2021年大学公共课概率论与数理统计期末考试卷及答案(最新版)
- 格式:docx
- 大小:168.53 KB
- 文档页数:6
2020-2021《概率论与数理统计》期末课程考试试卷A4适应专业:软件 考试时间: 考试类型:闭卷考试所需时间:120分钟 考试成绩:一. 单项选择题(每小题2分,共12分)1. 设离散型随机变量X 的可能取值为3,2,1,相应的概率依次为a a a a +22,7,, 则a =( ) .(A) 1/4 (B) -1/2 (C) 1/2 (D) -1/42. 设随机变量X ~)1,2(N ,)1,1(~N Y ,令Y X Z +=2,则)(Z E =( ). (A) 4 (B) 2 (C) 1 (D) 53. 已知6/1)(,3/1)(,2/1)(===AB P B P A P ,则事件A 与B ( ).(A) 相互独立 (B) 互斥 (C) 相等 (D) 互为对立事件4. 设随机变量),(~2σμN X ,则概率}1{μ+≤X P ( ).(A) 随μ增加而变大 (B) 随μ增加而减小 (C) 随σ增加而不变 (D) 随σ增加而减小5. 设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)|(B A P ( ). (A) 0.2 (B) 0.4 (C) 0.6 (D) 0.86. 设样本n X X X ,,21来自正态总体),(2σμN ,在进行假设检验时,当( )时,一般采用统计量nX Z /0σμ-=(其中σ为标准差)(A) μ未知,检验202σσ= (B) μ已知,检验202σσ= (C) 2σ已知,检验0μμ= (D) 2σ未知,检验0μμ=二. 填空题(每空2分,共18分)1. 设A 、B 、C 是三个事件,用A 、B 、C 的运算表示A 、B 、C 三个事件中至 少有一个发生 .2. 已知3/1)(,2/1)(==B P A P ,如果事件A 与B 互斥,则=)(B A P ,如果事件A 与B 独立,则=)(B A P .3. 设由来自正态总体X~)9.0,(2μN 的容量为9的简单随机样本,得样本均值5=x , 则未知参数μ的置信水平为0.95的置信区间是 。
一、填空题(每小题3分,共15分)1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________。
答案:0.3解:3.0)(=+B A B A P即)(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+=所以1.0)(=AB P9.0)(1)()(=-==AB P AB P B A P 。
2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______.答案:161-e解答:λλλλλ---==+==+==≤e X P e eX P X P X P 2)2(,)1()0()1(2由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22 即 0122=--λλ 解得 1=λ,故161)3(-==e X P3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间)4,0(内的概率密度为=)(y f Y _________。
答案:04,()()0,.Y Y X y f y F y f <<'===⎩其它解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=-因为~(0,2)X U,所以(0X F =,即()Y X F y F = 故04,()()0,.Y Y Xyf y F y f<<'===⎩其它另解在(0,2)上函数2y x=严格单调,反函数为()h y=所以04,()0,.Y Xyf y f<<==⎩其它4.设随机变量YX,相互独立,且均服从参数为λ的指数分布,2)1(-=>eXP,则=λ_________,}1),{min(≤YXP=_________。
概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
2020-2021《概率论与数理统计》期末课程考试试卷A适用专业:信计 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一.填空题(每题2分,共10分)1.设事件B A ,互不相容,若()(),5.0,3.0==B P A P 则()AB P 为__________. 设事件B A ,相互独立,若()(),5.0,3.0==B P A P 则()AB P 为__________.2.设n ξξξ,,21 为取自母体服从正态分布()2,σμN 的子样,ξ为子样均值,2nS为子样方差。
