平面直角坐标系点的对称与平移
- 格式:doc
- 大小:298.00 KB
- 文档页数:6
坐标平面内图形的轴对称和平移(基础)【学习目标】1.能在同一直角坐标系中,感受图形经轴对称后点的坐标的变化.2.掌握左右、上下平移点的坐标规律.【要点梳理】要点一、关于坐标轴对称点的坐标特征1.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.要点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、用坐标表示轴对称1.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则b a的值为_______. 【思路点拨】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a+b=-3,1-b=-1,再解方程可得a、b的值,进而算出b a的值.【答案】25【解析】解:∵点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),∴a+b=-3,1-b=-1,解得:b=2,a=-5,ba=25,【总结升华】此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.举一反三:【变式】点(3,2)关于x轴的对称点为()A.(3,-2)B.(-3,2)C.(-3,-2)D.(2,-3)【答案】A.2.已知点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上,且点B到x轴的距离等于3,求点B的坐标.【思路点拨】由“点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上”可得点B的横坐标;由“点B到x轴的距离等于3”可得B的纵坐标为3或﹣3,即可确定B的坐标.【答案与解析】解:如图,∵点B与点A在同一条平行于y轴的直线上,∴点B与点A的横坐标相同,∴ x=-3.∵点B到x轴的距离为3,∴ y=3或y=-3.∴点B的坐标是(-3,3)或(-3,-3).【总结升华】在点B的横坐标为-3的条件下,点B到x轴的距离等于3,则点B可能在第二象限,也可能在第三象限,所以要分类讨论,防止漏解.举一反三:【变式1】若x轴上的点P到y轴的距离为3,则点P的坐标为().A.(3,0) B.(3,0)或(–3,0)C.(0,3) D.(0,3)或(0,–3)【答案】B.【变式2】若点P (a ,b)在第二象限,则:(1)点P1(a ,-b)在第象限;(2)点P2(-a ,b)在第象限;(3)点P3(-a ,-b)在第象限;(4)点P4( b ,a )在第象限.【答案】(1)三;(2)一;(3)四;(4)四.类型二、用坐标表示平移3.(2015•海安县校级二模)在平面直角坐标系中,将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,则点B的坐标是.【思路点拨】根据向右平移横坐标加,向下平移纵坐标减列式计算即可得解.【答案】(0,﹣3).【解析】解:∵将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,∴点B的坐标是(﹣2+2,3﹣6),即(0,﹣3).故答案为:(0,﹣3).【总结升华】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.举一反三:【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).【变式2】点P(-2,5)向右平移个单位长度,向下平移个单位长度,变为P′(0,1).【答案】2、4.4.(2016春•江西期末)如图中,A、B两点的坐标分别为(2,3)、(4,1),(1)求△ABO的面积.(2)把△ABO向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.【思路点拨】(1)把△ABO放在一个矩形里面,用矩形COED的面积﹣△ACO的面积﹣△ABD的面积﹣△BEO的面积即可算出△ABO的面积;(2)根据点的坐标平移的规律,用A、B、O的坐标的纵坐标分别减去3即可.【答案与解析】解:(1)如图所示:S△ABO=3×4﹣×3×2﹣×4×1﹣×2×2=5;(2)A′(2,0),B′(4,﹣2),O′(0,﹣3).【总结升华】此题主要考查了点的平移,以及求三角形的面积,当计算一个三角形的面积时,可以把它放在一个矩形里,然后用矩形的面积减去周围三角形的面积.举一反三:【变式】(2014秋•宣汉县期末)如图所示,△ABC三个顶点A,B,C的坐标分别为A(1,2),B(4,3),C(3,1).把△A1B1C1向右平移4个单位长度,再向下平移3个单位长度,恰好得到△ABC,试写出△A1B1C1三个顶点的坐标.【答案】解:A1(﹣3,5),B1(0,6),C1(﹣1,4).。
平面直角坐标系点的坐标移动规律平面直角坐标系中的点的坐标移动规律在平面直角坐标系中,点的坐标移动规律是描述点在平面上移动的方式和规则。
点的坐标由x轴和y轴上的数值组成,通过改变这些数值,我们可以改变点在平面上的位置。
点的坐标移动可以有多种方式,下面我们将介绍一些常见的移动规律。
1. 平移:平移是指点在平面上沿着某个方向移动一定的距离。
平移可以分为水平平移和垂直平移两种。
水平平移是指点在x轴方向上移动,垂直平移是指点在y轴方向上移动。
在平移过程中,点的x 轴和y轴坐标同时改变,但是它们的差值保持不变。
2. 旋转:旋转是指点围绕某个固定点旋转一定的角度。
旋转可以分为顺时针旋转和逆时针旋转两种。
顺时针旋转是指点沿着一个圆周顺时针方向旋转,逆时针旋转是指点沿着一个圆周逆时针方向旋转。
在旋转过程中,点的坐标随着旋转角度的变化而改变。
3. 缩放:缩放是指改变点到固定点的距离。
缩放可以分为放大和缩小两种。
放大是指点到固定点的距离变大,缩小是指点到固定点的距离变小。
在缩放过程中,点的x轴和y轴坐标同时改变,但是它们的比例保持不变。
4. 对称:对称是指点关于某条直线或某个点对称。
关于直线对称是指点在直线两侧对称,关于点对称是指点关于一个点对称。
在对称过程中,点的x轴和y轴坐标同时改变,但是它们的符号改变。
这些移动规律可以单独应用,也可以同时应用。
通过组合使用这些规律,我们可以描述点在平面上的任意移动方式。
在实际应用中,点的坐标移动规律被广泛应用于几何学、物理学、计算机图形学等领域。
在几何学中,点的坐标移动规律可以用来描述线段、角度、面积等几何概念。
在物理学中,点的坐标移动规律可以用来描述物体的运动轨迹和变形过程。
在计算机图形学中,点的坐标移动规律可以用来生成图像和动画效果。
点的坐标移动规律是描述点在平面上移动的方式和规则。
通过改变点的x轴和y轴坐标,我们可以改变点在平面上的位置。
这些移动规律可以单独应用,也可以同时应用,通过组合使用这些规律,我们可以描述点在平面上的任意移动方式。
平面直角坐标系下的图形变换王建华图形变换是近几年来中考热点,除了选择题、解答题外,创新探索题往往以“图形变换”为载体,将试题设计成探索性问题、开放性问题综合考察学生的逻辑推理能力,一般难度较大。
在平面直角坐标系中,探索图形坐标的的变化和平移、对称、旋转和伸缩间的关系,是中考考查平面直角坐标系的命题热点和趋势,这类试题设计灵活平移: 上下平移横坐标不变,纵坐标改变左右平移横坐标改变,纵坐标不变对称: 关于x轴对称横坐标不变,纵坐标改变关于y轴对称横坐标不变,纵坐标不变关于中心对称横坐标、纵坐标都互为相反数旋转:改变图形的位置,不改变图形的大小和形状旋转角旋转半径弧长公式L=nπR/180一、平移例1,如图1,已知△ABC的位置,画出将ABC向右平移5个单位长度后所得的ABC,并写出三角形各顶点的坐标,平移后与平移前对应点的坐标有什么变化?解析:△ABC的三个顶点的坐标是:A(-2,5)、B(-4,3)、C(-1,2).向右平移5个单位长度后,得到的△A′B′C′对应的顶点的坐标是:A′(3,5,、B′(1,3)、C′(4,2).比较对应顶点的坐标可以得到:沿x轴向右平移之后,三个顶点的纵坐标都没有变化,而横坐标都增加了5个单位长度.友情提示:如果将△ABC沿y轴向下平移5个单位,三角形各顶点的横坐标都不变,而纵坐标都减少5个单位.(请你画画看).例2. 如图,要把线段AB平移,使得点A到达点A'(4,2),点B到达点B',那么点B'的坐标是_______。
