初三数学如何求抛物线的解析式
- 格式:ppt
- 大小:715.50 KB
- 文档页数:9
中考数学抛物线压轴题之角度关系处理(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.2.如图,直线y=﹣3x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c与直线y=c分别交y轴的正半轴于点C和第一象限的点P,连接PB,得△PCB≌△BOA(O为坐标原点).若抛物线与x轴正半轴交点为点F,设M是点C,F间抛物线上的一点(包括端点),其横坐标为m.(1)直接写出点P的坐标和抛物线的解析式;(2)当m为何值时,△MAB面积S取得最小值和最大值?请说明理由;(3)求满足∠MPO=∠POA的点M的坐标.3.如图,已知抛物线y=ax2+bx+c的顶点D的坐标为(1,﹣),且与x轴交于A、B两点,与y轴交于C 点,A点的坐标为(4,0).P点是抛物线上的一个动点,且横坐标为m.(l)求抛物线所对应的二次函数的表达式;(2)若动点P满足∠PAO不大于45°,求P点的横坐标m的取值范围;(3)当P点的横坐标m<0时,过P点作y轴的垂线PQ,垂足为Q.问:是否存在P点,使∠QPO=∠BCO?若存在,请求出P点的坐标;若不存在,请说明理由.4.如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.5.如图,抛物线y=ax2+bx﹣3a经过A(﹣1,0)、C(0,﹣3)两点,与x轴交于另一点B.(1)求此抛物线的解析式;(2)已知点D(m,﹣m﹣1)在第四象限的抛物线上,求点D关于直线BC对称的点D'的坐标.(3)在(2)的条件下,连接BD,问在x轴上是否存在点P,使∠PCB=∠CBD?若存在,请求出P点的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(A点在B点左侧),顶点为D.(1)求抛物线的解析式及点A、B的坐标;(2)将△ABC沿直线BC对折,点A的对称点为A′,试求A′的坐标;(3)抛物线的对称轴上是否存在点P,使∠BPC=∠BAC?若存在,求出点P的坐标;若不存在,请说明理由.7.如图,已知抛物线y=ax2+bx+c与x轴交于点A、B,与直线AC:y=﹣x﹣6交y轴于点C,点D是抛物线的顶点,且横坐标为﹣2.(1)求出抛物线的解析式.(2)判断△ACD的形状,并说明理由.(3)直线AD交y轴于点F,在线段AD上是否存在一点P,使∠ADC=∠PCF?若存在,直接写出点P的坐标;若不存在,说明理由.8.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(,0)和点B(1,),与x轴的另一个交点为C.(1)求抛物线的函数表达式;(2)点D在对称轴的右侧,x轴上方的抛物线上,且∠BDA=∠DAC,求点D的坐标;(3)在(2)的条件下,连接BD,交抛物线对称轴于点E,连接AE.①判断四边形OAEB的形状,并说明理由;②点F是OB的中点,点M是直线BD的一个动点,且点M与点B不重合,当∠BMF=∠MFO时,请直接写出线段BM的长.9.如图,在平面直角坐标系中,抛物线y=ax2+bx与x轴交于点A,顶点B的坐标为(﹣2,﹣2).(1)求a,b的值;(2)在y轴正半轴上取点C(0,4),在点A左侧抛物线上有一点P,连接PB交x轴于点D,连接CB交x 轴于点F,当CB平分∠DCO时,求点P的坐标;(3)在(2)的条件下,连接PC,在PB上有一点E,连接EC,若∠ECB=∠PDC,求点E的坐标.10.如图,在平面直角坐标系中,一次函数y=x﹣2的图象分别交x、y轴于点A、B,抛物线y=x2+bx+c 经过点A、B,点P为第四象限内抛物线上的一个动点.(1)求此抛物线对应的函数表达式;(2)如图1所示,过点P作PM∥y轴,分别交直线AB、x轴于点C、D,若以点P、B、C为顶点的三角形与以点A、C、D为顶点的三角形相似,求点P的坐标;(3)如图2所示,过点P作PQ⊥AB于点Q,连接PB,当△PBQ中有某个角的度数等于∠OAB度数的2倍时,请直接写出点P的横坐标.11.如图,直线y=x+c与x轴交于点B(4,0),与y轴交于点C,抛物线y=x2+bx+c经过点B,C,与x轴的另一个交点为点A.(1)求抛物线的解析式;(2)点P是直线BC下方的抛物线上一动点,求四边形ACPB的面积最大时点P的坐标;(3)若点M是抛物线上一点,请直接写出使∠MBC=∠ABC的点M的坐标.12.如图,二次函数y=ax2﹣3ax+c的图象与x轴交于点A、B,与y轴交于点C直线y=﹣x+4经过点B、C.(1)求抛物线的表达式;(2)过点A的直线交抛物线于点M,交直线BC于点N.①点N位于x轴上方时,是否存在这样的点M,使得AM:NM=5:3?若存在,求出点M的坐标;若不存在,请说明理由.②连接AC,当直线AM与直线BC的夹角∠ANB等于∠ACB的2倍时,请求出点M的横坐标.13.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;(3)在直线x=﹣2上是否存在点M,使得∠MAC=2∠MCA,若存在,求出M点坐标.若不存在,说明理由.14.在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD的面积为S,求S的最大值;(3)如图2,过点D作DM⊥BC于点M,是否存在点D,使得△CDM中的某个角恰好等于∠ABC的2倍?若存在,直接写出点D的横坐标;若不存在,请说明理由.15.如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式.(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD.OD交BC于点F,当S△COF:S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),点P是抛物线上的点,连接EB,PB,PE形成的△PBE中,是否存在点P,使∠PBE或∠PEB等于2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.16.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c 经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点,①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.17.二次函数y=ax2+bx+2的图象交x轴于点(﹣1,0),B(4,0)两点,交y轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)连接BD,当t=时,求△DNB的面积;(3)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标;(4)当t=时,在直线MN上存在一点Q,使得∠AQC+∠OAC=90°,求点Q的坐标.18.如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.19.如图1,抛物线y=x2﹣(m﹣1)x﹣m(m>0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=3OA.(1)求该抛物线的函数表达式;(2)动点D在线段BC下方的抛物线上.①连接AC、BC,过点D作x轴的垂线,垂足为E,交BC于点F.过点F作FG⊥AC,垂足为G.设点D的横坐标为t,线段FG的长为d,用含t的代数式表示d;②过点D作DH⊥BC,垂足为H,连接CD.是否存在点D,使得△CDH中的一个角恰好等于∠ABC的2倍?如果存在,求出点D的横坐标;如果不存在,请说明理由.1.如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.【分析】(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入求得a的值即可;(2)过点P作PD⊥x,交BC与点D,先求得直线BC的解析式为y=﹣x+1,设点P(x,﹣x2+x+1),则D(x,﹣x+1),然后可得到PD与x之间的关系式,接下来,依据△PBC的面积为1列方程求解即可;(3)首先依据点A和点C的坐标可得到∠BQC=∠BAC=45°,设△ABC外接圆圆心为M,则∠CMB=90°,设⊙M的半径为x,则Rt△CMB中,依据勾股定理可求得⊙M的半径,然后依据外心的性质可得到点M为直线y=﹣x与x=1的交点,从而可求得点M的坐标,然后由点M的坐标以及⊙M的半径可得到点Q的坐标.