则ξ服从的分布为____________,()nS n 1--μξ服从的分布为_____________.A3. 设n ξξξ,,21 为取自母体服从正态分布()1,0N 的子样,则∑=ni i12ξ服从的分布为_____________.4. 设ξ与η相互独立,分别是服从自由度为n 及m 的2x 分布的随机变量,则mn ηξς=服从的分布为_____________.5. 将一枚硬币重复掷N 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于__________.二、选择题(每小题2分共10分)1.设B A ,为互不相容事件,且()(),0,0>>B P A P 则结论正确的有( ) (A )()0>B A P (B )())(A P B A P > (C) ()0=B A P (D) ()()()B P A P B A P = 2、设随机变量ξ的概率密度函数为()x ϕ,且有()x ϕ()x -=ϕ,()x F 是ξ的分布函数,则对任意实数a ,有( ) (A )()()dx x a F a⎰-=-01ϕ (B )()()dx x a F a⎰-=-021ϕ (C)()()a F a F =- (D)()()12-=-a F a F3、设随机变量X 服从正态分布()2,σμN ,则随着σ的增大,()σμ<-X P ( )(A )单调增大 (B )单调减少 (C )保持不变 (D )增减不定4、任一连续型随机变量的概率密度函数()x ϕ一定满足( )(A )()10≤≤x ϕ;(B )定义域内单调不减;(C )()1=⎰+∞∞-dx x ϕ;(D )()1lim =+∞→x x ϕ。
2021年大学公共课概率论与数理统计必考题及答案(含解析)一、单选题1、设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是 A )当n 充分大时,近似有X ~(1),p p N p n -⎛⎫⎪⎝⎭B ){}(1),k kn k n P X k C p p -==-0,1,2,,k n =⋅⋅⋅ C ){}(1),k k n k n kP X C p p n-==-0,1,2,,k n =⋅⋅⋅ D ){}(1),1k kn k i nP X k C p p i n -==-≤≤ 【答案】B2、对于事件A ,B ,下列命题正确的是 (A )若A ,B 互不相容,则A 与B 也互不相容。
(B )若A ,B 相容,那么A 与B 也相容。
(C )若A ,B 互不相容,且概率都大于零,则A ,B 也相互独立。
(D )若A ,B 相互独立,那么A 与B 也相互独立。
【答案】D3、以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为 (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销” (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”。
【答案】D4、 设123,,X X X 相互独立同服从参数3λ=的泊松分布,令1231()3Y X X X =++,则 2()E Y =A )1.B )9.C )10.D )6. 【答案】C5、设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为(A )()211n i i X X n =-∑ (B )()2111n i i X X n =--∑ (C )211n i i X n =∑ (D )2X 【答案】A6、在假设检验问题中,犯第一类错误的概率α的意义是( ) (A)在H 0不成立的条件下,经检验H 0被拒绝的概率 (B)在H 0不成立的条件下,经检验H 0被接受的概率 (C)在H 00成立的条件下,经检验H 0被拒绝的概率 (D)在H 0成立的条件下,经检验H 0被接受的概率 【答案】C7、在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为的样本,则下列说法正确的是___ __(A)方差分析的目的是检验方差是否相等 (B)方差分析中的假设检验是双边检验(C)方差分析中包含了随机误差外,还包含效应间的差异(D)方差分析中包含了随机误差外,还包含效应间的差异【答案】D8、若X ~()t n 那么2χ~A )(1,)F nB )(,1)F nC )2()n χD )()t n 【答案】A9、设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是 (A)当n 充分大时,近似有X ~(1),p p N p n -⎛⎫⎪⎝⎭(B){}(1),k kn k n P X k C p p -==-0,1,2,,k n =⋅⋅⋅ (C ){}(1),k kn k nk P X C p p n-==-0,1,2,,k n =⋅⋅⋅ (D ){}(1),1k k n ki n P X k C p p i n -==-≤≤【答案】Bim 211.()im r e ij i i j S y y ===-∑∑2.1()rA i i i S m y y ==-∑10、 设123,,X X X 相互独立同服从参数3λ=的泊松分布,令1231()3Y X X X =++,则 2()E Y =A )1.B )9.C )10.D )6. 【答案】C 二、填空题1、已知2)20,8(1.0=F ,则=)8,20(9.0F 。