析解:由图可知点A移动到A/可以认为先向右平移4个单位,再向上平移1个单位,∴)3,3(B经过相同的平移后可得)4,7(/B反思:①根据平移的坐标变化规律:★左右平移时:向左平移h个单位),(),(bhaba-→向右平移h个单位),(),(bhaba+→★上下平移时:向上平移h个单位),(),(hbaba+→向下平移h个单位),(),(hbaba-→二、旋转例3.如图2,已知△ABC,画出△ABC关于坐标原点0旋转180°后所得△A′B′C′,并写出三角形各顶点的坐标,旋转后与旋转前对应点的坐标有什么变化?解析:△ABC三个顶点的坐标分别是:A(-2,4),B(-4,2),C(-1,1).△A′B′C′三个顶点的坐标分别是:图2图1B/图2图1A′(2,-4),B′(4,-2),C′(1,-1).比较对应点的坐标可以发现:将△ABC沿坐标原点旋转180°后,各顶点的坐标分别是原三角形各顶点坐标的相反数.例3如图,在直角坐标系中,△ABO的顶点A、B、O的坐标分别为(1,0)、(0,1)、(0,0).点列P1、P2、P3、…中的相邻两点都关于△ABO的一个顶点对称:点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O 对称,….对称中心分别是A、B,O,A,B,O,…,且这些对称中心依次循环.已知点P1的坐标是(1,1),试求出点P2、P7、P100的坐标.分析:本题是一道和对称有关的探索题,是在中心对称和点的坐标知识基础上的拓宽题,由于是规律循环的对称,所以解决问题的关键是找出循环规律.如图,标出P1到P7各点,可以发现点P7和点P1重合,继续下去可以发现点P8和点P2循环,所以6个点循环一次,这样可以求出各点的坐标.解:如图P2(1,-1),P7(1,1),因为100除以6余4,所以点P100和点P4的坐标相同,所以P100的坐标为(1,-3).三、对称例4.如图3,已知△ABC,画出△ABC关于x轴对称的△A′B′C′,并写出各顶点的坐标.关于x轴对称的两个三角形对应顶点的坐标有什么关系?解析:△ABC三个顶点的坐标分别是:A(1,4),B(3,1),C(-2,2).△A′B′C′三个顶点的坐标分别是:A′(1,-4),B′(3,-1),C′(-2,-2).观察各对应顶点的坐标可以发现:关于x轴对称两个三角形的对应顶点的横坐标不变,纵坐标互为相反数.友情提示:关于y轴对成的两个图形,对称点的纵坐标不变,横坐标互为相反数.在直角坐标系中,ABC△的三个顶点的位置如图3所示.(1)请画出ABC△关于y轴对称的A B C'''△(其中A B C''',,分别是A B C,,的对应点,不写画法);(2)直接写出A B C''',,三点的坐标:(_____)(_____)(_____)A B C''',,.析解:如图4,根据关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1-,故可得(2)(23)A',,(31)B',,(12)C'--,反思:★关于x轴对称的点的横坐标不变,纵坐标为原纵坐标的相反数,即纵坐标乘以1-★关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1-★关于原点成中心对称的点的,横坐标为原横坐标的相反数,纵坐标为原纵坐标的相反数,即横坐标、纵坐标同乘以1-四、位似例4 如图4,已知△ABC,画出△ABC以坐标原点0为位似中心的位似△A′B′C′,使△A′B′C′在第三象限,与△ABC 的位似比为21,写出三角形各顶点的坐标,位似变换后对应顶点发生什么变化?解析:△ABC三个顶点的坐标分别是:A(2,2),B(6,4),C(4,6).△A′B′C′三个顶点的坐标分别是:A′(-1,-1),B′(-3,-2),C′(-2,-3).图31 2 xO1-1ABCy1 2 xO1-1ABCA'B'C'y图3 图4C B AA 2C 2A 1B 1C 1O观图形可知,△A ′B ′C ′各顶点的坐标分别是△ABC对应各顶点坐标21的相反数.友情提示: △ABC 以坐标原点0为位似中心的位似△A ′B ′C ′,当△A ′B ′C ′与△ABC 的位似比为21,且△A ′B ′C ′在第一象限时, △A ′B ′C ′各顶点的坐标分别是△ABC 各顶点坐标的21.课前练习:在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫格点). ⑴画出△ABC 向下平移4个单位后的△A 1B 1C 1;⑵画出△ABC 绕点O 顺时针旋转90°后的△A 2B 2C 2,并求出A 旋转到A 2所经过的路线长.解:⑴画出△A 1B 1C 1;⑵画出△A 2B 2C 2, ,连接OA 1、OA 2,OA=2223+=13点A 旋转到A 2,所经过的路线长为:ι=9013131802ππ⋅=点评:图形的变换可以转化为点的问题,即找到顶点变换后的对应点,再顺次连接这些点即可得到图形.旋转变换要明确旋转中心、旋转方向、旋转半径、旋转角度;平移变换要明确平移的方向和距离;作一个图形关于某点的中心对称图形要明确对应点的连线经过对称中心,且对应点到对称中心的距离相等;作一个图形关于某一条直线的的对称图形,要明确对应点的连线被对称轴平分,且对应点到对称轴的距离相等。
数学篇数苑纵横坐标系与其它数学知识存在不可分割的联系.许多知识在平面直角坐标系中进行研究会更加直观易懂.所以只有牢固掌握了与直角坐标系有关的知识点与考点,才能更好地学习一次函数、反比例函数和二次函数等相关知识.一、平面直角坐标系相关知识点归纳1.平面直角坐标系的定义:在平面内画两条互相垂直、原点重合的数轴,就组成平面直角坐标系.水平的数轴称为x 轴或横轴,竖直的数轴称为y 轴或纵轴,两坐标轴的交点为平面直角坐标系的原点.2.各个象限内点的特征:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限.坐标在四个象限的特点:点P (x ,y )在第一象限则x >0,y >0;在第二象限则x <0,y >0;在第三象限则x <0,y <0;在第四象限则x >0,y <0.3.点到坐标轴的距离:点P (x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |.到坐标原点的距离为x 2+y 2.4.点的对称:点P (m ,n ),关于x 轴的对称点坐标是(m ,-n ),关于y 轴的对称点坐标是(-m ,n ),关于原点的对称点坐标是(-m ,-n ).5.平行线:平行于x 轴的直线上的点的特征:纵坐标相等,如直线PQ ,P (m ,n )Q (p ,n );平行于y 轴的直线上的点的特征:横坐标相等,如直线PQ 、P (m ,n )、Q (m ,p ).6.象限角的平分线:第一、三象限角平分线上的点横、纵坐标相等,可记作:P (m ,m );点P (a ,b )关于第一、三象限坐标轴夹角平分线的对称点坐标是(b ,a );第二、四象限角P (m ,-m );点P (a ,b )关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b ,-a ).7.点的平移:在平面直角坐标系中,将点(x ,y )向右平移a 个单位长度,可以得到对应点(x +a ,y );向左平移a 个单位长度,可以得到对应点(x -a ,y );向上平移b 个单位长度,可以得到对应点(x ,y +b );向下平移b 个单位长度,可以得到对应点(x ,y -b ).二、平面直角坐标系相关考点归纳1.求坐标求点的坐标的方法是过这个点向x 轴作垂线,则垂足对应的数就是该点的横坐标;过这个点向y 轴作垂线,则垂足对应的数就是该点的纵坐标.确定了一个点的横坐标和纵坐标,就知道这个点的坐标.例1如图1,在平面直角坐标系xOy 中,已知点A(3,4),将OA 绕坐标原点O 逆时针旋转90°至OA ′,则点A ′的坐标是.解:如图2,过点A 作AB ⊥x 轴于B ,过点A ′作A ′B ′⊥x 轴于B ′,∵OA 绕坐标原点O 逆时针旋转90°至OA ′,∴OA =OA ′,∠AOA ′=90°,∵∠A ′OB ′+∠AOB =90°,∠AOB +∠OAB =90°,∴∠OAB =∠A ′OB ′.在△AOB 和△OA ′B ′中,ìíîïï∠OAB =∠A ′OB ′,∠ABO =∠OB ′A ′,OA =OA ′,∴△AOB ≌△OA ′B ′(AAS ),∴OB ′=AB =4,A ′B ′=OB =3,有关平面直角坐标系的知识点及考点归纳湖南怀化顾建明图123数学篇数苑纵横图2例2在平面直角坐标系中,A(-5,0),B(3,0),点C在y轴上,△ABC的面积为12,求点C的坐标.解:∵点A(-5,0),B(3,0),都在x轴上,∴AB=8.∵△ABC的面积为12,点C在y轴上,∴△ABC的面积=12AB⋅OC=12.解得OC=3,若点C在y轴的正半轴上,则点C的坐标为(0,3),若点C在y轴的负半轴上,则点C的坐标为(0,-3),综上所述,点C的坐标为(0,3)或(0,-3).2.求象限在平面直角坐标系中,各象限内点的符号特点是:第一象限内的点,横坐标和纵坐标都为正;第二象限内点的横坐标为负,纵坐标为正;第三象限内点的横坐标和纵坐标都为负;第四象限内点的横坐标为正,纵坐标为负.确定了点横坐标及纵坐标的正负,就确定了象限.例3若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在象限是().A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定解:∵(x+y)2=x2+y2+2xy,∴原式可化为xy=-1,∴x、y异号,∴点M(x,y)在第二象限或第四象限.故选B项.例4已知点P(x,y)在函数y=1x2+-x的图象上,那么点P在平面直角坐标系中的().A.第一象限B.第二象限C.第三象限D.第四象限解:由题意x2≠0且-x≥0,∴x<0,∴1x2>0,x>0,∴y>0.∴点P(x,y)在第二象限.故选B项.3.求面积当三角形有一边在x轴上时,则以x轴上的边为底边,其长等于x轴上两个顶点横坐标差的绝对值,此边上的高就等于另一个顶点纵坐标的绝对值;当三角形的一边在y 轴上时,则以y轴上的边为底边,其长等于y 轴上两个顶点纵坐标差的绝对值,此边上的高就等于另一个顶点横坐标的绝对值.确定了三角形的底边和高就能求出面积.例5如图3,△ABC的三个顶点坐标分别是A(2,4),B(-2,0),C(3,0),求△ABC的面积.