【解答】解:(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入得﹣3a=1,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+1.(2)过点P作PD⊥x,交BC与点D.设直线BC的解析式为y=kx+b,则,解得:k=﹣,∴直线BC的解析式为y=﹣x+1.设点P(x,﹣x2+x+1),则D(x,﹣x+1)∴PD=(﹣x2+x+1)﹣(﹣x+1)=﹣x2+x,∴S△PBC=OB•DP=×3×(﹣x2+x)=﹣x2+x.又∵S△PBC=1,∴﹣x2+x=1,整理得:x2﹣3x+2=0,解得:x=1或x=2,∴点P的坐标为(1,)或(2,1).(3)存在.∵A(﹣1,0),C(0,1),∴OC=OA=1∴∠BAC=45°.∵∠BQC=∠BAC=45°,∴点Q为△ABC外接圆与抛物线对称轴在x轴下方的交点.设△ABC外接圆圆心为M,则∠CMB=90°.设⊙M的半径为x,则Rt△CMB中,由勾股定理可知CM2+BM2=BC2,即2x2=10,解得:x=(负值已舍去),∵AC的垂直平分线的为直线y=﹣x,AB的垂直平分线为直线x=1,∴点M为直线y=﹣x与x=1的交点,即M(1,﹣1),∴Q的坐标为(1,﹣1﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、三角形的外心的性质,求得点M的坐标以及⊙M的半径的长度是解题的关键.2.如图,直线y=﹣3x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c与直线y=c分别交y轴的正半轴于点C和第一象限的点P,连接PB,得△PCB≌△BOA(O为坐标原点).若抛物线与x轴正半轴交点为点F,设M是点C,F间抛物线上的一点(包括端点),其横坐标为m.(1)直接写出点P的坐标和抛物线的解析式;(2)当m为何值时,△MAB面积S取得最小值和最大值?请说明理由;(3)求满足∠MPO=∠POA的点M的坐标.【分析】(1)代入y=c可求出点C、P的坐标,利用一次函数图象上点的坐标特征可求出点A、B的坐标,再由△PCB≌△BOA即可得出b、c的值,进而可得出点P的坐标及抛物线的解析式;(2)利用二次函数图象上点的坐标特征求出点F的坐标,过点M作ME∥y轴,交直线AB于点E,由点M的横坐标可得出点M、E的坐标,进而可得出ME的长度,再利用三角形的面积公式可找出S=﹣(m﹣3)2+5,由m的取值范围结合二次函数的性质即可求出S的最大值及最小值;(3)分两种情况考虑:①当点M在线段OP上方时,由CP∥x轴利用平行线的性质可得出:当点C、M重合时,∠MPO=∠POA,由此可找出点M的坐标;②当点M在线段OP下方时,在x正半轴取点D,连接DP,使得DO=DP,此时∠DPO=∠POA,设点D的坐标为(n,0),则DO=n,DP=,由DO=DP 可求出n的值,进而可得出点D的坐标,由点P、D的坐标利用待定系数法即可求出直线PD的解析式,再联立直线PD及抛物线的解析式成方程组,通过解方程组求出点M的坐标.综上此题得解.【解答】解:(1)当y=c时,有c=﹣x2+bx+c,解得:x1=0,x2=b,∴点C的坐标为(0,c),点P的坐标为(b,c).∵直线y=﹣3x+3与x轴、y轴分别交于A、B两点,∴点A的坐标为(1,0),点B的坐标为(0,3),∴OB=3,OA=1,BC=c﹣3,CP=b.∵△PCB≌△BOA,∴BC=OA,CP=OB,∴b=3,c=4,∴点P的坐标为(3,4),抛物线的解析式为y=﹣x2+3x+4.(2)当y=0时,有﹣x2+3x+4=0,解得:x1=﹣1,x2=4,∴点F的坐标为(4,0).过点M作ME∥y轴,交直线AB于点E,如图1所示.∵点M的横坐标为m(0≤m≤4),∴点M的坐标为(m,﹣m2+3m+4),点E的坐标为(m,﹣3m+3),∴ME=﹣m2+3m+4﹣(﹣3m+3)=﹣m2+6m+1,∴S=S梯形OEMB﹣S△OEB﹣S△AEM=OA•ME=﹣m2+3m+=﹣(m﹣3)2+5.∵﹣<0,0≤m≤4,∴当m=0时,S取最小值,最小值为;当m=3时,S取最大值,最大值为5.(3)①当点M在线段OP上方时,∵CP∥x轴,∴当点C、M重合时,∠MPO=∠POA,∴点M的坐标为(0,4);②当点M在线段OP下方时,在x正半轴取点D,连接DP,使得DO=DP,此时∠DPO=∠POA.设点D的坐标为(n,0),则DO=n,DP=,∴n2=(n﹣3)2+16,解得:n=,∴点D的坐标为(,0).设直线PD的解析式为y=kx+a(k≠0),将P(3,4)、D(,0)代入y=kx+a,,解得:,∴直线PD的解析式为y=﹣x+.联立直线PD及抛物线的解析式成方程组,得:,解得:,.∴点M的坐标为(,).综上所述:满足∠MPO=∠POA的点M的坐标为(0,4)或(,).【点评】本题考查了待定系数法求一次函数解析式、一次(二次)函数图象上点的坐标特征、全等三角形的性质、二次函数的性质、三角形的面积以及等腰三角形的性质,解题的关键是:(1)利用全等三角形的性质求出b、c的值;(2)利用三角形的面积公式找出S=﹣(m﹣3)2+5;(3)分点M在线段OP上方和点M在线段OP下方两种情况求出点M的坐标.3.如图,已知抛物线y=ax2+bx+c的顶点D的坐标为(1,﹣),且与x轴交于A、B两点,与y轴交于C 点,A点的坐标为(4,0).P点是抛物线上的一个动点,且横坐标为m.(l)求抛物线所对应的二次函数的表达式;(2)若动点P满足∠PAO不大于45°,求P点的横坐标m的取值范围;(3)当P点的横坐标m<0时,过P点作y轴的垂线PQ,垂足为Q.问:是否存在P点,使∠QPO=∠BCO?若存在,请求出P点的坐标;若不存在,请说明理由.【分析】(1)根据函数值相等的点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;。
中考数学抛物线压轴题之面积问题(1)求抛物线的解析式;(2)若点M为抛物线上第四象限内一动点,顺次连接AC,CM,MB,是否存在点M,使四边形MBAC的面积为9,若存在,求出点M的坐标,若不存在,请说明理由.(3)将直线BC沿x轴翻折交y轴于N点,过B点的直线l交y轴、抛物线分别于D、E,且D在N的上方,将A点绕O顺时针旋转90°得M,若∠NBD=∠MBO,试求E的的坐标.2.已知:如图,直线y=﹣x﹣3交坐标轴于A、C两点,抛物线y=x2+bx+c过A、C两点,(1)求抛物线的解析式;(2)若点P为抛物线位于第三象限上一动点,连接PA,PC,试问△PAC的面积是否存在最大值,若存在,请求出△APC面积的最大值,以及此时点P的坐标;若不存在,请说明理由;(3)点M为抛物线上一点,点N为抛物线对称轴上一点,若△NMC是以∠NMC为直角的等腰直角三角形,请直接写出点M的坐标.3.如图1,二次函数y=﹣x2+x+3的图象交x轴于A、B两点(点A在点B的左侧),交y轴于C点,连结AC,过点C作CD⊥AC交AB于点D.(1)求点D的坐标;(2)如图2,已知点E是该二次函数图象的顶点,在线段AO上取一点F,过点F作FH⊥CD,交该二次函数的图象于点H(点H在点E的右侧),当五边形FCEHB的面积最大时,求点H的横坐标;(3)如图3,在直线BC上取一点M(不与点B重合),在直线CD的右上方是否存在这样的点N,使得以C、M、N为顶点的三角形与△BCD全等?若存在,请求出点N的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中抛物线y=ax2+bx+c经过原点,且与直线y=﹣kx+6交于则A(6,3)、B(﹣4,8)两点.(1)求直线和抛物线的解析式;(2)点P在抛物线上,解决下列问题:①在直线AB下方的抛物线上求点P,使得△PAB的面积等于20;②连接OA,OB,OP,作PC⊥x轴于点C,若△POC和△ABO相似,请直接写出点P的坐标.5.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A(4,0),B两点,与y轴交于点C(0,2),对称轴x=1,与x轴交于点H.(1)求抛物线的函数表达式;(2)直线y=kx+1(k≠0)与y轴交于点E,与抛物线交于点P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若△CPQ的面积为,求点P,Q的坐标;(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK绕点G顺时针旋转90°,使点K恰好落在抛物线上?若存在,请直接写出点K的坐标;若不存在,请说明理由.6.在平面直角坐标系中,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求c的值及a、b满足的关系式;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围;(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△PAB的面积为?