2021年大二必修概率论与数理统计期末考试题及答案(精品)一、单选题1、在一个确定的假设检验中,与判断结果相关的因素有(A)样本值与样本容量 (B)显著性水平a (C)检验统计量 (D)A,B,C同时成立【答案】D 2、在单因子方差分析中,设因子A有r个水平,每个水平测得一个容量为。
的样本,则下列说法正确的是.(A)方差分析的目的是检验方差是否相等(B)方差分析中的假设检验是双边检验S =Z£(y—y )2(C)方差分析中,1j=1 j i包含了随机误差外,还包含效应间的差异f (-a) = 1-J a f (x)dx A)0F (-a) =1-J a f (x) dx B)20【答案】B S A(D)方差分析中二£m (y—y)2ii =1i.包含了随机误差外,还包含效应间的差异【答案】D…,X是来自正态总体N(0,02)的容量为n+m的样本,n+m 则统计量V=m £X 2ir=—服从的分布n£X2ii=n+1A) F (m, n) B) F (n -1, m - 1) C) F (n, m) D) F (m一1, n一1)【答案】C4、若X〜t(n)那么/2〜A) F(1,n) B) F(n,1) C) /2(n) D)t(n)【答案】A5、设X的密度函数为f(x),分布函数为F(x),且f(x) = f(-x)。
那么对任意给定的a都有C)F(a) = F(-a) D)F (-a) = 2 F (a) -16、设X 1, X 2,…,X n 为来自正态总体N (禺0 2)的一个样本,若进行假设检验,当【答案】C 8、在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为。
的样本,则下列说法正确的是.(A)方差分析的目的是检验方差是否相等 (B)方差分析中的假设检验是双边检验S =XX(y -y )2(C)方差分析中,i =1'=1 " i 包含了随机误差外,还包含效应间的差异S=Xm (y -y )2 A ii(D)方差分析中 i =1包含了随机误差外,还包含效应间的差异【答案】DJ Ae -x ,x > X9、已知随机变量X 的密度函数f(x)=1 °,x 〈入(入>0,A 为常数),则概率P{九<X <九+a } (a >0)的值A)与a 无关,随入的增大而增大B)与a 无关,随入的增大而减小 C)与入无关,随a 的增大而增大D)与入无关,随a 的增大而减小【答案】C10、设X 〜N (N ,o 2)其中N 已知,o 2未知,X 1,X 之,X 3样本,则下列选项中不是统计量的是1X2A) X 1 + X 2 +X 3B) m ax{X 1,X 2,X 3}C) i =1 o 2 D) X 「从时,一般采用统计量日未知,检验o 2= o 2(A) 0日已知,检验o 2= o 2(B)(C)o 2未知,检验日=日O 2已知,检验N =R【答案】C 7、设 X 〜N Q ,o 2)其中自已知,o 2未知,X ,X ,X ,X 为其样本,下列各项不是统计量的是 1234(A) X = 1 X X4i i =1(B) X + X —2日(C) K = — X ( X - X )2o 2 ii =1(D) S 2 二1 X(X - X )3i i =1【答案】C 二、填空题1、设 X 1, X 2, X 3, X 4 是来自正态总体 N (0,22)的样本,令 Y =(X 1+ X2)2+ (X 3 -X 4)2,则当 C =时CY 〜殍(2)。