图3解:过A作AD⊥x轴,垂足为D,∵A的坐标是(2,4),∴AD=4,24数学篇∵B (-2,0),C (3,0),∴BC =5,∴S △ABC =12BC ∙AD =12×5×4=10.例6如图4,平面直角坐标系中,已知点A (-3,-1),B (1,3),C (2,-3),求三角形ABC 的面积.图4分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一个坐标轴平行,高(宽)与另一个坐标轴平行.这样,梯形(长方形)的面积就容易求出,然后再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图5,过点A 、C 分别作平行于y 轴的直线,与过点B 平行于x 轴的直线交于点D 、E ,则四边形ADEC 为梯形.图5因为A (-3,-1),B (1,3),C (2,-3),所以AD =4,CE =6,DB =4,BE =1,DE =5.所以S △ABC =12(AD +CE )×DE -12×AD ×DB-12×CE ×BE =12×(4+6)×5-12×4×4-12×6×1=14.平面直角坐标系可以帮助我们建立图形与数量间的联系,并为几何问题和代数问题的相互转化提供条件.因此,同学们一定要掌握好平面直角坐标系的相关知识点与考点,从而不断提高分析问题和解答问题的能力.上期《<实数>巩固练习》参考答案1.D ;2.C ;3.D ;4.A ;5.B ;6.5;7.-1;8.4;9.14或22;10.-3;11.解:(1)3,14-3;(2)∵2<6<3,4<21<5,∴m =6-2,n =4,∴2m +n -26=2(6-2)+4-26=0;(3)a =15,b =32-5.12.解:(1)原来正方形场地的周长为80m;(2)设长方形场地宽为3a m ,则长为5a m.由题意有:3a ×5a =315,解得:a =±21,∵3a 表示长度,∴a >0,∴a =21,∴这个长方形场地的周长为2(3a +5a )=16a =1621(m ),∵80=16×5=16×25>1621,∴这些铁栅栏够用.答:这些铁栅栏够用.数苑纵横25。
平面直角坐标系中的变换彳----------- 必标系屮的对称平而l'i角坐标系屮的变换坐标系中的平移\------------ 怡标系屮的面枳和规律问题编写思路:本讲求而积时主要让学生掌握将点坐标转化为线段长度的过程•让学生亲自动手在坐标系中画出某个点关于横轴、纵轴以及原点的对应点,并且让他们自己总结两个对称点的横.纵坐标关系。
二:(1)对于点的平移:让学生亲自动手将某个点进行上、下、左、右平移,并且自己总结点的坐标变化规律。
对于任意的平移,可以将貝理解先上下平移、后左右平移的组合。
(2)对于图形的平移:让学生充分认识本质就是图形上的每个点都进行同一过程的平移,即对应点之间的平移过程完全一样。
从而将图形的平移转化成为点的平移。
并让学生体会平移前后的两个图形完全一样。
三、简单的数形结合:求三角形而积问题。
让学生充分掌握割补法求三角形而积,并理解为何要用割补法。
让学生熟练掌握并体会坐标与线段长的讣算关系。
四.找规律问题:老师可带着学生探索常见找规律问题的思路和方法.点P(-b)关于X轴的对称点是叫,-巧,即横坐标不变,纵坐标互为相反数.点P(a,b)关于y轴的对称点是P©,b),即纵坐标不变,横坐标互为相反数.点P(a.b)关于坐标原点的对称点是P'(—d),即横坐标互为相反数,纵坐标也互为相反数.【引例】在平而直角坐标系中,卩(-4 5)关于X 轴的对称点的坐标是 __________ 坐标是 ________ ,关于原点的对称点是 ___________【例1】(1)点P(3, -5)关于x 轴对称的点的坐标为()⑵点"-2, 1)关于y 轴对称的点的坐标为()⑶ 在平而直角坐标系中,点P(2, -3)关于原点对称点P 的坐标是 _____________ ⑷ 点P(2, 3)关于直线x = 3的对称点为 ________ ,关于直线y = 5的对称点为 ________ ⑸已知点P(“ + l,加-1)关于x 轴的对称点在第一彖限,求d 的取值范围.【例2】如图,在平而直角坐标系中,直线/是第一、三象限的角平分线.实验与探究:(1) 由图观察易知A(2, 0)关于直线/的对称点/V 的坐标为(0,2),请在图中分别标明3(5,3), C(-2,5)关于直线/的对称点X 、C'的位置,并写岀它们的坐标: B' __________ ,C ____________ ;归纳与发现:(2) 结合图形观察以上三组点的坐标,你会发现:坐标平而内任一点关于第一、三象限的角平分线/的对称点P 的坐标为 ______________ (不必证明): ⑶点A(a , b)在直线/的下方,则d, 〃的大小关系为 ________________ :若在直线/的上方,则 __________ ・h + d\丁 >・(选讲),关于y 轴的对称点的A. (—3, —5)B. (5, 3)C. (一3, 5) D ・(3, 5)B. (2,1)C. (2, -1)D. (-2, 1)点P(a ,b)和点Q(c , d)的中点是M(1)点平移:①将点(x, y)向右(或向左)平移4个单位可得对应点(x + a t y)或(x-“, y).②将点(x, y)向上(或向下)平移〃个单位可得对应点(x,>'+/?)或(x, y-h).⑵图形平移:①把一个图形%个点的横坐标都加上(或减去)一个正数d ,相应的新图形就是把原图形向右(或向左)平移Q个单位.②如果把图形各个点的纵坐标都加上(或减去)一个正数d ,相应的新图形就是把原图形向上(或向下)平移a个单位.注意:平移只改变图形的位置,图形的大小和形状不发生变化.【弓I例】点M(-3, -5)向上平移7个单位得到点M,的坐标为:再向左平移3个单位得到【例3】(1)平而直角坐标系中,将P(-2,l)向右平移4个单位,向下平移3个单位,得到P __________ ,□平而直角坐标系中,线段虫妨'是由线段佔经过平移得到的,点A(-1,-4)的对应点为人(1, -1),那么此过程是先向________ 平移____ 个单位再向______ 平移 _____ 个单位得到的,则点B (1, 1)的对应点$坐标为______________ .⑶将点P(m-2,” + 1)沿求轴负方向平移3个单位,得到P^i-rn, 2),则点P坐标是_____________⑷ 平而直角坐标系中,线段A'B'是由线段初经过平移得到的,点A(-2, 1)的对应点为A f (3. 4),点B 的对应点为B'(4,0),则点B 的坐标为()A ・(9,3) B. (一 1,一3) C ・(3, — 3) D. (一3, —1)【例4】二如下左图,在平面直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案 中左.右眼睛的坐标分别是(-4, 2), (-2, 2),右边图案中左眼的坐标是(3, 4),则右边 图案中右眼的坐标是 _____________________ .-如下右图是由若干个边长为1的小正方形组成的网格,请在图中作岀将“蘑菇”ABCDE 绕A点逆时针旋转奸 再向右平移2个单位的图形(其中C 、D 为所在小正方形边的中点).二如图,把图1中的04经过平移得到00(如图2),如果图1中04上一点P 的坐标为伽皿),那么平移后在图2中的对应点P 的坐标为 __________ ・大图形的总而积减去周用小三角形的面积.一般方法有割补法和等积变换法.找规律的题目一左要先找/7 = 1、2、3几个图形规律,再推广到“的情况.从简单情形入手,从中发现规律,猜想、推测.归纳出结论,这是创造性思维的特点.i/\ V1例题精讲A ・v图1 图2在平面直角坐标系或网格中求而积,一般将难以求解的图形分割成易求解的图形的面积,可以用F二兀一 - —【引例】如图,直角坐标系中,△ABC的顶点都在网格点上,英中点A坐k标为(2,-1),则△4BC 的而积为 _____________ 平方单位.二如上右图,AABC,将△ABC 向右平移3个单位长度,然后再向上平移2个单位长度,可 以得到△ ・ ① 画出平移后的△人妨6 :② 写出△ AB.C,三个顶点的坐标:(在图中标岀)③ 已知点P 在x 轴上,以B“ P 为顶点的三角形面积为4,求P 点的坐标.【探究1】如图所示,4(1,4),B(4,3),(7(5,0),求图形如C 的面积.【例5】□直角坐标系中,已知人(-1,0)、5(3, 0)两点,点C 在y 轴上,△ABC 的而积是4,则点C 的坐标是 ___________ ■0如右图,已知直角坐标系中A(-1,4)、B(0,2),平移线段初,使点B 移到点C(3,0),此时点A 记作点D ,贝IJ 四边形ABCD 的 而积是 ___________ .【例6】□如下左图,在平而直角坐标系中,四边形ABCD 各顶点的坐标分别为A(0,0), 8(9,0), C(7,5),D(2, 7)・求四边形ABCD 的而积.「41「J 1_1 T 丿r k —厂」I 厂 11- T 4—n T klrLIr典题精练L LIL」I- T -I- +• -1 ~J_L J•V A【探究2】如下图所示,A(-3,5), B(4,3),求图形OAB的而积.【教师备选】方法三、转化法:平行线,一边转到轴上【探究4】如图所示,求三角形AOB的而积.