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A(4,0),B两点,与y轴交于点C(0,2),对称轴x=与x轴交于点H.(1)求抛物线的函数表达式;(2)直线y=kx+1(k≠0)与y轴交于点E,与抛物线交于点 P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若△CPQ的面积为,求点P,Q的坐标;(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK绕点G逆时针旋转90°,使点K恰好落在抛物线上,若存在,请直接写出点K的坐标;若不存在,请说明理由.8.如图,抛物线y=ax2+bx+c与x轴相交于A(3,0)、B两点,与y轴交于点C(0,3),点B在x轴的负半轴上,且OA=3OB.(1)求抛物线的函数关系式;(2)若P是抛物线上且位于直线AC上方的一动点,求△ACP的面积的最大值及此时点P的坐标;(3)在线段OC上是否存在一点M,使BM+CM的值最小?若存在,请求出这个最小值及对应的M点的坐标;若不存在,请说明理由.9.如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;(2)若点P是直线BC下方的抛物线上一动点(不点B,C重合),过点P作y轴的平行线交直线BC于点D,设点P的横坐标为m.①用含m的代数式表示线段PD的长.②连接PB,PC,求△PBC的面积最大时点P的坐标.(3)设抛物线的对称轴与BC交于点E,点M是抛物线的对称轴上一点,N为y轴上一点,是否存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.10.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B 三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①求△BOD面积的最大值,并写出此时点D的坐标;②当△OPC为等腰三角形时,请直接写出点P的坐标.11.如图抛物线y=ax2+bx+6的开口向下与x轴交于点A(﹣6,0)和点B(2,0),与y轴交于点C,点P 是抛物线上一个动点(不与点C重合)(1)求抛物线的解析式;(2)当点P是抛物线上一个动点,若△PCA的面积为12,求点P的坐标;(3)如图2,抛物线的顶点为D,在抛物线上是否存在点E,使得∠EAB=2∠DAC,若存在请直接写出点E 的坐标;若不存在请说明理由.12.如图,直线y=x+c与x轴交于点B(4,0),与y轴交于点C,抛物线y=x2+bx+c经过点B,C,与x轴的另一个交点为点A.(1)求抛物线的解析式;(2)点P是直线BC下方的抛物线上一动点,求四边形ACPB的面积最大时点P的坐标;(3)若点M是抛物线上一点,请直接写出使∠MBC=∠ABC的点M的坐标.13.综合与探究如图1,抛物线y=ax2+bx﹣3与x轴交于A(﹣2,0),B(4,0)两点,与y轴交于点C.(1)求抛物线的表达式;(2)点N是抛物线上异于点C的动点,若△NAB的面积与△CAB的面积相等,求出点N的坐标;(3)如图2,当P为OB的中点时,过点P作PD⊥x轴,交抛物线于点D.连接BD,将△PBD沿x轴向左平移m个单位长度(0<m≤2),将平移过程中△PBD与△OBC重叠部分的面积记为S,求S与m的函数关系式.14.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.15.如图,已知关于x的二次函数y=﹣x2+bx+c(c>0)的图象与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求出二次函数的关系式;(2)点P为线段MB上的一个动点,过点P作x轴的垂线PD,垂足为D.若OD=m,△PCD的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)探索线段MB上是否存在点P,使得△PCD为直角三角形?如果存在,求出P的坐标;如果不存在,请说明理由.16.如图,Rt△AOB中,∠A=90°,以O为坐标原点建立直角坐标系,使点A在x轴正半轴上,OA=2,AB =8,点C为AB边的中点,抛物线的顶点是原点O,且经过C点.(1)填空:直线OC的解析式为;抛物线的解析式为;(2)现将该抛物线沿着线段OC移动,使其顶点M始终在线段OC上(包括端点O、C),抛物线与y轴的交点为D,与AB边的交点为E;①是否存在这样的点D,使四边形BDOC为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由;②设△BOE的面积为S,求S的取值范围.17.已知抛物线y=﹣x2+bx和直线l:y=x﹣b.(1)求证:抛物线与直线l至少有一个公共点;(2)若抛物线与直线l交于A,B两点,当线段AB上恰有2个纵坐标是整数的点时,求b的取值范围;(3)当b>0时,将直线l向上平移b+1个单位长度得直线l',若抛物线y=﹣x2+bx的顶点P在直线l'上,且与直线l'的另一个交点为Q,当点C在直线l'上方的抛物线上时,求四边形OPCQ面积的最大值.18.如图,在平面直角坐标系中抛物线y=ax2+bx+c交x轴于点A(﹣2,0)、B(4,0),交y轴于点C(0,﹣3).(1)求抛物线的解析式;(2)动点D在第四象限且在抛物线上,当△BCD面积最大时,求点D坐标,并求△BCD面积的最大值;(3)抛物线的对称轴上是否存在一点Q,使得∠QBC=45°,如果存在,直接写出点Q坐标,不存在,请说明理由.19.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标:(3)在抛物线上存在点P,使得△APB的面积与△ACB的面积相等,求点P的坐标.20.如图,对称轴x=﹣1的抛物线y=ax2+bx+c与x轴交于A(2,0),B两点,与y轴交于点C(0,﹣2),(1)求抛物线的函数表达式;(2)若点P是直线BC下方的抛物线上的动点,求△BPC的面积的最大值;(3)若点P在抛物线对称轴的左侧运动,过点P作PD⊥x轴于点D,交直线BC于点E,且PE=OD,求点P的坐标;(4)在对称轴上是否存在一点M,使△AMC的周长最小.若存在,请求出M点的坐标和△AMC周长的最小值;若不存在,请说明理由.21.如图,已知抛物线y=﹣x2+4x+5与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)直接写出点A、B、C的坐标;(2)在抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点D是第一象限内抛物线上的一个动点(与点C、B不重合)过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,直线BC把△BDF的面积分成两部分,使S△BDE:S△BEF=2:3,请求出点D的坐标;(4)若M为抛物线对称轴上一动点,使得△MBC为直角三角形,请直接写出点M的坐标.22.如图,抛物线y=x2+bx+c经过A(1,0)、C(0,3)两点,点B是抛物线与x轴的另一个交点.作直线BC.点P是抛物线上的一个动点.过点P作PQ⊥x轴,交直线BC于点Q.设点P的横坐标为m(m>0).PQ 的长为d.(1)求此抛物线的解析式及顶点坐标;(2)求d与m之间的函数关系式;(3)当点P在直线BC下方,且线段PQ被x轴分成的两部分之比为1:2时,求m的值;(4)连接AC,作直线AP,直线AP交直线BC于点M,当△PCM、△ACM的面积相等时,直接写出m的值.23.已知:如图,抛物线y=ax2+bx﹣3与x轴交于A点,与y轴交于C点,且A(1,0)、B(3,0),点D 是抛物线的顶点.(1)求抛物线的解析式(2)在y轴上是否存在M点,使得△MAC是以AC为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.(3)点P为抛物线上的动点,且在对称轴右侧,若△ADP面积为3,求点P的坐标.24.如图,开口向下的抛物线y=ax2﹣5ax+4a(a为常数)与x轴交于A、B两点(A在B点左侧),与y轴交于点C,点D是抛物线上的一个动点,横坐标设为t,连接DC、DB.(1)求A、B的坐标.(2)当点D为抛物线的顶点时,△BCD的面积为15,求抛物线的解析式.(3)若a=﹣1,过点D作x轴的垂线,垂足为H,当1≤t≤4时,DH+mHO的最大值为.求正实数m的值.25.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式,x满足什么值时y<0?(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.26.