2020-2021《概率统与数理统计》课程考试试卷B2适用专业 ,考试日期. 答题时间2小时,闭卷,总分100分附表:0.025 1.96z = 0.975 1.96z =- 0.05 1.65z = 0.95 1.65z =-一、 填空题(每空2分,共28分)1、设C B A ,,是三事件,用C B A ,,的运算关系表示下列各事件. (1)C B A ,,至少有两个发生 (2)A 发生且B 与C 至少有一个发生 (3)C B A ,,只有一个发生2、若()()41,31==B P A P .则(1)若B A ,相互独立,则()=⋃B A P (2)若B A ,互斥,则()=⋃B A P3、设X 在(0,6)服从均匀分布,则方程22540x Xx X ++-=有实根的概 率为4、将n 只球(n ~1号)随机地放进n 个盒子(n ~1号)中去,一个盒子装一 只球,若一只球放入与球同号的盒子中,称为一个配对.设为总的配对数为X , 则()=X E5、设总体()p B X ,1~,n X X X ,,,21 是来自总体X 的样本.则),,,(21n X X X 的 分布为 ,()=X E ,()=X D ,()=2S E 6、设n X X X ,,,21 是来自分布()2,σμN 的样本,μ已知,2σ未知.则()~122∑=-ni i X σμ7、从一批零件中,抽取9个零件,测得其直径(mm )为:19.7 20.1 19.8 19.9 20.2 20.0 19.9 20.2 20.3,设零件的直径服从正态分布()2,σμN ,且21.0=σ(mm ).则这批零件的均值μ的置信水平为0.95的置信区间为8、设n X X X ,,,21 是来自总体X 的样本,且()()2,σμ==X D X E ,若()22cSX -是2μ的无偏估计,则=c二、选择题(共4题,每题3分,共12分)9.设B A ,是任意两个概率不为0的互斥事件,则下列结论肯定正确的是( ) A )B A 与互斥 B )B A 与相容 C )()()()B P A P AB P = D )()()A P B A P =-10.设()2,1,412141101=⎪⎪⎭⎫⎝⎛-=i X i 且()1021==X X P ,则()==21X X P ( )A )0B )1C )21D )4111.设随机变量Y X 与的联合概率密度函数为()⎪⎩⎪⎨⎧≤+=,01,1,22其他y x y x f π,则( )A )Y X 与相关,但不独立B )Y X 与不相关,但不独立C )Y X 与不相关,但独立D )Y X 与既相关,又独立12.设()12,1,0~+=X Y U X ,则 ( ) A )()1,0~U Y B )()110=≤≤Y P C )()3,1~U Y D )()010=≤≤Y P 三、解答题(共5题,每题12分,共60分)13、试卷中有一道题,共有四个答案,其中只有一个答案正确.任一考生如果会解这道题,则一定能选出答案.如果他不会这道题,则不妨任选一答案.设考生会解这道题的概率为0.8,试求考生选出正确答案的概率.14.设随机变量ξ的概率密度函数为()()()0 ,010,>⎩⎨⎧<<=k x kx x f ,,其他αα且95.0=ξE ,试求α,k .15.设随机变量(,)X Y 的联合概率密度函数为212, 01(,)0, y y x f x y ⎧≤≤≤=⎨⎩其他试求边际密度函数()X f x 和()E XY .16.设总体X 具有分布律其中()10<<θθ为未知参数.已知取得了样本值1,2,1321===x x x ,试求θ的 矩估计值和最大似然估计值.17.假定考生成绩服从正态分布()2,σμN ,1.5分,在某地一次数学统考中,随机抽取了36位考生的成绩,算得平均成绩为66.5分,问在显著性水平0.05下,是否可以人为这次考试全体考生的平均成绩为70分.2020-2021《概率统与数理统计》课程考试试卷B2答案一、填空题(每空2分,共28分)1、BC AC AB ⋃⋃,()C B A ⋃,C B A C B A C B A ⋃⋃;2、127,125;3、21;4、1;5、())1(,)1(,,1)(11p p np p p p pni i ni ix n x --∑-∑==-; 6、2)(n χ; 7、20.111; 8、n1. 二、选择题(共4小题,每题3分,共12分).12 11 10 9C B A D 、,、,、,、三、解答题13、0.8⨯1+0.25⨯0.2=0.80514、解 由110160.95f x dx xf x dx分;得191218k分;15、解 ()()230124,015分xX f x y dy x x ==≤≤⎰;()130011(,)1212.2分xy x E XY xyf x y dxdy dx xy dy ≤≤≤===⎰⎰⎰⎰16、解 22122131322E X 分;所以()332分,E X θ-=又()^453分;E X X ==所以的矩估计为566=分θ.由521L,则ln 5ln ln 2ln 18L分;令ln 0d L d,得5106分θ=,所以的最大似然估计为5126=分θ17、解 本题是关于正态总体均值的假设检验问题,由于总体方差未知,故用t 检验法,欲检验的一对假设为:01:70 vs :70H H μμ=≠拒绝域{}1/2z z α->,当显著性水平为0.05时,0.975 1.96z =-.由已知条件,66.5, 1.5,x σ==故检验统计量的值为()666.570141.5z ⨯-==-因为14 1.96z =>,故拒绝原假设,可以认为这次考试全体考生的平均成绩不为70分.。