解析:过点A做0B的平行线,交y轴于点C,连接BC由一次函数知识可求出直线OB:y=-x t设直线AC:y=-x+b -2 - 2 求得y=l x+2 ,得C(0,2)由等积变换可知S厶AOB = S^Bg. ―― x 2x 4=4解析:过点A作BC的平行线交y轴于点D,连接DC利用一次函数求得BC:y=2x+2 ,设直线AD:y=2x+b 求得尸2x+7, D(0,7) 由等积变换可知S沁=S沁弓x 1 x 5=|【变式】已知,在平而直角坐标系中,A「B两点分别在才轴、y轴的正半轴上,且OB = OA = 3. ⑴直接写出点A、B的坐标:⑵若点C(-2, 2),求△BOC的面积;⑶点P是与〉,轴平行的直线上一点,且点P的横坐标为1.若的面积是6,求点P的坐标.【例7】□任平而直角坐标系中,横坐标、纵坐标都为整数的点称为整点,图中的正方形的四个顶点都在格点上,观察图中每一个正方形四条边上的整点的个数,请你猜测由里向外第10个正方形四条边上的整点个数共有_______ 个.□如图,在平而直角坐标系中,第1次将MAB变换成△ OA.B.,第二次将变换成第3次将MAB 变换成△0比尽・已知A(l, 3), 4(2, 3), 4(4, 3), A(8, 3), B(2, 0), $(4, 0) , BJ8, 0),耳(16, 0)观察每次变化前后的三角形,找岀规律,按此变化规律再将△OA&3变换成△ O儿则点比的坐标是 _____ ,点厲的坐标是 _____ ,点人的坐标是_______ ,点乞的坐标是 ___________ ・【例8】一个粒子在第一象限内及x轴、y轴上运动,在第lmin内它从原点运动到(1, 0),而后接着按如图所示方式在与X轴、轴平行的方向上来回运动,且每分钟移动1个单位长度,那么,在2013min后,求这个粒子所处的位置坐标・【变式】将正整数按如图所示的规律在平而直角坐标系中进行排列,每个正整数对应一个整点坐标(X, y)9且x, y均为整数.如数5对应的坐标为(-1,1),则数_________________ 对应的坐标是(-2,3),数2012对应的坐标是__________________【拓展】数1950对应的坐标是______________ ・【教师备选】【备选1】类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1 个单位,用实数加法表示为3 + (-2) = 1.若坐标平而上的点作如下平移:沿*轴方向平移的数屋为d (向右为正,向左为负,平移冋 个单位),沿y 轴方向平移的数量为方(向上为正,向下为负,平移问个单位),则把有序 数对{“,b}叫做这一平移的“平移量”;“平移量” {a, b}与“平移量” {c, d}的加法运算 法则为{“,b} + {c, d} = {a+c, b + d}. 解决问题:(1) 计算:{3, 1} + {1, 2};(2) 动点P 从坐标原点O 出发,先按照"平移量”{3, 1}平移到A,再按照"平移量”{1, 2} 平移到若先把动点P 按照“平移量” {1, 2}平移到C,再按照“平移量” {3, 1}平 移,最后的位置还是点B 吗?在图1中画出四边形OABC.(3) 如图2, 一艘船从码头O 出发,先航行到湖心岛码头P (2,3),再从码头P 航行到码头0(5, 5),最后回到出发点O,请用“平移量”加法算式表示它的航行过程.37 36 35 34 3332 31 30 297 16 15 1413 12 11 18 19 61 2 2() 78 ,10 27 2122 23 2425 26图1【备选2】观察下列有规律的点的坐标:儿(1, 1), 4(2, -4), 4(3, 4),人(4, 一2),人(5, 7),肩6, -寸,4(7, 10), 4(8, —1)依此规律,人|的坐标为______________ ,州2的坐标为 ______________________________【备选3】一个动点P在平而直角坐标系中作折线运动,第一次从原点运动到(b 1)>然后按图中箭头所示方向运动,每次移动三角形的一边长•即(1, 1)-* (2, 0) - (3, 2) - (4, 0)-(5, 1)—........... ,按这样的运动规律,经过第17次运动后,动点P的坐标是___________ ,经过第2011次运动后,动点P的坐标是 __________ .【备选4】如图,在长方形网格中,每个小长方形的长为2,宽为1, B 两点在网格格点上,若点C也在网格格点上,以A、3、C为顶点的三角形面积为2,则满足条件的点C个数是( )A. 5B. 4B AD・2【备选5】在平而直角坐标系中,已知八(2・-2),任y轴上确左点P.使8"为等腰三角形,则符合条件的点P共有( )A. 2个B. 3个C. 4个D. 5个题型一坐标系中的对称巩固练习【练习1】□在平面直角坐标系中,点A(2,5)与点B关于y轴对称,则点B的坐标是( )A. (—5,—2)B. (一2, —5)C. (一2,5)D. (2, —5)□已知点P(x, y), n),如果x +加=0, y + 〃= 0 ,那么点P, Q ( )A・关于原点对称 B.关于x轴对称C・关于y轴对称D・关于过点(0,0), (1,1)的直线对称□已知:lx-ll+(.y + 2『=0,则(x, y)关于原点对称的点为_________________ .□已知点P(" + 3b,3)与点0(-5,“ + 2b)关于x轴对称,贝比= ______________ , b = _________ .题型二坐标系中的平移巩固练习【练习2】⑴线段CD是由线段初平移得到的,点A(-l, 5)的对应点是C(4, 2),则点B(4, -1)的对应点D的坐标为__________ ・⑵在平面直角坐标系中有一个已知点A ,现在x轴向下平移3个单位,y轴向左平移2个单位,单位长度不变,得到新的坐标系,在新的坐标系下点A的坐标为(-1,2),在旧的坐标系下,点A的坐标为_______ ・【练习3】如图,在平而直角坐标系中,若每一个方格的边长代表一个单位.□线段DC是线段经过怎样的平移得到的?□若C点的坐标是(4, 1), A点的坐标是(-1,-2),你能写岀B、D两点的坐标吗?□求平行四边形ABCD的而积.题型三坐标系中的面积和规律问题巩固练习【练习4】□已知A(0,—2), B(5,0), C(4,3),求△ABC的而积.□已知:A(4,0), 3(1-斗0), 0(1, 3), ZVWC 的而积=6,1)A B求代数式2A-2-5X + X2+4X-3X2 -2 的值.【练习5】如图,长为1,宽为2的长方形ABCQ以右下角的顶点为中心顺时针旋转90°,此时A点的坐标为________ :依次旋转2009次,则顶点A的坐标为___________ ・。
坐标平面内图形的轴对称和平移(提高)【学习目标】1.能在同一直角坐标系中,感受图形经轴对称后点的坐标的变化.2.掌握左右、上下平移点的坐标规律.【要点梳理】要点一、关于坐标轴对称点的坐标特征1.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.要点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度. 要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化. 【典型例题】类型一、用坐标表示轴对称1.在直角坐标系中,已知点A (a +b ,2-a )与点B (a -5,b -2a )关于y 轴对称, (1)试确定点A 、B 的坐标;(2)如果点B 关于x 轴的对称的点是C ,求△ABC 的面积.【思路点拨】(1)根据在平面直角坐标系中,关于y 轴对称时,横坐标为相反数,纵坐标不变,得出方程组求出a ,b 即可解答本题;(2)根据点B 关于x 轴的对称的点是C ,得出C 点坐标,进而利用三角形面积公式求出即可.【答案与解析】解:(1)∵点A (a +b ,2-a )与点B (a -5,b -2a )关于y 轴对称,∴2250a b aa b a -=-⎧⎨++-=⎩,解得:13a b =⎧⎨=⎩, ∴点A 、B 的坐标分别为:(4,1),(-4,1);(2)∵点B关于x轴的对称的点是C,∴C点坐标为:(-4,-1),∴△ABC的面积为:12×BC×AB=12×2×8=8.【总结升华】本题主要考查了平面直角坐标系中,各象限内点的坐标的符号的确定方法以及三角形面积求法,熟练记忆各象限内点的坐标符号是解题关键.举一反三:【变式】小华看到了坐标系中点B关于X轴的对称点为C(-3,2),点A关于Y轴对称点为D(-3,4),若将A、B、C、D顺次连接,此图形的面积是多少?【答案】解:∵B关于x轴的对称点为C(-3,2),∴B(-3,-2),∵点A关于y轴对称点为D(-3,4),∴A(3,4),∴△ABD的面积为:12×AD×DB=12×6×6=18.2.已知点A(a,3)、B(-4,b),试根据下列条件求出a、b的值.(1)A、B两点关于y轴对称;(2)A、B两点关于x轴对称;(3)AB∥x轴;(4)A、B两点在第二、四象限两坐标轴夹角的平分线上.【思路点拨】(1)关于y轴对称,y不变,x变为相反数.(2)关于x轴对称,x不变,y变为相反数.(3)AB∥x轴,即两点的纵坐标不变即可.(4)在二、四象限两坐标轴夹角的平分线上的点的横纵坐标互为相反数,即分别令点A,点B的横纵坐标之和为0,列出方程并解之,即可得出a,b.【答案与解析】解:(1)A、B两点关于y轴对称,故有b=3,a=4;(2)A、B两点关于x轴对称;所以有a=-4,b=-3;(3)AB∥x轴,即b=3,a为≠-4的任意实数.