如图,已知抛物线y=x2+bx+c与x轴交于点A(﹣4,0)和点B(1,0),与y轴交于点C,过点A 的直线y=mx+n交抛物线的另一个点为点E,点E的横坐标为2.(1)求b和c的值;(2)点P在直线AE下方的抛物线上任一点,点P的横坐标为t,过点P作PF∥y轴,交AE于点F,设PF =d,求出d与t的函数关系式,并直接写出t的取值范围;(3)在(2)问的条件下,过点P作PK⊥AE,垂足为点K,连接PE,若PF把△PKE分成面积比为11:12的两个三角形,求出此时t的值.27.若抛物线上y1=ax2+bx+c,它与y轴交于C(0,4),与x轴交于A(﹣1,0)、B(k,0),P是抛物线上B、C之间的一点.(1)当k=4时,求抛物线的方程,并求出当△BPC面积最大时的P的横坐标;(2)当a=1时,求抛物线的方程及B的坐标,并求当△BPC面积最大时P的横坐标;(3)根据(1)、(2)推断P的横坐标与B的横坐标有何关系?28.在平面直角坐标系中,抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),与y轴交于点C,连接AC,BC,将△OBC沿BC所在的直线翻折,得到△DBC,连接OD.(1)用含a的代数式表示点C的坐标.(2)如图1,若点D落在抛物线的对称轴上,且在x轴上方,求抛物线的解析式.(3)设△OBD的面积为S1,△OAC的面积为S2,若=,求a的值.29.如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.30.如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A、C、D均在坐标轴上,且AB=5,sinB=.(1)求过A、C、D三点的抛物线的解析式;(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围;(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A、E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.31.如图,在平面直角坐标系xOy中,AB⊥x轴于点B,AB=3,tan∠AOB=,将△OAB绕着原点O逆时针旋转90°,得到△OA1B1;再将△OA1B1绕着线段OB1的中点旋转180°,得到△OA2B1,抛物线y=ax2+bx+c(a≠0)经过点B、B1、A2.(1)求抛物线的解析式.(2)在第三象限内,抛物线上的点P在什么位置时,△PBB1的面积最大?求出这时点P的坐标.(3)在第三象限内,抛物线上是否存在点Q,使点Q到线段BB1的距离为?若存在,求出点Q的坐标;若不存在,请说明理由.32.在平面直角坐标系中,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求c的值及a、b满足的关系式;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围;(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△PAB的面积为?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.33.如图①,在平面直角坐标中,点A的坐标为(1,﹣2),点B的坐标为(3,﹣1),二次函数y=﹣x2的图象为l1.(1)平移抛物线l1,使平移后的抛物线经过点A,但不过点B.①满足此条件的函数解析式有个.②写出向下平移且经点A的解析式.(2)平移抛物线l1,使平移后的抛物线经过A,B两点,所得的抛物线l2,如图②,求抛物线l2的函数解析式及顶点C的坐标,并求△ABC的面积.(3)在y轴上是否存在点P,使S△ABC=S△ABP?若存在,求出点P的坐标;若不存在,请说明理由.34.如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.35.如图,已知抛物线y=﹣x2+bx+c与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O 开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动.(1)直接写出抛物线的解析式:;(2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值时,△CED的面积最大?最大面积是多少?(3)当△CED的面积最大时,在抛物线上是否存在点P(点E除外),使△PCD的面积等于△CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.36.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,∠AOC的平分线交AB于点D,E为BC的中点,已知A(0,4)、C(5,0),二次函数y=x2+bx+c的图象抛物线经过A,C两点.(1)求该二次函数的表达式;(2)F、G分别为x轴,y轴上的动点,顺次连接D、E、F、G构成四边形DEFG,求四边形DEFG周长的最小值;(3)抛物线上是否在点P,使△ODP的面积为12?若存在,求出点P的坐标;若不存在,请说明理由.37.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ 存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.38.如图,在平面直角坐标系中,直线y=x+1与抛物线y=ax2+bx﹣3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A、B点重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P的横坐标为m;①用含有m的代数式表示线段PD的长,并求出线段PD长的最大值;②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积之比为9:10?若存在,直接写出m的值;若不存在,说明理由.39.如图,在平面直角坐标系中,抛物线y=ax2+bx+2与直线y=x﹣2交于点A(m,0)和点B(﹣2,n),与y轴交于点C.(1)求抛物线的解析式及顶点D的坐标;(2)若向下平移抛物线,使顶点D落在x轴上,原来的抛物线上的点P平移后的对应点为P′,若OP′=OP,求点P的坐标;(3)在抛物线上是否存在点Q,使△QAB的面积是△ABC面积的一半?若存在,直接写出点Q的坐标;若不存在,请说明理由.1.【解答】解:(1)∵A(﹣1,0),∴OA=1,OC=3OA=3,∴C(0,﹣3),将A(﹣1,0)、C(0,﹣3)代入y=x2+mx+n中,得,解得,∴y=x2﹣2x﹣3;(2)存在,理由:令y=0,则x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴B(3,0),∴直线BC的解析式为y=x﹣3,设M(m,m2﹣2m﹣3),过点M作MN∥y轴交BC于N,如图1,∴N(m,m﹣3),∴MN=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∴S四边形MBAC=S△ABC+S△BCM=AB×OC+MN×OB=×4×3×(﹣m2+3m)×3=9,解得:m=1或2,故点M的坐标为(1,﹣4)或(2,﹣3);(3)∵OB=OC=ON,∴△BON为等腰直角三角形,∵∠OBM+∠NBM=45°,∴∠NBD+∠NBM=∠DBM=45°,∴MB=MF,过点M作MF⊥BM交BE于F,过点F作FH⊥y轴于点H,如图2,∴∠HFM+∠BMO=90°,∵∠BMO+∠OMB=90°,∴∠OMB=∠HFM,∵∠BOM=∠MHF=90°,∴△BOM≌△MHF(AAS),∴FH=OM=1,MH=OB=3,故点F(1,4),由点B、F的坐标得,直线BF的解析式为y=﹣2x+6,联立,解得,∴E(﹣3,12).2.【解答】解:(1)y=﹣x﹣3交坐标轴于A、C两点,则点A、C的坐标分别为:(﹣3,0)、(0,﹣3);将点A、C的坐标代入抛物线表达式得:,解得,故抛物线的表达式为:y=x2+2x﹣3;(2)存在,理由:如图1,过点P作y轴的平行线交AC于点H,设点P(x,x2+2x﹣3),则点H(x,﹣x﹣3),△APC面积S=S△PHA+S△PHC=×PH×OA=(﹣x﹣3﹣x2﹣2x+3)×3=﹣x2﹣x,∵﹣<0,故S有最大值,当x=﹣时,S的最大值为,此时点P(﹣,﹣);(3)如图2,设点N(﹣1,s),点M(m,n),n=m2+2m﹣3,过点M作y轴的平行线交过点C与x轴的平行线于点H,交过点N与x轴的平行线于点G,∵∠GMN+∠GNM=90°,∠GMN+∠HMC=90°,∴∠HMC=∠GNM,∵∠MGN=∠CHM=90°,MN=MC,∴△MGN≌△CHM(AAS),∴GN=MH,即GN=|﹣1﹣m|=MH=|n+3|,①当﹣1﹣m=n+3时,即m+n+4=0,即m2+3m+1=0,解得:m=,故点M(,);②当﹣1﹣m=﹣(n+3)时,即m=n+2,同理可得:点M(,);故点M的坐标为:(,)或(,)或(,)或(,).3.