2021年大学公共课概率论与数理统计期末考试卷及答案(新版)一、单选题1、若X ~211(,)μσ,Y ~222(,)μσ那么),(Y X 的联合分布为A ) 二维正态,且0=ρB )二维正态,且ρ不定C ) 未必是二维正态D )以上都不对【答案】C2、设随机变量X 和Y 的方差存在且不等于0,则()()()D X Y D X D Y +=+是X 和Y 的 A )不相关的充分条件,但不是必要条件;B )独立的必要条件,但不是充分条件;C )不相关的充分必要条件;D )独立的充分必要条件【答案】C3、设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是A )当n 充分大时,近似有X ~(1),p p N p n -⎛⎫ ⎪⎝⎭B ){}(1),k k n k n P X kC p p -==-0,1,2,,k n =⋅⋅⋅C ){}(1),k k n k n k P X C p p n-==-0,1,2,,k n =⋅⋅⋅D ){}(1),1k k n k i n P X k C p p i n -==-≤≤ 【答案】B4、对于任意两个随机变量X 和Y ,若()()()E XY E X E Y =⋅,则A )()()()D XY D X D Y =⋅B )()()()D X Y D X D Y +=+C )X 和Y 独立D )X 和Y 不独立【答案】B5、设为来自正态总体的一个样本,若进行假设检验,当___ __时,一般采用统计量n X X X ,,,21 2(,)N μσX U =(A)(B) (C) (D) 【答案】D6、若X ~()t n 那么2χ~(A )(1,)F n (B )(,1)F n (C )2()n χ (D )()t n【答案】A7、总体X ~2(,)N μσ,2σ已知,n ≥ 时,才能使总体均值μ的置信水平为0.95的置信区间长不大于L(A )152σ/2L (B )15.36642σ/2L (C )162σ/2L (D )16【答案】B8、设随机变量X 和Y 的方差存在且不等于0,则()()()D X Y D X D Y +=+是X 和Y 的 A )不相关的充分条件,但不是必要条件;B )独立的必要条件,但不是充分条件;C )不相关的充分必要条件;D )独立的充分必要条件【答案】C9、设随机变量X 和Y 的方差存在且不等于0,则()()()D X Y D X D Y +=+是X 和Y 的A )不相关的充分条件,但不是必要条件;B )独立的必要条件,但不是充分条件;C )不相关的充分必要条件;D )独立的充分必要条件【答案】C10、已知n X X X ,,,21 是来自总体的样本,则下列是统计量的是( ) X X A +)( +A ∑=-n i i X n B 1211)( a X C +)( +10 131)(X a X D ++5 【答案】B二、填空题220μσσ未知,检验=220μσσ已知,检验=20σμμ未知,检验=20σμμ已知,检验=1、设总体服从正态分布,且未知,设为来自该总体的一个样本,记,则的置信水平为的置信区间公式是 ;若已知,则要使上面这个置信区间长度小于等于0.2,则样本容量n 至少要取__ __。
12020-2021大学《概率论与数理统计》期末课程考试试卷A1适用专业: 考试日期试卷所需时间:2小时 闭卷 试卷总分 100分考试所需数据: 0.05(19)1,7291t = 0.05(20)1,7247t = 一、填空题:(8小题,每小题2分,共16分)1、设事件A 与B 为随机事件互不相容,()0.2P B =,则()P AB = _ __.2、袋中有10个球,其中6只红球,4只白球,今有2人依次随机地从袋中各取一球,取后放回。
则第2人取得白球的概率为 。
3、若1,2,3,4号学生随机的排成一排,则1号学生站在最后的概率为 .4、 设随机变量X 与Y 互相独立,且~(1,4),~(0,1),X N Y N 则为()=XY E .5、设随机变量2~(0,1),~()X N Y n χ,且X ,Y相互独立,则随机变量t =服从 分布. 6、设12,,,n X X X 是来自总体的样本2~(,)X N μσ,X 分别是样本均值,则有统计量nX /σμ-服从 分布. 7、统计推断的基本问题分为 和 两类问题. 8、已知总体2~(,)X N μσ,12,,,n X X X 是来自总体的样本,(1)2σ为已知,μ的置信水平为1α-的双侧置信区间为 . (2)2σ为未知,μ的置信水平为1α-的双侧置信区间为 .