几种常见的概率分布教学教材
- 格式:doc
- 大小:194.00 KB
- 文档页数:4
概率论常见的几种分布常见的概率论分布有:均匀分布、正态分布、泊松分布和指数分布。
1. 均匀分布均匀分布是指在一段区间内,各个取值的概率是相等的。
比如在一个骰子的例子中,每个面出现的概率是相等的,为1/6。
均匀分布在实际应用中常用于随机数生成、样本抽取等场景。
2. 正态分布正态分布又被称为高斯分布,是最常见的概率分布之一。
正态分布的特点是呈钟形曲线,数据集中在均值周围,并且具有对称性。
正态分布在自然界中广泛存在,比如人的身高、体重等都近似服从正态分布。
在统计学和数据分析中,正态分布的应用非常广泛,例如在建模、假设检验和置信区间估计等方面。
3. 泊松分布泊松分布是一种离散概率分布,描述了在一段时间或空间内,某事件发生的次数的概率分布。
泊松分布的特点是事件之间是独立的,并且事件发生的平均速率是恒定的。
泊松分布在实际应用中常用于描述稀有事件的发生概率,比如电话呼叫中心的接听次数、交通事故的发生次数等。
4. 指数分布指数分布是描述连续随机变量的概率分布,用于描述时间间隔的概率分布。
指数分布的特点是事件之间是独立的,并且事件发生的速率是恒定的。
指数分布在实际应用中常用于描述如等待时间、寿命等连续性事件的概率分布。
这四种分布在概率论和统计学中都有广泛的应用。
它们分别适用于不同的场景和问题,能够帮助人们理解和分析数据。
在实际应用中,我们常常需要通过对数据进行建模和分析来确定数据的分布类型,从而更好地理解数据的特征和规律。
除了这四种常见的分布外,还有其他许多概率分布,例如二项分布、伽玛分布、贝塔分布等。
每种分布都有其独特的特点和应用领域。
在实际应用中,选择合适的分布模型对数据进行建模和分析是非常重要的,可以帮助我们更好地理解数据,做出准确的推断和预测。
概率论中常见的几种分布包括均匀分布、正态分布、泊松分布和指数分布。
每种分布都有其特点和应用场景,在实际问题中选择合适的分布模型对数据进行建模和分析是非常重要的。
通过对数据的分布进行研究,我们能够更好地理解数据的规律和特征,为决策提供科学依据。
几种常见的概率分布
一、 离散型概率分布
1. 二项分布
n 次独立的贝努利实验,其实验结果的分布(一种结果出现x 次的概率是多少的分布)即为二项分布
应用二项分布的重要条件是:每一种实验结果在每次实验中都有恒定的概率,各实验之间是重复独立的
平均数: (Y)np X E μ==
方差与标准差:2(1)X np P σ=-
;X σ=特例:(0-1)分布
若随机变量X 的分布律为
1(x k)p (1p)k k p -==- k=0,1;0<p<1,
则称X 服从参数p 的(0-1)分布
2. 泊松分布
泊松分布是一种用来描述一定的空间和时间里稀有事件发生次数的概率分布
泊松分布变量x 只取零和正整数:0、1、2…..其概率函数为:
(x)!x
p e x μμ-=
泊松分布的平均数:(x)E μμ==
泊松分布的方差和标准差:2σμ=
、σ=
3. 超几何分布 P(X=k)=k n k M N M n N C C C -- 记X~(N ,M ,n ) P=M N
期望:E(X)=np
方差:D(X)=np(1-p)1
N n N -- 适用范围:多次完全相同并且相互独立的重复试验,如果在有限总体中不重
复抽样,抽样成功的次数X 的概率分布服从超几何分布,如福利彩票
二、 连续型概率分布
1. 均匀分布
若随机变量X 具有概率密度函数
(x)f =
则称X 在区间(a ,b )上服从均匀分布,记为X ~ U(a ,b)
在区间(a ,b )上服从均匀分布的随机变量X 的分布函数为
0F(x),1
x a x a a x b b a b x ⎧<⎪-⎪=≤<⎨-⎪≤⎪⎩
2指数分布
若随机变量X 具有概率密度函数,0(x)0,0
x e x f x λλ-⎧≥=⎨<⎩ 其中0λ> 是常数,
则称X 服从以λ 为参数的指数分布,记作~()X E λ ,X 的分布函数为
1,0(x)0,0
x e x F x λ-⎧-≥=⎨<⎩
3.正态分布
正态随机变量X 的概率密度函数的形式如下:
22(x )2(x),f x μδ--=-∞<<∞
式中,μ 为随机变量X 的均值;2δ 为随机变量X 的方差。
通常对具有均值μ,方差为2δ的正态概率分布,记为N (μ,2δ)。
于是有正态随机变量X~N (μ,2δ)。
1,;0,a x b b a ⎧<<⎪-⎨⎪⎩其他
4.2χ 分布
如果从标准正态分布N (0,1)的总体中得到n 个随机变量分别为12n ,....,X X X ,
时,则由2i X ∑ 得到的分布叫做自由度为n 的2χ 分布,记为2~n X χ()
2~n X χ() 。
2χ分布的数学期望和方差分别为:
E (X )= n ,D (X )=2n
关于2χ分布的加法定理。
设12,....k X X X ,
,是相互独立的随机变量,且2~(n ),i 1,2,....,i i X k χ=则
2121~(n n ...n )k i
k i X χ=++∑
2χ分布与N (0,1)分布有如下关系:
设12n ,....X X X ,是相互独立的随机变量,并且i X ~(0,1),i=1,2,…n ,则 221~(n)n
i
i X χ=∑ 5.t 分布
设X~N (0,1),2~(n)Y χ ,X 与Y 相互独立,则随机变量
t =
遵从n 个自由度的t
分布,记为~(n)t t =。
t 分布的数学期望和方差如下:
当n>2时,E(t)=0,D(t)=2
n n - t 分布的图形是对称的。
当n<30时,t 分布的分散程度比标准正态分布大,密度函数曲线比较平缓,随着n 的增大,t 分布逐渐逼近标准正态分布。
当n →∞ 时,t 分布渐近标准正态分布。
6.F 分布
设随机变量21~(n )X χ ,22Y ~(n )χ,且X 与Y 相互独立,则称随机变量
12
//X n F Y n 遵从自由度为12(n ,n ) 的F 分布,记作F~F 12(n ,n )
F 分布的形状为正偏态分布状,但随着12n ,n 的增大,其概率密度曲线的偏斜度虽有所缓减却仍保持偏态分布,并不以正态分布为其极限分布形式。
如果~(n)t t ,则2~(1,n)t F 如果12211~F(n ,n ),~F F
F
则(n ,n ) 。