【解答】解:(1)令x=0,则y=3,∴C(0,3),∴OC=3.令y=0,则﹣x2+x+3=0,解得:x1=﹣4,x2=6,∴A(﹣4,0),B(6,0),∴OA=4,OB=6.∵CD⊥AC,∴∠ACD=90°,∵CO⊥AD,∴OC2=OA•OD,∴OD=,∴D(,0).(2)∵y=﹣x2+x+3=﹣(x﹣1)2+,∴E(1,).如图2,连接OE、BE,作HG⊥x轴于点G,交BE于点P.由B、E两点坐标可求得直线BE的解析式为:y=﹣x+.设H(m,﹣m2+m+3),则P(m,﹣m+).∴HG=﹣m2+m+3,HP=y H﹣y P=﹣m2+m﹣.∴S△BHE=(x B﹣x E)•HP=(﹣m2+m﹣)=﹣m2+m﹣.∵FH⊥CD,AC⊥CD,∴AC∥FH,∴∠HFG=∠CAO,∵∠AOC=∠FGH=90°,∴△ACO∼△FHG,∴==,∴FG=HG=﹣m2+m+4,∴AF=AG﹣FG=m+4+m2﹣m﹣4=m2+m,∴S△AFC=AF•OC=(m2+m)=m2+m,∵S四边形ACEB=S△ACO+S△OCE+S△OEB=×4×3+×3×1+6×=,∴S五边形FCEHB=S四边形ACEB+S△BHE﹣S△AFC=+(﹣m2+m﹣)﹣(m2+m)=﹣m2+m+15=﹣(m ﹣)2+,∴当m=时,S五边形FCEHB取得最大值.此时,H的横坐标为.(3)∵B(6,0),C(0,3),D(,0),∴CD=BD=,BC=3,∴∠DCB=∠DBC.①如图3﹣1,△CMN≌△DCB,MN交y轴于K,则CM=CN=DC=DB=,MN=BC=3,∠CMN=∠CNM=∠DBC=∠DCB,∴MN∥AB,∴MN⊥y轴,∴∠CKN=∠COB=90°,MK=NK=MN=,∴△CKN∼△COB,∴==,∴CK=,∴OK=OC+CK=,∴N(,).②如图3﹣2,△MCN≌△DBC,则CN=CB=3,∠MCN=∠DBC,∴CN∥AB,∴N(3,3).③如图3﹣3,△CMN≌△DBC,则∠CMN=∠DCB,CM=CN=DC=DB=,MN=BC=3,∴MN∥CD,作MR⊥y轴于R,则===,∴CR=,RM=,∴OR=3﹣,作MQ∥y轴,NQ⊥MQ于点Q,则∠NMQ=∠DCO,∠NQM=∠DOC=90°,∴△COD∼△MQN,∴==,∴MQ=MN=,NQ=MN=,∴NQ﹣RM=,OR+MQ=,∴N(﹣,).综上所述,满足要标的N点坐标有:(,)、(3,3)、(﹣,).4.【解答】解:(1)把A(6,3)代入y=﹣kx+6,得3=﹣6x+6.解得k=﹣.故直线的解析式是:y=﹣x+6.把O(0,0)、A(6,3)、B(﹣4,8)分别代入y=ax2+bx+c,得.解得.故该抛物线解析式是:y=x2﹣x;(2)①如图1,作PQ∥y轴,交AB于点Q,设P(x,x2﹣x),则Q(x,﹣x+6),则PQ=(﹣x+6)﹣(x2﹣x)=﹣(x﹣1)2+,∴S△PAB=(6+4)×PQ=﹣(x﹣1)2+=20,解得x1=﹣2,x2=4,∴点P的坐标为(4,0)或(﹣2,3);②设P(x,x2﹣x),如图2,由题意得:AO=3,BO=4,AB=5,∵AB2=AO2+BO2,∴∠AOB=90°,∵∠AOB=∠PCO,∴当=时,△CPO∽△OAB,即=.整理,得4|x2﹣x|=3|x|.解方程4(x2﹣x)=3x,得x1=0(舍去),x2=7,此时P点坐标为(7,);解方程4(x2﹣x)=﹣3x,得x1=0(舍去),x2=1,此时P点坐标为(1,﹣);当=时,△CPO∽△OBA,即=,整理,得3|x2﹣x|=4|x|,解方程3(x2﹣x)=4x,得x1=0(舍去),x2=,此时P点坐标为(,).解方程3(x2﹣x)=﹣4x,得x1=0(舍去),x2=﹣,此时P点坐标为(﹣,).综上所述,点P的坐标为:(7,)或(1,﹣)或(﹣,)或(,).5.【解答】解:(1)对称轴x=1,则点B(﹣2,0),则抛物线的表达式为:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),即﹣8a=2,解得:a=,故抛物线的表达式为:y=;(2)设直线PQ交y轴于点E(0,1),点P、Q横坐标分别为m,n,△CPQ的面积=×CE×(n﹣m)=,即n﹣m=2,联立抛物线与直线PQ的表达式并整理得:…①,m+n=2﹣4k,mn=﹣4,n﹣m=2==,解得:k=0(舍去)或1;将k=1代入①式并解得:x=,故点P、Q的坐标分别为:(,﹣)、(,).(3)设点K(1,m),联立PQ和AC的表达式并解得:x=,故点G(,)过点G作x轴的平行线交函数对称轴于点M,交过点R与y轴的平行线于点N,则△KMG≌△GNR(AAS),GM=1﹣==NR,MK=,故点R的纵坐标为:,则点R(m﹣1,)将该坐标代入抛物线表达式解得:x=,故m=,故点K(1,).6.【解答】解:(1)y=x+3,令x=0,则y=3,令y=0,则x=﹣3,故点A、B的坐标分别为(﹣3,0)、(0,3),则c=3,则函数表达式为:y=ax2+bx+3,将点A坐标代入上式并整理得:b=3a+1;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=﹣≥0,而b=3a+1,即:﹣≥0,解得:a≥﹣,故:a的取值范围为:﹣≤a<0;(3)当a=﹣1时,b=3a+1=﹣2二次函数表达式为:y=﹣x2﹣2x+3,过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△PAB=×AB×PH=×3×PQ×=,则PQ=|y P﹣y Q|=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点,分别与点AB组成的三角形的面积也为1,故:|y P﹣y Q|=1,设点P(x,﹣x2﹣2x+3),则点Q(x,x+3),即:﹣x2﹣2x+3﹣x﹣3=±1,解得:x=或,故点P(,)或(,)或(,)或(,).7.【解答】解:(1)对称轴x=,则点B(﹣1,0),则抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即﹣4a=2,解得:a=﹣,故抛物线的表达式为:y=x2+x+2;(2)设直线PQ交y轴于点E(0,1),点P、Q横坐标分别为m,n,△CPQ的面积=×CE×(n﹣m)=,即n﹣m=,联立抛物线于直线PQ的表达式并整理得:x2+(﹣k)x+1=0…①,m+n=3﹣2k,mn=﹣2,n﹣m===解得:k=0(舍去)或3;故y=3x+1,则x2+x+2=3x+1,解得:x=,故点P、Q的坐标分别为:(,)、(,);(3)设点K(,m),联立PQ和AC的表达式并解得:x=,故点G(,),过点G作y轴的平行线交过点K′与x轴的平行线于点M,交过点K与x轴的平行线于点N,则△GNK≌△K′MG(AAS),NK=﹣==MG,NG=﹣m,则点K′(﹣m,)将该坐标代入抛物线表达式并解得:m=,故点K(,)或(,).8.【解答】解:(1)OA=3OB=3,则点B(﹣1,0),抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3;(2)过点P作y轴的平行线交CA于点H,由点A、C的坐标得,直线AC的表达式为:y=﹣x+3△ACP的面积=PH×OA=3×(x2﹣2x+3+x﹣3)=(﹣x2+3x),当x=时,△ACP的面积的最大,最大值为:,此时点P(,);(3)过点M作MN⊥AC,则MN=CM,故当B、M、N三点共线时,BM+CM=BN最小,直线CA的倾斜角为45°,BN⊥AC,则∠NBA=45°,即BN=AB=2=AN,则点N(1,2),由点B、N的坐标得,直线BN的表达式为:y=x+1,故点M(0,1).9.【解答】解:(1)∵抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C,∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)如图:①设P(m,m2﹣4m+3),将点B(3,0)、C(0,3)代入得直线BC解析式为y BC=﹣x+3.∵过点P作y轴的平行线交直线BC于点D,∴D(m,﹣m+3),∴PD=(﹣m+3)﹣(m2﹣4m+3)=﹣m2+3m.答:用含m的代数式表示线段PD的长为﹣m2+3m.②S△PBC=S△CPD+S△BPD=OB•PD=﹣m2+m=﹣(m﹣)2+.∴当m=时,S有最大值.当m=时,m2﹣4m+3=﹣.∴P(,﹣).答:△PBC的面积最大时点P的坐标为(,﹣).