二、单项选择题:(8小题,每题2分,共16分)1、同时抛掷4枚匀称的硬币,则恰好有三枚正面向上的概率( ).A 0.5B 0.25C 0.125D 0.3752、任何一个连续型的随机变量的概率密度()x ϕ一定满足 ( ). A 0()1x ϕ≤≤ B 在定义域内单调不减 C ()1x dx ϕ+∞-∞=⎰ D ()0x ϕ>3、 若X ()2,1~U 则X Y 2=的密度函数()y f 为( )A 、()⎪⎩⎪⎨⎧<<=其他,041,2y y y fB 、()⎪⎩⎪⎨⎧<<=其他,021,2y y y fC 、()⎪⎩⎪⎨⎧<<=其他,041,21y y fD 、()⎪⎩⎪⎨⎧<<=其他,021,21y y f4、若x 的数学期望Ex 存在,则E[E(Ex)]= ( ) A 、Ex B 、x C 、0 D 、()3x E5、下列函数是某随机变量的分布函数的是( )A 、()211x x F += B 、()x x F sin = C 、()⎪⎩⎪⎨⎧>≤+=0,00,112x x x x F D 、()⎪⎩⎪⎨⎧>≤+=0,10,112x x x x F 6、设二维随机变量()Y X ,的概率密度函数为()⎩⎨⎧<<-<<-=其他,011,11,,y x c y x f ,则常数C( )A 、0.25B 、0.5C 、2D 、47、随机变量X 与Y 满足()()D X Y D X Y +=-, 则必有( ) .A X 与Y 独立B X 与Y 不相关C DX=0D DX DY 0⋅=8、在假设检验问题中,检验水平α的意义是 ( ). A 原假设0H 成立,经检验被拒绝的概率 B 原假设0H 成立,经检验不能被拒绝的概率C 原假设0H 不成立,经检验被拒绝的概率院系: 专业班级: 姓名: 学号:装 订 线2D 原假设0H 不成立,经检验不能拒绝的概率.三、(12分)设随机变量的分布列为:已知()1.0=X E ,()9.02=X E 试求(1)1p ,2p ,3p (2)()12+-X D (3) X 的分布函数()X F四、(12分)x 的分布函数为()⎪⎩⎪⎨⎧≥<≤>=e x e x x x X F ,11,ln 1,0求x 的概率密度()x f 及P (x<2),P(0<x≤3).五、(12分)()ηξ,的密度函数为()⎩⎨⎧<<<<=其他,010,6,2x y x y x f 求 ()()y f x f y x ,六、(12分)设()Y X ,联合概率密度函数为()()⎩⎨⎧>>=+-其他,00,0,2,2y x e y x f y x ,求YX Z 2+=的分布函数()z F Z 及密度函数()z f Z七、(10分)设总体X 具有分布律其中(01)θθ<<为未知参数,已知取得样本值1231,2,1x x x ===,试求θ的矩估计值和最大似然估计值.八、(10分)下面列出的是某工厂随便选取的20只部件的装配时间(min ):9.8 10.4 10.6 9.6 9.7 9.9 10.9 11.1 9.6 10.2 10.3 9.6 9.9 11.2 10.6 9.8 10.5 10.1 10.5 9.7设装配时间的总体服从正态分布2(,)N μσ,2,μσ均未知,是否可以认为装配时间的均值显著大于10(取0.05α=)?0.5099s =32020-2021大学《概率论与数理统计》期末课程考试试卷A1答案一、填空题1、0.2;2、0.4;3、0.25;4、0;5、()t n ;6、()0,1N ;7、参数估计、假设检验;8、((/2/2/2/2,11X z X z X t n X t n αααα⎛⎛-+--+- ⎝⎝.二、单项选择题1、B;2、C;3、C;4、A;5、C;6、A;7、B;8、C. 三 解、(1)由()1.0=X E ,()9.02=X E 知123311310.10.9p p p p p p p ++=⎧⎪-=⎨⎪+=⎩,所以120.4,0.1p p ==,30.5p =……4分; (2)()()214 3.56D X D X -+==……8分;(3)()0,10.4,100.5,011,1x x F X x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩……12分.四 解、(1)()1,10.x ef x x else ⎧≤<⎪=⎨⎪⎩……4分;(2)P (x<2)=()2ln 2F =……8分; (3)P(0<x ≤3)= ()31F =……12分.五 解、()()()()()()22,66(),016,),0112;xx x y yf x f x y dy dy x x x f y f x y dx dx y y +∞-∞+∞-∞===-<<===<<⎰⎰⎰分;分六 解、由()()()2Z F z P Z z P X Y z =≤=+≤得()()()()()1220211,0zz x x y z Z F z dx e dy z e z --+-==-+≥⎰⎰……8分;,0z Z f zze z ……12分.七 解、22122131322E X分;所以()332分,E X θ-=又()^453分;E X X ==所以的矩估计为566=分θ.由521L,则ln 5ln ln 2ln 17L分;令ln 0d L d,得596分θ=,所以的最大似然估计为5106=分θ八 解、由题可得0010:10;:102H H 分;0.05,20,119,10.24n n x 分;;原假设的拒绝域为16/t n n分;1.7541/0.5099/20xn 0.05(19)1,7291t =,所以在显著性水平为0.05的情况下拒绝原假设10分.。