(4)如图,根据题意,a+3=0;b-4=0;所以a=-3,b=4.【总结升华】本题主要考查学生对点在坐标系中的对称问题的掌握;在一、三象限角平分线上的点的横纵坐标相等,在二、四象限角平分线上的点的横纵坐标互为相反数.类型二、用坐标表示平移3.如图,△A′B′C′是由△ABC平移后得到的,已知△ABC中一点P(x0,y0)经平移后对应点为P′(x0+5,y0﹣2).(1)已知A(﹣1,2),B(﹣4,5),C(﹣3,0),请写出A′、B′、C′的坐标;(2)试说明△A′B′C′是如何由△ABC平移得到的;(3)请直接写出△A′B′C′的面积为.【思路点拨】(1)根据点P(x0,y0)经平移后对应点为P′(x0+5,y0﹣2)可得A、B、C三点的坐标变化规律,进而可得答案;(2)根据点的坐标的变化规律可得△ABC先向右平移5个单位,再向下平移2个单位;(3)把△A′B′C′放在一个矩形内,利用矩形的面积减去周围多余三角形的面积即可.【答案与解析】解:(1)A′为(4,0)、B′为(1,3)C′为(2,﹣2);(2)△ABC先向右平移5个单位,再向下平移2个单位(或先向下平移2个单位,再向右平移5个单位);(3)△A′B′C′的面积为6.【总结升华】此题主要考查了坐标与图形的变化,在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)举一反三:【变式】(大庆校级模拟)如图所示,△COB是由△AOB经过某种变换后得到的图形,观察点A与点C的坐标之间的关系,解答下列问题:(1)若点M的坐标为(x、y),则它的对应点N的坐标为.(2)若点P(a,2)与点Q(﹣3,b)关于x轴对称,求代数式…的值.【答案】解:(1)由图象知点M和点N关于x轴对称,∵点M的坐标为(x、y),∴点N的坐标为(x,﹣y);(2)∵点P(a,2)与点Q(﹣3,b)关于x轴对称,∴a=﹣3,b=﹣2,∴…=+++…+,=﹣+﹣+…+,=﹣,=.类型三、综合应用4. 如图是某台阶的一部分,如果建立适当的坐标系,使A点的坐标为(0,0),B点的坐标为(1,1)(1)直接写出C,D,E,F的坐标;(2)如果台阶有10级,你能求得该台阶的长度和高度吗?【思路点拨】(1)根据平面直角坐标系的定义建立,然后写出各点的坐标即可;(2)利用平移的性质求出横向与纵向的长度,然后求解即可.【答案与解析】解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).【总结升华】此题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质.。
平面直角坐标系中的点➢ 知识网一、对称类点点()P a b ,关于x 轴的对称点是()P a b '-,,即横坐标不变,纵坐标互为相反数. 点()P a b ,关于y 轴的对称点是()P a b '-,,即纵坐标不变,横坐标互为相反数. 点()P a b ,关于坐标原点的对称点是()P a b '--,,即横坐标互为相反数,纵坐标也互为 相反数. 二、平移⑴ 点平移:①将点()x y ,向右(或向左)平移a 个单位可得对应点()x a y +,或()x a y -,. ②将点()x y ,向上(或向下)平移b 个单位可得对应点()x y b +,或()x y b -,. ⑵ 图形平移:①把一个图形各个点的横坐标都加上(或减去)一个正数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位.②如果把图形各个点的纵坐标都加上(或减去)一个正数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位.注意:平移只改变图形的位置,图形的大小和形状不发生变化. 三、平面直角坐标系中的特殊计算 1.中点坐标公式:已知11(,)A x y ,22(),B x y ,则中点坐标为:121222,x x y y ++⎛⎫⎪⎝⎭.2.两点之间的距离公式:已知11(),A x y ,22(),B x y ,则AB 12|AB x x -.【例1】在平面直角坐标系中,()45P -,关于x 轴的对称点的坐标是 ,关于y 轴的对称点的坐标是 ,关于原点的对称点是 .【练1】 ⑴ 点()35P -,关于x 轴对称的点的坐标为( ) A .()35--,B .()53,C .()35-,D .()35,⑵ 点()21P -,关于y 轴对称的点的坐标为( ) A .()21--,B . ()21,C .()21-,D .()21-,⑶ 在平面直角坐标系中,点()23P -,关于原点对称点P '的坐标是 .⑷ 点()23,P 关于直线3x =的对称点为 ,关于直线5y =的对称点为 .⑸ 已知点()121P a a +-,关于x 轴的对称点在第一象限,求a 的取值范围.【例2】点()35M --,向上平移7个单位得到点1M 的坐标为 ;再向左平移3个单位得到点2M 的坐标为 .【练2】⑴ 平面直角坐标系中,将(2,1)P -向右平移4个单位,向下平移3个单位,得到'P ,⑵ 平面直角坐标系中,线段11A B ′′是由线段AB 经过平移得到的,点()14A --,的对应点为()111A -,′,那么此过程是先向 平移 个单位再向 平 移个单位得到的,则点B ()11,的对应点1B 坐标为 . ⑶将点()21,P m n -+沿x 轴负方向平移3个单位,得到()112,P m -,则点P 坐标是 .⑷ 平面直角坐标系中,线段A B ′′是由线段AB 经过平移得到的,点()21,A -的对应点为()34,A ′,点B 的对应点为()40,B ′,则点B 的坐标为( ) A .()93, B .()13,--C .()33,-D .()31,--【例3】如图,直角坐标系中,ABC △的顶点都在网格点上,其中点A 坐标为()21-,,则ABC △的面积为 平方单位.【练1】 ⑵ 直角坐标系中,已知()10A -,、()30B ,两点,点C 在y 轴上,ABC △的面积是4,则点C 的坐标是 .⑵ 如右图,已知直角坐标系中()14A -,、()02B ,,平移线段AB ,使点B 移到点()30C ,,此时点A 记作点D ,则四边形ABCD 的面积是 .【例4】已知,在平面直角坐标系中,A 、B 两点分别在x 轴、y 轴的正半轴上,且3OB OA ==. ⑴直接写出点A 、B 的坐标; ⑵若点()22C -,,求BOC △的面积;⑶点P 是与y 轴平行的直线上一点,且点P 的横坐标为1,若ABP △的面积是6,求点P 的坐标.【练4】已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置;(2)求出以A、B、C三点为顶点的三角形的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由.【练5】如图,△ABC是由△A1B1C1向右平移3个单位,再向下平移1个单位所得.已知A (2,1),B(5,3),C(3,4).(1)直接写出△A1B1C1三个顶点的坐标.(2)求△ABC的面积.(3)在坐标轴上是否存在一点M,使得S△AOM=2S△ABC,若存在,求出M点的坐标,若不存在请说明理由。
初中数学知识点归纳平面直角坐标系平面直角坐标系是数学中非常重要的概念,它由平面上的两条相互垂直的直线组成。
下面我们来归纳一下初中数学中关于平面直角坐标系的知识点。
1.平面直角坐标系的建立:平面直角坐标系一般由两条相互垂直的直线组成,其中一条称为x轴,另一条称为y轴。
通过将这两条直线固定在平面上,并以相交点为原点,可以确定其他点的坐标,从而建立平面直角坐标系。
2.坐标的表示和性质:在平面直角坐标系中,每个点都可以用一个有序数对(x,y)来表示,其中x表示横坐标,y表示纵坐标。
例如,点A的坐标为(2,3),表示A点在x轴上的坐标为2,在y轴上的坐标为3性质:对于平面上的任意两点A(x1,y1)和B(x2,y2),有以下性质:-若x1=x2且y1=y2,则A=B,即两点相等;-若x1≠x2或y1≠y2,则A≠B,即两点不等;-若x1=x2且y1=y2,则AB=0,即两点重合;-若x1≠x2或y1≠y2,则AB≠0,即两点不重合。
3.平面上点的四象限和坐标轴上的点:平面直角坐标系将平面划分为四个部分,称为四个象限。
x轴和y轴分别将平面分成两半,可形成4个象限:第一象限,该象限中x坐标和y坐标均为正;第二象限,该象限中x坐标为负,y坐标为正;第三象限,该象限中x坐标和y坐标均为负;第四象限,该象限中x坐标为正,y坐标为负。
此外,坐标轴上的点有特殊的性质:x轴上的点坐标形式为(x,0),y 轴上的点坐标形式为(0,y)。
4.两点间的距离和中点:在平面直角坐标系中,两点间的距离可以通过勾股定理求得。
设A(x1, y1)和B(x2, y2)是平面上的两点,其距离为AB=sqrt((x2-x1)^2+(y2-y1)^2)。
中点公式:在平面直角坐标系中,连接线段AB的中点M(xm, ym)的坐标可以通过以下公式得到:xm=(x1+x2)/2,ym=(y1+y2)/25.点的对称性和平移性:关于原点对称:对于平面直角坐标系中的点A(x,y),关于原点O对称的点A'的坐标为A'(-x,-y)。