(3)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.根据题意,点E(2,1),∴EF=CF=2,∴EC=2,根据菱形的四条边相等,∴ME=EC=2,∴M(2,1﹣2)或(2,1+2)当EM=EF=2时,M(2,3)答:点M的坐标为M1(2,3),M2(2,1﹣2),M3(2,1+2).10.【解答】解:(1)x2﹣2x﹣3=0,则x=3或﹣1,故点A、B的坐标分别为(﹣1,﹣1)、(3,﹣3),设抛物线的表达式为:y=ax2+bx,将点A、B的坐标代入上式得:,解得:,故抛物线的表达式为:y=﹣x2+x;(2)将点A、B的坐标代入一次函数表达式并解得:直线AB的表达式为:y=﹣x﹣,故点C(0,﹣),同理可得:直线OP的表达式为:y=﹣x;①过点D作y轴的平行线交AB于点H,设点D(x,﹣x2+x),则点H(x,﹣x),△BOD面积=×DH×x B=×3(﹣x2+x+x)=﹣x2+x,∵,故△BOD面积有最大值为:,此时x=,故点D(,﹣);②当OP=PC时,则点P在OC的中垂线上,故y P=﹣,则点P(,﹣);②当OP=OC时,t2+t2=()2,解得:t=(舍去负值),故点P(,﹣);③当PC=OC时,同理可得:点P(,﹣);综上,点P(,﹣)或(,﹣)或(,﹣).11.【解答】解:(1)函数的表达式为:y=a(x+6)(x﹣2)=a(x2+4x﹣12),﹣12a=6,解得:a=﹣,函数的表达式为:y=﹣x2﹣2x+6…①,顶点D坐标为(﹣2,8);(2)如图1所示,过点P作直线m∥AC交抛物线于点P′,在直线AC下方等距离处作直线n交抛物线与点P″、P′″,过点P作PH∥y轴交AC于点H,作PG⊥AC于点G,∵OA=OC,∴∠PHG=∠CAB=45°,则HP=PG,S△PCA=PG×AC=PG×6=12,解得:PH=4,直线AC的表达式为:y=x+6,则直线m的表达式为:y=x+10…②,联立①②并解得:x=﹣2或﹣4,则点P坐标为(﹣2,8)或(﹣4,6);直线n的表达式为:y=x+2…③同理可得点P(P″、P′″)的坐标为(﹣3﹣,﹣﹣1)或(﹣3,﹣1),综上,点P的坐标为(﹣2,8)或(﹣4,6)或(﹣3﹣,﹣﹣1)或(﹣3,﹣1).(3)点A、B、C、D的坐标为(﹣6,0)、(2,0)、(0,6)、(﹣2,8),则AC=,CD=,AD=,则∠ACD=90°,sin∠DAC==,延长DC至D′使CD=CD′,连接AD′,过点D作DH⊥AD′,则DD′=2,AD=AD′=,S△ADD′=DD′×AC=DH×AD′,即:2×=DH×,解得:DH=,sin2∠DAC=sin∠DAD′====sin∠EAB,则tan∠EAB=,①当点E在AB上方时,则直线AE的表达式为:y=x+b,将点A坐标代入上式并解得:直线AE的表达式为:y=x+…④,联立①④并解得:x=(不合题意值已舍去),即点E(,);②当点E在AB下方时,同理可得:点E(,﹣),综上,点E(,)或(,﹣).12.【解答】解:(1)将点B坐标代入y=x+c并解得:c=﹣3,故抛物线的表达式为:y=x2+bx﹣3,将点B坐标代入上式并解得:b=﹣,故抛物线的表达式为:y=x2﹣x﹣3;(2)过点P作PH∥y轴交BC于点H,设点P(x,x2﹣x﹣3),则点H(x,x﹣3),S四边形ACPB=S△AOC+S△PCB,∵S△AOC是常数,故四边形面积最大,只需要S△PCB最大即可,S△PCB=×OB×PH=×2(x﹣3﹣x2+x+3)=﹣x2+3x,∵﹣<0,∴S△PCB有最大值,此时,点P(2,﹣);(3)过点B作∠ABC的角平分线交y轴于点G,交抛物线于M′,设∠MBC=∠ABC=2α,过点B在BC之下作角度数为α的角,交抛物线于点M,过点G作GK⊥BC交BC于点K,延长GK交BM于点H,则GH=GN,BC是GH的中垂线,OB=4,OC=3,则BC=5,设:OG=GK=m,则CK=CB﹣HB=5﹣4=1,由勾股定理得:(3﹣m)2=m2+1,解得:m=,则OG=ON=,GH=GN=2OG=,点G(0,﹣),在Rt△GCK中,GK=OG=,GC=OC﹣OG=3﹣=,则cos∠CGK==,sin∠CGK=,则点K(,﹣),点K是点GH的中点,则点H(,﹣),则直线BH的表达式为:y=x﹣…②,同理直线BG的表达式为:y=x﹣…③联立①②并整理得:27x2﹣135x+100=0,解得:x=或4(舍去4),则点M(,﹣);联立①③并解得:x=﹣,故点M′(﹣,﹣);故点M(,﹣)或(﹣,﹣).13.【解答】解:(1)如图1,把点A(﹣2,0)、B(4,0)分别代入y=ax2+bx﹣3(a≠0),得,解得,所以该抛物线的解析式为:y=x2﹣x﹣3;(2)将x=0代入y=x2﹣x﹣3,得y=﹣3,∴点C的坐标为(0,﹣3),∴OC=3.设N(x,y),∵S△NAB=S△CAB,∴|y|=OC=3,∴y=±3.当y=3时,x2﹣x﹣3=3,解得x=+1.当y=﹣3时,x2﹣x﹣3=﹣3,解得x1=2,x2=0(舍去).综上所述,点N的坐标是(+1,3)或(﹣+1,3)或(2,﹣3);(3)如图2,由已知得,BB′=m,PB′=2,设直线BC的表达式为y=kx+b(k≠0).∵直线y=kx+b经过点B(4,0),C(0,﹣3),∴,解得,∴直线BC的表达式为y=x﹣3.当0<m≤2时,由已知得P′B=2+m.∵OP′=2﹣m,∴E(2﹣m,﹣m﹣).由OB=4得OP=2,把x=2代入y=x2﹣x﹣3中,得y=﹣3,∴D(2,﹣3),∴直线CD∥x轴.∵EP′=m+,D′P=3,∴ED′=DP′﹣EP′=3﹣m﹣=﹣m+.过点F作FH⊥PD′于点H,则∠D′HF=∠D′P′B′=90°.∵∠HD′F=∠P′D′B′,∴△D′HF∽△D′P′B′,∴=.∵∠FCD′=∠FBB′,∠FD′C=∠FB′B,∴△CD′F∽△BB′F,∴=.又∵CD′=2﹣m,∴=.设D′F=k(2﹣m),B′F=km,∴D′B′=2k,∴=.∴=.∵P′B′=2,∴HF=2﹣m.∴S△ED′F=ED′•HF=×(﹣m+)×(2﹣m).∵S△PB′D′=PB′•PD′=×3×2=3,∴S=S△PB′D′﹣S△ED′F=3﹣×(﹣m+)×(2﹣m)=﹣m2+m+.14.【解答】解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,,解得,故抛物线为y=﹣x2+2x+3;又设直线为y=kx+n过点A(﹣1,0)及C(2,3),得,解得,故直线AC为y=x+1;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),当x=1时,y=x+1=2,∴B(1,2),∵点E在直线AC上,设E(x,x+1).①如图2,当点E在线段AC上时,点F在点E上方,则F(x,x+3),∵F在抛物线上,∴x+3=﹣x2+2x+3,解得,x=0或x=1(舍去),∴E(0,1);②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1),∵F在抛物线上,∴x﹣1=﹣x2+2x+3,解得x=或x=,。
二次函数是一种常见的数学函数,其解析式可以有三种常见的形式。
下面我将逐一介绍这三种形式及其求法。
1.顶点形式:y=a(x-h)²+k顶点形式是一种常见的二次函数解析式形式。
其中a,h和k分别表示二次函数的相关参数,其中a表示抛物线的开口方向和大小,h表示抛物线的横向平移,k表示抛物线的纵向平移。
求解二次函数顶点形式的步骤如下:首先确定a的值,根据函数图像的开口方向确定a的正负;然后找出顶点坐标(h,k),其中h为顶点的横坐标,k为顶点的纵坐标。
2. 一般形式:y = ax² + bx + c一般形式是另一种常见的二次函数解析式形式。
其中a,b和c分别表示二次函数的相关参数,其中a表示抛物线的开口方向和大小,b表示抛物线的横向平移,c表示抛物线的纵向平移。
求解二次函数一般形式的步骤如下:首先确定a的值,根据函数图像的开口方向确定a的正负;然后利用求根公式(-b ± √(b² - 4ac)) / 2a,计算出二次函数的根;接着可以利用根的性质求出顶点的横坐标-x = b / 2a,并将x代入二次函数求得顶点的纵坐标y。
3.描点形式:y-y₁=a(x-x₁)(x-x₂)描点形式是一种通过抛物线上两个已知点求解二次函数解析式的形式。
其中a表示抛物线的开口方向和大小,(x₁,y₁)和(x₂,y₂)分别表示已知点的坐标。
求解二次函数描点形式的步骤如下:首先计算a的值,可以利用已知点的坐标代入公式求解;接着将(x₁,y₁)和(x₂,y₂)分别代入描点形式,得到两个方程,再解这个方程组得到二次函数的解析式。
以上介绍了二次函数解析式的三种形式及其求法。
不同形式的解析式适合不同的问题,根据具体情况选取合适的形式求解可以提高解题效率。
希望对你的学习有所帮助!。