2021年大学公共课概率论与数理统计期末考试卷及答案(最新版)一、单选题1、设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为(A )()211n i i X X n =-∑ (B )()2111n i i X X n =--∑ (C )211n i i X n =∑ (D )2X 【答案】A2、在对单个正态总体均值的假设检验中,当总体方差已知时,选用(A )t 检验法 (B )u 检验法 (C )F 检验法 (D )2χ检验法 【答案】B3、对总体的均值和作区间估计,得到置信度为95%的置信区间,意义是指这个区间 (A)平均含总体95%的值 (B)平均含样本95%的值(C)有95%的机会含样本的值 (D)有95%的机会的机会含的值 【答案】D4、对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受00:H μμ=,那么在显著水平0.01下,下列结论中正确的是(A )必须接受0H (B )可能接受,也可能拒绝0H (C )必拒绝0H (D )不接受,也不拒绝0H 【答案】A5、袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。
则第二人取到黄球的概率是(A )1/5 (B )2/5 (C )3/5 (D )4/5 【答案】B6、在对单个正态总体均值的假设检验中,当总体方差已知时,选用(A )t 检验法 (B )u 检验法 (C )F 检验法 (D )2χ检验法 【答案】B7、若X ~()t n 那么2χ~2~(,)X N μσμμ(A )(1,)F n (B )(,1)F n (C )2()n χ (D )()t n【答案】A8、袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。
则第二人取到黄球的概率是(A )1/5 (B )2/5 (C )3/5 (D )4/5 【答案】B9、已知n X X X ,,,21 是来自总体的样本,则下列是统计量的是( )X X A +)( +A ∑=-n i i X n B 1211)( a X C +)( +10 131)(X a X D ++5 【答案】B10、设随机变量X 和Y 的方差存在且不等于0,则()()()D X Y D X D Y +=+是X 和Y 的A )不相关的充分条件,但不是必要条件;B )独立的必要条件,但不是充分条件;C )不相关的充分必要条件;D )独立的充分必要条件 【答案】C 二、填空题1、一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________【答案】2/32、设总体服从正态分布,且未知,设为来自该总体的一个样本,记,则的置信水平为的置信区间公式是 ;若已知,则要使上面这个置信区间长度小于等于0.2,则样本容量n 至少要取__ __。
【答案】,3853、设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差= 【答案】X =7, S 2=2(,1)N μμ1,,n X X 11nii X X n ==∑μ1α-10.95α-=21X u α-±4、已知随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________【答案】1=a ,=b 1/25、设总体,且已知、未知,设是来自该总体的一个样本,则,,,中是统计量的有 。
【答案】,6、设11m i i X X m ==∑和11ni i Y Y n ==∑分别来自两个正态总体211(,)N μσ和222(,)N μσ的样本均值,参数1μ,2μ未知,两正态总体相互独立,欲检验22012:H σσ= ,应用 检验法,其检验统计量是 。
【答案】F ,2121(1)()(1)()mi i ni i n X X F m Y Y ==--=--∑∑7、设()2,0.3X N μ~,容量9n =,均值5X =,则未知参数μ的置信度为0.95的置信区间是 (查表0.025 1.96Z =) 【答案】(4.808,5.196)8、若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 【答案】4/59、测得自动车床加工的10个零件的尺寸与规定尺寸的偏差(微米)如下: +2,+1,-2,+3,+2,+4,-2,+5,+3,+4 则零件尺寸偏差的数学期望的无偏估计量是 【答案】210、设为来自正态总体的一个简单随机样本,其中参数和均未知,记,,则假设:的检验使用的统计量是。