专题卷 平面直角坐标系中平移和轴对称变换一、选择题(每小题3分,共36分)1.平面直角坐标系中,把点A (-3,2)向右平移2个单位,所得点的坐标是( )A .(-3,0)B .(-3,4)C .(-5,2)D .(-1,2) 【答案】D【分析】根据点坐标平移的特点:左减右加,上加下减,进行求解即可.【详解】解:点A (-3,2)向右平移2个单位,所得点的坐标是(-3+2,2)即(-1,2),故选D .【点睛】本题主要考查了点坐标平移,解题的关键在于能够熟练掌握点坐标平移的特点.2.点()3,5P -关于y 轴的对称点是( )A .()3,5-B .()3,5C .()3,5--D .()3,5- 【答案】C【分析】关于y 轴对称的两个点的横坐标互为相反数,纵坐标相等,据此解答.【详解】解:点()3,5P -关于y 轴的对称点是()3,5--,故选:C .【点睛】此题考查关于y 轴对称的点的坐标特征:关于y 轴对称的两个点的横坐标互为相反数,纵坐标相等. 3.点3(4,)P -关于x 轴对称的点所在的象限是( )A .第四象限B .第三象限C .第二象限D .第一象限【答案】D【分析】根据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得点的坐标,再根据坐标确定所在象限.【详解】解:点3(4,)P -关于x 轴对称的点是(4,3),在第一象限,故选:D .【点睛】本题考查了关于x 轴的对称点的坐标,解题的关键是掌握点的坐标的变化特点.4.将点()2,2P m m +-向右平移2个单位长度到点Q ,且Q 在y 轴上,那么点P 的坐标是( )A .()6,2-B .()2,6-C .()2,2D .()0,4 【答案】B【分析】将点P (m +2,2-m )向右平移2个单位长度后点Q 的坐标为(m +4,2-m ),根据点Q 在y 轴上知m +4=0,据此知m =-4,再代入即可得.【详解】解:将点P (m +2,2-m )向右平移2个单位长度后点Q 的坐标为(m +4,2-m ),∵点Q (m +4,2-m )在y 轴上,∴m +4=0,即m =-4,则点P 的坐标为(-2,6),故选:B .【点睛】此题主要考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.掌握点的坐标的变化规律是解题的关键.同时考查了y 轴上的点横坐标为0的特征.5.将ABC 的各个顶点的横坐标分别加3,纵坐标不变,连接三个新的点所成的三角形是由ABC ( ) A .向左平移3个单位所得B .向右平移3个单位所得C .向上平移3个单位所得D .向下平移3个单位所得【答案】B【分析】根据平移与点的变化规律:横坐标加3,图形向右移动;纵坐标不变,图形不向上下移动.【详解】解:根据点的坐标变化与平移规律可知,当ABC 的各个顶点的横坐标分别加3,纵坐标不变,相当于ABC 向右平移3个单位,故选:B .【点睛】本题考查图形的平移变换,关键是要懂得左右平移横坐标变化,纵坐标不变;而上下平移时横坐标不变,纵坐标变化;平移变换是中考的常考点.6.蝴蝶标本可以近似地看作轴对称图形,如图,将一只蝴蝶标本放在平面直角坐标系中,如果图中点A 的坐标为(﹣5,3),则其关于y 轴对称的点B 的坐标为( )A .(5,3)B .(5,﹣3)C .(﹣5,﹣3)D .(3,5)【答案】A【分析】 根据轴对称图形的性质,横坐标互为相反数,纵坐标相等,即可得解.【详解】解:由题意,A ,B 关于y 轴对称,∵A (﹣5,3),∴B (5,3),故选:A .【点睛】此题主要考查平面直角坐标系中轴对称图形坐标的求解,熟练掌握,即可解题.7.已知平面直角坐标系中点A 的坐标为()5,6-,则下列结论正确的是( )A .点A 到x 轴的距离为5B .点A 到y 轴的距离为6C .点A 关于x 轴对称的点的坐标为()5,6-D .点A 关于y 轴对称的点的坐标为()5,6【答案】D【分析】根据坐标与距离的关系,坐标关于x 轴,y 轴对称的特点求解【详解】∵点A 的坐标为()5,6-,∴点A 到x 轴的距离为|6|=6,到y 轴的距离为|-5|=5,∴选项A ,B 都是错误的;∵点A 关于x 轴对称的点的坐标为()5,6--,∴选项C 是错误的;∵点A 关于y 轴对称的点的坐标为()5,6,∴选项D 是正确的;故选D【点睛】本题考查了坐标的意义,坐标与距离,坐标与轴对称,准确理解坐标的意义,坐标的对称点的意义是解题的关键.8.在平面直角坐标系中,把点P 先向左平移7个单位长度,再向上平移5个单位长度得到点M ,作点M 关于y 轴的对称点N .已知点N 的坐标是(5,1),那么点P 的坐标是 ( )A .(2,-4)B .(6,-4)C .(6,-1)D .(2,-1)【答案】A【分析】先根据点的关于y 轴对称性质由N 点求出点M ,再根据点的平移性质求出点P .【详解】解:因为点M 和点N 关于y 轴对称,N 点坐标是(5,1),所以点M 是(-5,1),又因为点P 先向左平移7个单位长度,再向上平移5个单位长度得到点M ,所以点P 是(2,-4),故选A.【点睛】本题主要考查点的对称和点的平移,解决本题的关键是要熟练掌握点的对称性质和点的平移性质.9.在平面直角坐标系内,P (2x ﹣6,5﹣x )关于x 轴对称的对称点在第四象限,则x 的取值范围为( ) A .3<x <5B .x <3C .5<xD .﹣5<x <3【答案】A【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数,由此求解即可.【详解】解:∵点P (2x ﹣6,5-x )关于x 轴对称的点在第四象限,∴点(2x ﹣6,x -5)第四象限 ∴26050x x ->⎧⎨-<⎩解得:35x <<故选A .【点睛】本题主要考查了关于x 轴对称的点的坐标特征,坐标所在的象限的特点,解题的关键在于能够熟练掌握坐标所在象限的特点.10.在平面直角坐标系中,将点(1,2)A m n -+先向左平移3个单位长,再向上平移2个单位长,得到点A ',若点A '位于第二象限,则m ,n 的取值范围分别是( )A .2m <-,0n >B .4m <,0n >C .4m <,4n >-D .1m <,2n >-【答案】C【分析】根据点的平移规律可得向左平移3个单位,再向上平移2个单位得到(m -1-3,n+2+2),再根据第二象限内点的坐标符号可得.【详解】解:点A (m -1,n +2)先向左平移3个单位,再向上平移2个单位得到点A′(m -4,n +4),∵点A′位于第二象限,∴m −4<0, n +4>0 ,解得:m <4,n >-4,故选C .【点睛】本题主要考查了坐标与图形变化-平移,解题的关键是要熟练掌握点的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.11.如图,在平面直角坐标系中,点A(﹣2,2),B(2,6),点P为x轴上一点,当P A+PB的值最小时,三角形P AB的面积为()A.1B.6C.8D.12【答案】B【分析】如图,作点A关于x轴的对称点A′,连接A′B交x轴于点P,连接AP,此时P A+PB的值最小.判断出点P 的坐标,根据S△P AB=S△AA′B﹣S△AA′P,求解即可.【详解】解:如图,作点A关于x轴的对称点A′,连接A′B交x轴于点P,连接AP,此时P A+PB的值最小.∵A(﹣2,2),B(2,6),A′(﹣2,﹣2),P(﹣1,0),∴S△P AB=S△AA′B﹣S△AA′P=12×4×4﹣12×4×1=6,故选:B.【点睛】本题考查了轴对称,坐标与图形,数形结合是解题的关键.12.如图,点()11,1A ,点1A 向上平移1个单位,再向右平移2个单位,得到点2A ;点2A 向上平移2个单位,再向右平移4个单位,得到点3A ;点3A 向上平移4个单位,再向右平移8个单位,得到点4A ,…,按这个规律平移得到点2021A ,则点2021A 的横坐标为( )A .202121-B .20212C .202221-D .20222【答案】A【分析】 根据平移方式先求得1234,,,A A A A 的坐标,找到规律求得n A 的横坐标,进而求得2021A 的横坐标.【详解】点1A 的横坐标为1121=-,点2A 的横坐为标2321=-,点3A 的横坐标为3721=-,点4A 的横坐标为41521=-,…按这个规律平移得到点n A 的横坐标为21n -,∴点2021A 的横坐标为202121-,故选A .【点睛】本题考查了点的平移,坐标规律,找到规律是解题的关键.二、填空题(每小题3分,共18分)13.点M (2,﹣1)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是 _________.【答案】(﹣1,1)【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【详解】解:点M (2,﹣1)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是(2﹣3,﹣1+2),即(﹣1,1),故答案为:(﹣1,1).【点睛】此题考查了平面直角坐标系中,点的平移变换,掌握点的平移规律是解题的关键.14.若点A (1+m ,2)与点B (﹣3,1﹣n )关于y 轴对称,则m +n 的值是___.【答案】1【分析】关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标相同.据此可得m ,n 的值.【详解】解:∵点A (1+m ,2)与点B (-3,1-n )关于y 轴对称,∴1312m n +=⎧⎨-=⎩,解得:21m n =⎧⎨=-⎩, ∴m +n =2-1=1,故答案为:1.【点睛】本题主要考查了关于y 轴的对称点的坐标特点,即点P (x ,y )关于y 轴的对称点P ′的坐标是(-x ,y ). 