如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c 经过A,B两点,抛物线的顶点为D.(1)求b,c的值;(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;(3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由.在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限抛物线上一动点,点M的横坐标为m,△AMB的面积为S、求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.(4)补充:在(3)的条件下,点P、Q、B、O为顶点的四边形能否成为梯形,若能,求出相应Q的坐标。
41直角坐标系XOY中,将直线y=kx沿y轴下移3个单位长度后恰好经点B(-3,0)及y 轴上的C点。
若抛物y=-x2+bx+c与x轴交于A点B点,(点A在点B的右侧),且过点C 。
(1)求直线BC及抛物线解析式(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求p点坐标如图,已知抛物线y=x2+bx+c与x轴交于A,B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC交抛物线对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P,Q两点,且点P在第三象限.①当线段PQ=3AB/4时,求tan∠CED的值;②当以点C,D,E为顶点的三角形是直角三角形时,请直接写出点P的坐标.温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.第25题图第25题备用图直角坐标系XOY中,半径2√5的⊙C与x轴交于A(-1,0),B(3,0)且点C在X轴上方。
专题17 二次函数与实际问题:图形运动问题1.如图,在平面直角坐标系xOy 中,将抛物线2y x bx c =-++与直线1y x =-+相交于点()0,1A 和点()3,2B -,交x 轴于点C ,顶点为点F ,点D 是该抛物线上一点.(1)求抛物线的函数表达式;(2)如图1,若点D 在直线AB 上方的抛物线上,求DAB ∆的面积的最大值以及此时点D 的坐标; (3)如图2,若点D 在对称轴左侧的抛物线上,点()1,E t 是射线CF 上一点,当以C 、B 、D 为顶点的三角形与CAE ∆相似时,直接写出所有满足条件的t 的值.2.如图,在平面直角坐标系中,抛物线y =ax 2+bx +4经过点A (4,0),B (-1,0),交y 轴于点C . (1)求抛物线的解析式;(2)点D 是直线AC 上一动点,过点D 作DE 垂直于y 轴于点E ,过点D 作DF ⊥x 轴,垂足为F ,连接EF ,当线段EF 的长度最短时,求出点D 的坐标;(3)在AC 上方的抛物线上是否存在点P ,使得△ACP 是直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由.3.如图,直线y =﹣x +n 与x 轴交于点A (4,0),与y 轴交于点B ,抛物线y =﹣x 2+bx +c 经过点A ,B .(1)求抛物线的解析式;(2)E (m ,0)为x 轴上一动点,过点E 作ED ⊥x 轴,交直线AB 于点D ,交抛物线于点P ,连接BP . ①点E 在线段OA 上运动,若△BPD 直角三角形,求点E 的坐标;②点E 在x 轴的正半轴上运动,若∠PBD +∠CBO =45°.请直接写出m 的值.4.在平面直角坐标系中,抛物线22y x kx k =--(k 为常数)的顶点为N .(1)如图,若此抛物线过点()3,1A -,求抛物线的函数表达式;(2)在(1)的条件下,抛物线与y 轴交于点B ,①求ABO ∠的度数;①连接AB ,点P 为线段AB 上不与点A ,B 重合的一个动点,过点P 作//CD x 轴交抛物线在第四象限部分于点C ,交y 轴于点D ,连接PN ,当BPN BNA △△时,线段CD 的长为___.(3)无论k 取何值,抛物线都过定点H ,点M 的坐标为()2,0,当90MHN ∠=︒时,请直接写出k 的值.5.如图,已知二次函数图象的顶点坐标为C (1,0),直线y =x+m 的图象与该二次函数的图象交于A 、B 两点,其中A 点坐标为(3,4),B 点在y 轴上.(1)求m 的值及这个二次函数的解析式;(2)若P是线段AB下方抛物线上一动点,当△ABP面积最大时,求P点坐标以及△ABP面积最大值;(3)若D为直线AB与这个二次函数图象对称轴的交点,Q为线段AB之间的一个动点,过Q作x轴的垂线,与这个二次函数图象交于点E,问是否存在这样的点Q,使得四边形DCEQ为平行四边形,若存在,请求出Q点的坐标;若不存在,请说明理由.6.在Rt△ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移动过程中始终保持DE∥BC,DF∥AC.(1)试写出四边形DFCE的面积S(cm2)与时间t(s)之间的函数关系式并写出自变量t的取值范围.(2)试求出当t为何值时四边形DFCE的面积为20cm2?(3)四边形DFCE的面积能为40吗?如果能,求出D到A的距离;如果不能,请说明理由.(4)四边形DFCE的面积S(cm2)有最大值吗?有最小值吗?若有,求出它的最值,并求出此时t的值.7.如图,平面直角坐标系中,矩形ABCO的边OA,OC分别在坐标轴上,OA=2,OC=1,以点A为顶点的抛物线经过点C.(1)求抛物线的函数表达式;(2)将矩形ABCO绕点A旋转,得到矩形AB'C'O',使点C'落在x轴上,抛物线是否经过点C'?请说明理由.8.如图,抛物线243y ax ax a =-+(0a >),与y 轴交于点A ,在x 轴的正半轴上取一点B ,使2OB OA =,抛物线的对称轴与抛物线交于点C ,与x 轴交于点D ,与直线AB 交于点E ,连接BC .(1)求点B ,C 的坐标(用含a 的代数式表示);(2)若BCD △与BDE 相似,求a 的值;(3)连接OE ,记OBE △的外心为M ,点M 到直线AB 的距离记为h ,请探究h 的值是否会随着a 的值变化而变化?如果变化,请写出h 的取值范围:如果不变,请求出h 的值.9.已知:直线2l y x =+:与过点(0,2)-且平行于x 轴的直线交于点A ,点A 关于直线1x =- 的对称点为点B .(1)求A B 、两点的坐标;(2)若抛物线2y x bx c =-++的顶点(,)m n 在直线l 上移动.①当抛物线2y x bx c =-++与坐标轴仅有两个公共点,求抛物线解析式;②若抛物线2y x bx c =-++与线段AB 有交点,当抛物线的顶点(,)m n 向上运动时,抛物线与y 轴的交点也向上运动,求m 的取值范围.10.如图,在平面直角坐标系中,O为坐标原点,点A在x轴的正半轴上,△AOB为等腰三角形,且OA =OB,B(8,6),过点B作y轴的垂线,垂足为D,点C在线段BD上,点D关于直线OC的对称点在腰OB上.(1)求AB的长;(2)求点C的坐标;(3)点P从点C出发,以每秒1个单位的速度沿折线CB﹣BA运动;同时点Q从A出发,以每秒1个单位的速度沿AO向终点O运动,当一点停止运动时,另一点也随之停止运动.设△BPQ的面积为S,运动时间为t,求S与t的函数关系式.11.如图,抛物线y=﹣12x2+32x+2,与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求直线BC的解析式;(2)点E①线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,△CBF的面积最大?求出△CBF的最大面积及此时E点的坐标.(3)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;12.如图,正方形ABCD 的边长为4,点P 是BC 边上的一个动点(点P 不与点B 、C 重合),连接AP ,过点P 作PQ ⊥AP 交DC 于点Q .设BP 的长为x ,CQ 的长为y .(1) y 与x 之间的函数关系式,并写出自变量x 的取值范围,(2) 当x 取何值时,y 的值最大?最大值是多少?13.如图,已知二次函数23y ax ax =--的图象交x 轴于点A ,B ,交y 轴于点C ,且5AB =,直线y kx b =+(0k >)与二次函数的图象交于点M ,N (点M 在点N 的右边),交y 轴于点P ,交x 轴于点Q .(1)求二次函数的解析式;(2)若5b =-,254OPQ S =△,求CMN △的面积; (3)若3b k =-,直线AN 与y 轴相交于点H ,求CP CH 的取值范围. 14.已知抛物线26(0)y ax bx a =++≠交x 轴于点()6,0A 和点()1,0B -.