(用和表示)2~(,)X N μσμ2σ123,,X X X 21231()3X X X σ+++12323X X X μσ++222123X X X μ++-(1)2X μ+222123X X X μ++-(1)2X μ+n X X X ,,,21 2(,)N μσμ2σ11ni i X X n ==∑221()ni i Q X X ==-∑0H 0μ=t X Q【答案】三、解答题(难度:中等) 1、(8分)设总体有概率分布现在观察到一个容量为3的样本,,,。
求的极大似然估计值?【答案】解:此时的似然函数为(2分)即(2分)(1分)(1分) 令 (1分)得的极大似然估计值.(1分)2、某大学从来自A ,B 两市的新生中分别随机抽取5名与6名新生,测其身高(单位:cm )后算得x =175.9,y=172.0;1.9s 3.11s 2221==,。
假设两市新生身高分别服从正态分布X-N(μ1,σ2),Y-N (μ2,σ2)其中σ2未知。
试求μ1-μ2的置信度为0.95的置信区间。
(t 0.025(9)=2.2622,t 0.025(11)=2.2010) 【答案】解:这是两正态总体均值差的区间估计问题。
由题设知,2-n n 1)s -(n 1)s -(n s .05.01.9s 3.11s 172y 9.175x 6,n 5,n 21222211w 222121++========α,,,, (2分)=3.1746, (4分) 选取t 0.025(9)=2.2622,则21μμ-置信度为0.95的置信区间为:X t =X 123θ123123()(1,2,1)(1)(2)(1)L P X X X P X P X P X θ========225()2(1)2(1)L θθθθθθθ=⨯-⨯=-ln ()ln 25ln ln(1)L θθθ=++-ln ()511d L d θθθθ=--ln ()0d L d θθ=θ5ˆ6θ=⎥⎦⎤⎢⎣⎡+++++21w 21221w 212n 1n 12)s -n (n t y -x ,n 1n 12)s -n (n t -y -x αα (8分)=[-0.4484,8.2484]. (10分) 注:置信区间写为开区间者不扣分3、(7分)机器包装食盐,假设每袋盐的净重服从正态分布,规定每袋标准重量为kg,方差。
某天开工后,为检验其机器工作是否正常,从装好的食盐中随机抽取抽取9袋,测得净重(单位:kg )为:0.994,1.014,1.02,0.95,1.03,0.968,0.976,1.048,0.982算得上述样本相关数据为:均值为,无偏标准差为,在显著性水平下,这天生产的食盐的净重的方差是否符合规定的标准? 【答案】解:,(2分)选统计量(2分) 确定否定域(1分)统计量的观测值为 (1分)因为,所以拒绝(1分)4、设总体X 服从正态分布,又设X 与2S 分别为样本均值和样本方差,又设21(,)n X N μσ+,且1n X +与12,,,n X X X ⋅⋅⋅相互独立,求统计量的分布。
【答案】(1)t n -5、盒中有7个球,其中4个白球,3个黑球,从中任抽3个球,求抽到白球数X 的数学期望()E X 和方差()D X 。
【答案】 1224(),()749E X D X ==6、(8分)设总体有概率分布现在观察到一个容量为3的样本,,,。
求的极大似然估计值?【答案】解:此时的似然函数为2~(,)X N μσ1μ=220.02σ≤0.998x =0.032s =0.05α=220:0.02H σ≤220:0.02H σ>222211()~(1)0.02nii XX n χχ==--∑2221{(1)}{15.5}W n αχχχ-=≥-=≥222221180.032()20.480.020.02n i i x x χ=⨯=-==∑22120.4815.5(1)n αχχ-=>=-220:0.02H σ≤X 123θ(2分)即(2分)(1分)(1分) 令 (1分)得的极大似然估计值.(1分)7、对球的直径作测量,设其值均匀地分布在[b a ,]内。
求体积的密度函数。
【答案】 1/32/3330()161()(),()366f x x x a b b a πππ-⎧⎪=⎨⎡⎤∈⎪⎢⎥-⎣⎦⎩其他123123()(1,2,1)(1)(2)(1)L P X X X P X P X P X θ========225()2(1)2(1)L θθθθθθθ=⨯-⨯=-ln ()ln 25ln ln(1)L θθθ=++-ln ()511d L d θθθθ=--ln ()0d L d θθ=θ5ˆ6θ=。