标相等时候,那么曲线上至少能找到一点( ξ , f (ξ) ) ξ在(a,b)内.使得曲线在该点的切线平行于x轴.证明:1令f(a)=f(b)=K,在闭区间[a,b]上,恒有f(x)=K的情况,这时f(x)是[a,b]上的常数函数,所以f′(x)=0,因此罗尔定理对开区间(a,b)内任何点都成立.在[a,b]上有点x, 使f(x)>K的情况,因f(x)为[a,b]上的连续函数,根据连续性质得知在[a,b]上存在点( ξ1 , f (ξ1) )为f(x)在[a,b]上的最大值,即当a<=x<=b时f(x)<=f (ξ1),(1)又因为在上[a,b]有点x,使f(x)>K,(2)由(1)(2)式得f (ξ1)>K,这说明ξ1不可能是[a,b]的端点,从而a< ξ1<b。
中值定理的作用
中值定理是微积分中的重要定理,它可以帮助我们研究函数在某个区间内的平均变化率和导数的关系。
中值定理可以分为两种形式,即拉格朗日中值定理和柯西中值定理。
1. 拉格朗日中值定理:对于一个满足一定条件的函数,如果它在一个闭区间内连续,在该区间内可导,那么在这个区间内必然存在一个点,使得该点的导数等于函数在该区间两个端点处的斜率。
这个定理的作用是可以用来证明一些函数存在零点的情况,或者寻找一些函数的最大值和最小值。
2. 柯西中值定理:与拉格朗日中值定理类似,柯西中值定理的条件稍微放宽,它要求函数在该区间内连续且可导,同时除函数在该区间内的导数不为零外,被除函数的变化不为零。
根据该定理,可知函数在两个点的导数之比等于函数在这两个点之间某个点的导数。
它主要用于寻找函数在某个区间内的切线平行于某条直线的情况。
总的来说,中值定理可以帮助我们研究函数在某个区间内的变化情况以及函数与导数之间的关系,进而为我们解决一些函数问题和问题的证明提供了有效的工具。
中值定理知识点总结中值定理的表述:若函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则存在一个点c∈(a, b),满足f'(c) = (f(b) - f(a))/(b - a)。
中值定理的证明比较简单,可以根据函数的连续性和可导性来进行推导。
接下来我们来详细介绍中值定理的知识点。
一、中值定理的条件中值定理的前提是函数在闭区间上连续,在开区间上可导。
这两个条件都是至关重要的,只有同时满足这两个条件,中值定理才成立。
1. 函数在闭区间上连续:闭区间[a, b]是一个包含了a和b的区间,函数在闭区间上连续意味着函数在这个区间内没有间断点,没有跳跃点,图象是一条连续的曲线。
一般来说,函数在有限区间上都是连续的,因此这个条件通常是满足的。
2. 函数在开区间上可导:开区间(a, b)是一个不含a和b的区间,函数在开区间上可导意味着函数在这个区间上具有导数。
可导性是指函数在这个区间内存在切线,即函数在这个区间内是光滑的。
这个条件比较严格,只有在一些特殊的情况下才能满足。
二、中值定理的应用中值定理主要用来描述函数在某个区间内的平均变化率与瞬时变化率之间的关系。
它可以推导出一些重要的结论和定理,对于理解函数的性质和特点有很大的帮助。
1. 平均变化率和瞬时变化率:中值定理可以用来比较函数在闭区间上的平均变化率和在开区间上的瞬时变化率。
平均变化率指的是函数在某个区间内的整体变化情况,而瞬时变化率指的是函数在某一点的瞬间变化情况。
中值定理表明,这两者之间存在着某种联系,通过中值定理可以求得函数在某个区间内的平均变化率和在某一点的瞬时变化率之间的对应关系。
2. 函数的增减性:中值定理可以用来研究函数的增减性。
通过中值定理可以求得函数在某个区间内的导数值,在这个区间上的函数是增加还是减小。
这对于研究函数的极值和拐点有很大的帮助。
3. 函数的凹凸性:中值定理可以用来研究函数的凹凸性。
通过中值定理可以求得函数在某个区间内的二阶导数值,根据二阶导数的正负性可以判断函数在这个区间上的凹凸性,这对于求解函数的拐点和凹凸区间有很大的帮助。