15.如图所示,在平面直角坐标系中,()2,0A ,()0,1B ,将线段AB 平移至11A B 的位置,则a b +的值为___________.【答案】2【分析】根据平移变换的规律解决问题即可.解:由题意,线段AB 向右平移1个单位,再向上平移1个单位得到线段11A B ,1a ,1b =,2a B ∴+=,故答案为:2.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握平移变换的性质,属于中考常考题型.16.在平面直角坐标系中,若点()27,2M a -和点()3,N b a b --+关于y 轴对称,则b a =____. 【答案】116【分析】关于y 轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a ,b 的值即可解题.【详解】解:∵点M (2a -7,2)和N (-3﹣b ,a +b )关于y 轴对称,∴2732a b a b -=+⎧⎨+=⎩, 解得:42a b =⎧⎨=-⎩, 则b a =()21416-=. 故答案为:116. 【点睛】本题考查关于y 轴对称的点的特征、涉及解二元一次方程组,是基础考点,难度较易,掌握相关知识是解题关键.17.第一象限内有两点()4,P m n -,(),2Q m n -,将线段PQ 平移,使平移后的点P 、Q 都在坐标轴上,则点P 平移后的对应点的坐标是_________.【答案】(0,2)或(4,0)-【分析】设平移后点P 、Q 的对应点分别是P ′、Q ′.分两种情况进行讨论:①P ′在y 轴上,Q ′在x 轴上;②P ′在x 轴上,Q ′在y 轴上.解:设平移后点P 、Q 的对应点分别是P ′、Q ′.分两种情况:①P ′在y 轴上,Q ′在x 轴上,则P ′横坐标为0,Q ′纵坐标为0,∵0-(n -2)=-n +2,∴n -n +2=2,∴点P 平移后的对应点的坐标是(0,2);②P ′在x 轴上,Q ′在y 轴上,则P ′纵坐标为0,Q ′横坐标为0,∵0-m =-m ,∴m -4-m =-4,∴点P 平移后的对应点的坐标是(-4,0);综上可知,点P 平移后的对应点的坐标是(0,2)或(-4,0).故答案为:(0,2)或(-4,0).【点睛】此题主要考查图形的平移及平移特征.在平面直角坐标系中,图形的平移与图形上某点的平移规律相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.18.规定:在平面直角坐标系xOy 中,“把某一图形先沿x 轴翻折,再沿y 轴翻折”为一次变换.如图,已知正方形ABCD ,顶点()()1,3,3,1A C ,若正方形ABCD 经过一次上述变换,则点A 变换后的坐标为________;对正方形ABCD 连续做2021次这样的变换,则点D 变换后的坐标为_________.【答案】(1,3)-- (3,3)--【分析】根据平面直角坐标系内关于x 和y 轴成轴对称点的坐标特征易得解.关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.【详解】解:根据平面直角坐标系内关于x 和y 轴成轴对称点的坐标特征:关于x 轴对称点的坐标特点,横坐标不变,纵坐标互为相反数;关于y 轴对称点的坐标特点,横坐标互为相反数,纵坐标不变. 点(1,3)A 先沿x 轴翻折,再沿y 轴翻折后的坐标为(1,3)--; 由于正方形ABCD ,顶点(1,3)A ,(3,1)C ,所以(3,3)D , 先沿x 轴翻折,再沿y 轴翻折一次后坐标为(3,3)--, 两次后坐标为(3,3), 三次后坐标为(3,3)--,故连续做2021次这样的变化,则点D 变化后的坐标为(3,3)--. 故答案为:(1,3)--;(3,3)--. 【点睛】考查了平面直角坐标系中的翻折变换问题,解题的关键是熟悉坐标平面内对称点的坐标特征. 三、解答题(19题6分,其余每题8分,共46分)19.如图所示,用点A (3,1)表示放置3个胡萝卜、1棵青菜,用点B (2,3)表示放置2个胡萝卜,3棵青菜.(1)请你写出点C 、D 、E 、F 所表示的意义;(2)若一只兔子从点A 到达点B (顺着方格线走),有以下几条路线可以选择:①A →C →D →B ;②A →E →D →B ;③A →E →F →B ,问走哪条路吃到的胡萝卜最多?走哪条路吃到的青菜最多?【答案】(1)C 表示放置2个胡萝卜、1棵青菜;D 表示放置2个胡萝卜、2棵青菜;E 表示放置3个胡萝卜、2棵青菜;F 表示放置3个胡萝卜、3棵青菜;(2)第③条路线吃到的胡萝卜和青菜都最多 【分析】(1)根据问题的“约定”先写出坐标,再回答其实际意义;(2)通过比较三条线路吃胡萝卜、青菜的多少回答问题. 【详解】解:(1)因为点A (3,1)表示放置3个胡萝卜、1棵青菜,点B (2,3)表示放置2个胡萝卜、3棵青菜,可得: 点C 的坐标是(2,1),它表示放置2个胡萝卜、1棵青菜;点D 的坐标是(2,2),它表示放置2个胡萝卜、2棵青菜; 点E 的坐标是(3,2),它表示放置3个胡萝卜、2棵青菜; 点F 的坐标是(3,3),它表示放置3个胡萝卜、3棵青菜.(2)若兔子走路线①A →C →D →B ,则可以吃到的胡萝卜共有3+2+2+2=9(个),吃到的青菜共有1+1+2+3=7(棵);走路线②A →E →D →B ,则可以吃到的胡萝卜共有3+3+2+2=10(个),吃到的青菜共有1+2+2+3=8(棵); 走路线③A →E →F →B ,则可以吃到的胡萝卜共有3+3+3+2=11(个),吃到的青菜共有1+2+3+3=9(棵); 由此可知,走第③条路线吃到的胡萝卜和青菜都最多. 【点睛】本题考查平面直角坐标系中的坐标规律问题,理解横纵坐标的含义是结题关键.20.在网格中建立如图所示的平面直角坐标系,ABC 的顶点A ,B ,C 均在格点上,ABC 与A B C '''关于y 轴对称.(1)画出A B C '''; (2)直接写出点C '的坐标;(3)若(,1)P m m -是ABC 内部一点,点P 关于y 轴对称点为P ',且8PP '=,请直接写出点P 的坐标. 【答案】(1)见解析;(2)(5 3)C '-,;(3)(4 3)P , 【分析】(1)分别作出点A (4,5)、B (1,1)、C (5,3)关于y 轴的对称点A B C ''',,,依次连接起来即得到A B C '''; (2)根据关于y 轴对称的点的坐标的特征,即可写出点C '的坐标;(3)由点P 关于y 轴对称点为P ',则可得PP '关于m 的表达式,由8PP '=可得关于m 的方程,解方程即可,从而求得点P 的坐标. 【详解】 (1)如图所示.(2)C '点与C 点关于y 轴对称,且点C 的坐标为(5,3),则点C '的坐标为(53)-,; (3)∵点P 关于y 轴对称点为P ',且(1)P m m -, ∴(1)P m m '--, ∵点P 在△ABC 的内部 ∴m >0 ∴2PP m '= ∵8PP '= ∴2m =8 ∴m =4 ∴(43)P ,. 【点睛】本题是坐标与图形问题,考查了画轴对称图形,关于y 对称的点的坐标特征,掌握点关于y 轴对称的坐标特征是解题的关键.21.在平面直角坐标系中,已知A 1(﹣3,0),B 1(1,1),C 1(1,3).(1)将点A 1、B 1、C 1三点分别向上平移1个单位再向右平移两个单位得到点A 、B 、C ,请写出点A ,B ,C 的坐标;并在平面直角坐标系中画出△ABC ; (2)连接OA ,OB ,求△ABO 的面积.【答案】(1)点A坐标(﹣1,1),点B坐标(3,2),点C坐标(3,4),图见解析;(2)5 2【分析】(1)先根据平移方式确定A、B、C三点的坐标,然后描点顺次连接即可;(2)根据三角形ABO的面积等于其所在的矩形面积减去周围三个三角形的面积即可得到答案.【详解】(1)点A坐标(﹣1,1),点B坐标(3,2),点C坐标(3,4),如图,△ABC为所作.(2)S△ABO=1115 241411322222⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题主要考查了平移作图,根据平移方式确定点的坐标,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.22.如图,在平面直角坐标系中,三角形ABC经过平移得到三角形A1B1C1,结合图形,完成下列问题:(1)三角形ABC 先向左平移 个单位,再向 平移 个单位得到三角形A 1B 1C 1. (2)三角形ABC 内有一点P (x ,y ),则在三角形A 1B 1C 1内部的对应点P 1的坐标是 . (3)三角形ABC 的面积是 .【答案】(1)5,下,4;(2)(5x -,4y -);(3)7. 【分析】(1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可. 【详解】解:(1)根据题图可知,三角形ABC 先向左平移5个单位,再向下平移4个单位得到三角形A 1B 1C 1; 故答案是:5,下,4;(2)由平移的性质:上加下减,左减右加可知,三角形ABC 内有一点P (x ,y ),则在三角形A 1B 1C 1内部的对应点P 1的坐标是(5x -,4y -), 故答案是:(5x -,4y -); (3)11144142423162437222ABCS=⨯-⨯⨯-⨯⨯-⨯⨯=---=,故答案是:7. 