(1)求抛物线的解析式和顶点C 的坐标;(2)抛物线对称轴右侧两点M ,N (点M 在点N 的左侧)到对称轴的距离分别为1.5个单位长度和4.5个单位长度,点Q 为抛物线上点M ,N 之间(含点M ,N )的一个动点,求点Q 的纵坐标Q y 的取值范围. 15.如图,已知边长为10的正方形ABCD ,E 是BC 边上一动点(与B 、C 不重合),连结AE ,H 是BC 延长线上的一点,过点E 作AE 的垂线交DCH ∠的角平分线于点F .(1)求证:BAE CEF ∠=;(2)若2EC =时,求CEF △的面积;(3)EC 为何值时,CEF △的面积最大,最大值是多少?16.如图,在Rt ABC 中,90ACB ∠=︒,8AC =,4BC =,动点D 从点B 出发,以每秒1个单位长度的速度沿BA 向点A 运动,到达点A 停止运动,过点D 作ED AB ⊥交射线BC 于点E ,以BD 、BE 为邻边作平行四边形BDFE .设点D 运动时间为t 秒,平行四边形BDFE 与Rt ABC 的重叠部分面积为S .(1)当点F 落在AC 边上时,求t 的值;(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.17.如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =+-≠与x 轴交于(1,0)A 、(3,0)B 两点,与y 轴交于点C ,其顶点为点D ,点E 的坐标为(0,1)-,该抛物线与BE 交于另一点F ,连接BC . (1)求该抛物线的解析式;(2)若点(1,)H y 在BC 上,连接FH ,求FHB △的面积;(3)一动点M 从点D 出发,以每秒1个单位的速度沿平行于y 轴方向向上运动,连接OM ,BM ,设运动时间为t 秒(0)t >,在点M 的运动过程中,当t 为何值时,90OMB ∠=︒?18.如图在平面直角坐标系中,已知抛物线y =x 2﹣2x +c 与两坐标轴分别交于A ,B ,C 三点,且OC =OB ,点G 是抛物线的顶点.(1)求抛物线的解析式.(2)若点M 为第四象限内抛物线上一动点,点M 的横坐标为m ,四边形OCMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是x 轴上的动点,判断有几个位置能够使得点P 、Q 、A 、G 为顶点的四边形为平行四边形,直接写出相应的点P 的坐标.19.在平面直角坐标系xOy中,点A(0,4)、B(3,0),抛物线y=x2﹣4x+3a+2(a为实数).(1)写出抛物线的对称轴;(2)若点(m,y1)(m+2,y2)在抛物线上,且y1>y2,求m的取值范围.(3)若该抛物线图象在﹣1≤x≤3的部分与△AOB两直角边的交点个数为2,求a的取值范围.专题17 二次函数与实际问题:图形运动问题1.如图,在平面直角坐标系xOy 中,将抛物线2y x bx c =-++与直线1y x =-+相交于点()0,1A 和点()3,2B -,交x 轴于点C ,顶点为点F ,点D 是该抛物线上一点.(1)求抛物线的函数表达式;(2)如图1,若点D 在直线AB 上方的抛物线上,求DAB ∆的面积的最大值以及此时点D 的坐标; (3)如图2,若点D 在对称轴左侧的抛物线上,点()1,E t 是射线CF 上一点,当以C 、B 、D 为顶点的三角形与CAE ∆相似时,直接写出所有满足条件的t 的值.【答案】(1)221y x x =-++;(2)面积最大为278,此时37,24D ⎛⎫ ⎪⎝⎭;(3)1t =或2t =或1t =+或1t =.【分析】(1)将A 、B 两点坐标代入即可求解函数解析式;(2)过D 作DM//y 轴交AB 于点M ,设D 点坐标为()2,21a a a -++,则M (),1a a -+,用a 表示出DM ,然后根据割补法表示出DAB ∆的面积,利用二次函数的性质得出最大值和D 点坐标; (3)根据题意,45ACE ACO ∠=∠=︒,则BCD ∆中必有一个内角为45°,有两种情况:①若45CBD ∠=︒,得出BCD ∆是等腰直角三角形,因此ACE ∆也是等腰直角三角形,在对ACE ∆进行分类讨论;②若45CDB ∠=︒,根据圆的性质确定D 1的位置,求出D 1的坐标,在对ACE ∆与1CD B ∆相似分类讨论.【详解】(1)由题意得,将将A 、B 两点坐标代入函数解析式有:100293c b c =++⎧⎨-=-++⎩,解得21b c =⎧⎨=⎩ ∴抛物线解析式为221y x x =-++;(2)如图1,过D 作DM//y 轴交AB 于点M ,设D 点坐标为()2,21a a a -++,则M (),1a a -+, ∴()222113DM a a a a a =-++--+=-+ ()()()221133322ADB ADM BDM S S S a a a a a a ∆∆∆=+=-++-+- =23993244a a ⎛⎫--+- ⎪⎝⎭ =3327228a ⎛⎫--+ ⎪⎝⎭ ∴当32a =时,DAB ∆的面积的最大值278ADB S ∆=,此时D 点坐标为37,24⎛⎫ ⎪⎝⎭; (3)∵OA//OC ,如图2,CF//y 轴∴45ACE ACO ∠=∠=︒∴BCD ∆中必有一个内角为45°,由题意得BCD ∠不能为45°①若45CBD ∠=︒,则BD//x 轴。
抛物线关于顶点对称的解析式抛物线是一种常见的二次函数曲线,其解析式可以写成y=ax^2+ bx+c的形式。
在这个方程中,a、b、c分别代表抛物线的特征。
我们知道,抛物线是关于其顶点对称的。
顶点是抛物线的最高点或最低点,也是其轴线的最高点或最低点。
通过解析式,我们可以很容易地找到抛物线的顶点。
首先,我们需要找到抛物线的对称轴。
对称轴是通过抛物线顶点的一条垂直线。
由于抛物线是对称的,对称轴将把抛物线分为两个相等的部分。
对称轴的方程可以通过求解抛物线解析式中的x的值来得到,即x=-b/2a。
接下来,我们可以将对称轴的x值带入解析式,得到抛物线顶点的坐标。
假设对称轴的x值为h,将其代入解析式得到y=ah^2+bh +c。
这样,我们就得到了抛物线顶点的坐标为(h,ah^2+bh+ c)。
通过这个方法,我们可以找到任意一个抛物线的顶点坐标。
在解析几何中,抛物线的顶点对称性是非常重要的,它使我们能够快速推断出抛物线的特性,例如它的开口方向、最值点等。
此外,解析式还可以帮助我们更好地理解抛物线的其他特征。
例如,a的正负决定了抛物线的开口方向,正值表示开口向上,负值表示开口向下。
b的值则决定了抛物线在对称轴上的横向平移程度,c则影响抛物线的纵向平移。
总之,抛物线关于顶点对称的解析式为y=ax^2+bx+c。
通过解析式,我们可以轻松找到抛物线的顶点坐标,并且更好地理解抛物线的特性。
这一数学概念在实际生活中有着广泛的应用,例如物体的抛射运动、天体运动的描述等。
对于学习解析几何和二次函数的人来说,抛物线的顶点对称性是一个基础而重要的概念。
抛物线的解析式的三种形式解题例析松江区立达中学庄士忠卢栋才 201600抛物线的解析式有三种形式:①一般式:(a≠0);②顶点式:,(h,k)是顶点坐标;③交点式:(a≠0),其中x1,x2是方程的两个实根。
在具体解答中,需要根据题目的条件,直接或间接选择相应的形式以简化计算,一般利用待定系数法进行。
利用待定系数法确定二次函数的解析式的步骤可以总结为五个字:设、列、求、定。
例1、已知二次函数图像顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式。
(试用两种不同的方法)分析:根据所给条件中有顶点坐标的特点,可以选用顶点式。
解法一:设二次函数的解析式为:因为二次函数图像过点(1,0)所以所以所以函数解析式为。
分析:根据所给条件中顶点坐标可知,抛物线的对称轴为x=-2,利用抛物线的对称性,可求得点(1,0)关于对称轴x=-2的对称点(-5,0),可选用交点式。
解法二:设二次函数的解析式为:,因为二次函数图像过点(-2,3)所以所以函数解析式为。
点评:当题目条件中有顶点坐标时,选用顶点式;当条件中有两个与x轴的交点时,一般选用交点式。
但我们注意到,解法二是在知道抛物线与x轴的一个交点后,利用对称轴可从顶点坐标中得到,再利用抛物线的对称性获得另外一个与x轴的交点坐标,再利用交点式获得结果。
两种方法各有千秋,仔细体会必定会有所收获。
当然此题也可使用一般式,但不如这两种方法简单。
例2、已知二次函数,当x=-1时有最小值-4,且图像在x轴上截得线段长为4,求函数解析式。
分析:当题目条件中点的条件不足三个时,要充分利用二次函数的对称性转化条件。
在本题中由于所给条件能得到一个顶点坐标(-1,-4),另外一个条件是图像在x轴上截得的线段长,条件似乎不是特别充分。
仔细分析,有“当x=-1时有最小值-4”就知道对称轴,再有“图像在x轴上截得线段长为4”,利用对称性可得图像与x轴的交点坐标为(-3,0),(1,0),从而可利用交点式解决问题。