【点睛】本题考查作图:平移变换,三角形的面积等知识,熟练掌握基本知识,学会用分割法求三角形的面积是解题的关键.23.如图,ABC 三个顶点的坐标分别为(5,4)A -、(2,2)B -、(4,1)C -.(1)若111A B C △与ABC 关于y 轴成轴对称,请在答题卷上作出111A B C △,并写出111A B C △的三个顶点坐标; (2)求111A B C △的面积;(3)若点P 为y 轴上一点,要使CP BP +的值最小,请在答题卷上作出点P 的位置.(保留作图痕迹) 【答案】(1)图见解析,1(5,4)A 、1(2,2)B 、1(4,1)C ;(2)72;(3)见解析【分析】(1)依据轴对称的性质进行作图,即可得到△A 1B 1C 1; (2)依据割补法进行计算,即可得到111A B C △的面积.(3)连接CB 1,交y 轴于点P ,则11BP CP B P CP B C +=+=可得最小值; 【详解】 解:(1)如图,1(5,4)A 、1(2,2)B 、1(4,1)C ;(2)111A B C △的面积为1312237332222⨯⨯⨯⨯---=; (3)连接1CB (或1BC )与y 轴交于点P ,如图,11BP CP B P CP B C +=+= 【点睛】本题考查了作图-轴对称变换、轴对称-最短路线问题,解决本题的关键是掌握轴对称的性质.24.如图所示,在平面直角坐标系中,第一次将三角形OAB 变换成三角形OA 1B 1,第二次将三角形OA 1B 1变换成三角形OA 2B 2,第三次将三角形OA 2B 2变换成三角形OA 3B 3,已知A (1,2),A 1(2,2),A 2(4,2),A 3(8,2);B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).(1)观察每次变换前后的三角形有何变化?找出规律,按此规律再将三角形OA 3B 3变换成三角形OA 4B 4,则A 4的坐标是________,B 4的坐标是________;(2)若按(1)中找到的规律将三角形OAB 进行n 次变换,得到三角形OA n B n ,推测A n 的坐标是________,B n 的坐标是________. (3)求出△OAnBn 的面积.【答案】(1)(16,2), (32,0);(2)(2n ,2), (2n+1,0);(3)12n +. 【分析】(1)观察图形并结合已知条件,找到A n 的横坐标、纵坐标的规律,及B n 的横坐标、纵坐标的规律,即可解题;(2)根据规律:A n 的横坐标是2n ,纵坐标都是2,得到A n 的坐标是(2n ,2),B n 的横坐标是2n +1,纵坐标都是0,得到B n 的坐标是(2n +1,0);(3)分别计算11OA B ∆、22OA B ∆、33OA B ∆的面积,找到面积规律n n OA B ∆的面积为: 1112222n n ++⨯⨯=. 【详解】解:(1)A (1,2),A 1(2,2),A 2(4,2),A 3(8,2)A ∴的横坐标0112,A =的横坐标 1222,A =的横坐标2342,A =的横坐标382=,三个点的纵坐标都是2,4A ∴的横坐标是4216=,纵坐标是0, 4(16,2)A ∴,又B 1(4,0),B 2(8,0),B 3(16,0),1B ∴的横坐标2242,B =的横坐标 3382,B =的横坐标4162=,三个点的纵坐标都是0,4B ∴的横坐标5232=,纵坐标是2,4(32,0)B ∴故答案为:(16,2), (32,0);(2)由A 1(2,2),A 2(4,2),A 3(8,2)可以发现它们各点坐标的关系为:横坐标是2n ,纵坐标都是2,得到A n 的坐标是(2n ,2), 由B 1(4,0),B 2(8,0),B 3(16,0)可以发现,它们各点坐标的关系为:横坐标是2n +1,纵坐标都是0,得到B n 的坐标是(2n +1,0), 故答案为:(2n ,2),(2n +1,0);(3)11OA B ∆的面积为2212222⨯⨯=,22OA B ∆的面积为3312222⨯⨯=,33OA B ∆的面积为4412222⨯⨯=,据此规律可得n n OA B ∆的面积为: 1112222n n ++⨯⨯=. 【点睛】本题考查平面直角坐标系与图形规律,是基础考点,掌握相关知识是解题关键.。
港星教育个性化教学授课案
教师:王丽华学生:上课时间:_2013 年_ 4 月_ 5 日_
学科:数学年级:八课程名称:《点的对称与平移》
教学目标:掌握平面直角坐标系内特殊点的坐标,以及平移、对称后的点坐标
教学重点:平面直角坐标系内点的对称和平移
教学难点:平面直角坐标系内点的对称和平移
教学内容与过程:
典型例题:
例1、如果点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)在第象限,点Q(x-1,1-y)在第象限。
例2、已知点P(x, x),则点P一定()
A.在第一象限B.在第一或第四象限C.在x轴上方D.不在x轴下方
例3、在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别为(0,0),(5,0),(2,3)则顶点C的坐标为()
A.(3,7)B.(5,3)C.(7,3)D.(2,8)
例4、在平面直角坐标系上点A(n,1-n)一定不在()
A.第一象限B.第二象限C.第三象限D.第四象限
例5、M的坐标为(3k-2,2k-3)在第四象限,那么k的取值范围是。
例6、已知点A(-3,2)AB∥ox.AB=7,那么B点的坐标为。
例7、如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(-1,1),第四次向右跳动5个单位至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是.
例8、在平面直角坐标系中,A点坐标为(34),,△ABO、面积为6,
那么点B坐标为.
例9、实验与探究:
(1)由图观察易知A(0,2)关于直线l的对称
点A'的坐标为(2,0),请在图中分别标明
B(5,3) 、C(-2,5) 关于直线l的对称点
B'、C'的位置,并写出他们的坐标:
B'、C';
(2)结合图形观察以上三组点的坐标,你会发现:
坐标平面内任一点P(a,b)关于第一、三象限的
角平分线l的对称点P'的坐标为
(3)已知两点D(1,-3)、E(-3,-4),试在直线l上
确定一点Q,使点Q到D、E两点的距离之和
最小,并求出Q点坐标.
456
-
4
-
5
-
6
-
4-
5-
6
5
6
7
x
y
l
B
E
123
-
1
-
2
-
3
-
1-
2-
3
1
2
3
4
O
A
A'
D'
'
C
巩固提高:
1、点A(2,3)到x轴的距离为;点B(-4,0)到y轴的距离为;点C到x轴的距离为1,到y轴的距离为3,且在第三象限,则C点坐标是。
2、已知点A(a,b)在第四象限,那么点B(b,a)在()
A.第一象限B.第二象限C.第三象限D.第四象限
3、已知长方形ABCD中,AB=5,BC=8,并且AB∥x轴,若点A的坐标为(-2,4),则点C的坐标为_____。
4、三角形ABC三个顶点的坐标分别是A(-3,-1),B(1,2),C(-1,-2),三角形ABC的面积为.
5、点P(x-1,x+3),那么点P不可能在第象限。
6、在平面直角坐标系中,点P(2,2)点Q在y轴上,△POQ为等腰三角形,那么符合条件的Q点有()。
A.5个B.4个C.3个D.2个
7、.三角形ABC三个顶点的坐标分别是A(-4,-1),B(1,1),C(-1,4),将三角形ABC平移平移后三个顶点的坐标可能是()
A.(2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)
D
C
3
-1
B
A O
x
y
C .(-2,2),(3,4),(1,7)
D .(2,-2),(3,3),(1,7)
8、若3a -+(b+2)2=0,则点M (a ,b )关于y 轴的对称点的坐标为_______.
9、若 ),()与,(13-m n N m M 关于原点对称 ,则 __________,==n m ;
10、点P(1-,2)关于x 轴的对称点的坐标是 ,关于y 轴的对称点的坐标是 ,关于原点的对称点的坐标是 ;
11、点A (0,1),点B (0,-4),点C 在x 轴上,如果三角形ABC 的面积为15, (1)求点C 的坐标.
(2)若点C 不在x 轴上,那么点c 的坐标需满足什么样的条件(画图并说明)
12、如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B
的对应点C ,D ,连接AC ,BD ,CD .
(1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形
D
C
3
-1
B
A O
x
y
P
D
C
B
A
O
x
y
(2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=ABDC S 四边形, 若存在这样一点,求出点P 的坐标,若不存在,试说明理由.
(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①
DCP BOP CPO ∠+∠∠的值不变,②DCP CPO
BOP
∠+∠∠的值不变,其中有
且只有一个是正确的,请你找出这个结论并求其值.
评价:
课后作业:
提交时间:教研组长审批:教研主任审批:。