博弈论混合策略纳什均衡名词解释
- 格式:docx
- 大小:14.88 KB
- 文档页数:1
博弈论名词解释博弈论是一种研究冲突和合作决策的数学理论。
在博弈论中,玩家通过制定决策来实现自己的利益,同时也要考虑其他玩家的决策对自己利益的影响。
博弈论的研究对象是在有限的资源和信息条件下,决策制定者之间的相互作用。
以下是一些常见的博弈论名词解释:1. 纳什均衡(Nash equilibrium):是指在博弈过程中,每个玩家依据其他玩家的行为选择自己的最佳策略,而没有动机单方面改变策略。
纳什均衡是一种稳定状态,即每个玩家的策略都是最优的。
2. 零和博弈(zero-sum game):是指一个玩家的收益与另一个玩家的损失完全相等,总收益为零。
在零和博弈中,一个玩家的利益的增加必然导致另一个玩家的利益的减少,双方利益存在完全的对立关系。
3. 非零和博弈(non-zero-sum game):是指一个玩家的利益的增加不一定导致另一个玩家的利益减少。
在非零和博弈中,玩家之间的利益可以相互协调、互利互惠。
4. 博弈树(game tree):是博弈论中常用的一种图形表示方式,用于展示博弈过程中的决策步骤和可能的结果。
博弈树由顶点和边组成,顶点表示玩家的决策点,边表示不同的行动选择。
5. 最优策略(optimal strategy):在博弈论中,最优策略是指玩家的最佳选择,使得在对手的任何策略下,自身获得最大利益。
最优策略可能根据玩家的目标和信息不同而变化。
6. 合作与背叛(cooperation and defection):博弈论中常涉及到的两个关键概念。
合作指玩家之间通过协调行动来获得共同利益,背叛指玩家为了自身利益而选择对方不合作。
7. 博弈矩阵(game matrix):是一种表示博弈参与者和策略选择关系的表格。
博弈矩阵以参与者为行,以策略选择为列,用数字表示参与者在不同策略下的收益情况。
8. 支配策略(dominant strategy):在博弈论中,一种策略如果在所有可能的对手策略下都能带来最佳结果,则被称为支配策略。
混合策略纳什均衡名词解释
嘿,朋友们!今天咱来聊聊混合策略纳什均衡!这可不是什么晦涩难懂的概念哦。
想象一下,在一个竞争的场景里,就像一场激烈的游戏,大家都在绞尽脑汁地想着怎么出招。
混合策略纳什均衡呢,就是在这种情况下,各方参与者都没办法通过单独改变自己的策略来获得更好的结果。
它就好像是一场微妙的平衡舞蹈!每个人都要在不同的选择之间跳跃,找到那个最合适的组合。
不是单纯地选择一个固定的策略,而是有时候这样,有时候那样,让对手捉摸不透。
好比是下棋,你不能总是走同样的几步,得灵活多变,根据对手的反应随时调整。
而且啊,这个均衡可不是那么容易达到的哦,需要各方参与者不断地试探、博弈。
它不是那种一眼就能看穿的简单玩意儿,而是隐藏在复杂的互动之中。
就像在迷雾中寻找方向,需要耐心和智慧。
在现实生活中,混合策略纳什均衡也无处不在呢!商业竞争中,企业要考虑怎么定价、怎么推广,不就是在寻找这种微妙的平衡吗?政治博弈中,各方势力也在不断调整策略,试图达到对自己最有利的状态。
甚至在我们的日常生活中,比如和朋友玩游戏,或者在一些选择中纠结,都能看到混合策略纳什均衡的影子。
它让我们明白,有时候没有绝对的最佳策略,只有在不断变化中找到的相对平衡。
混合策略纳什均衡就是这么神奇,这么有趣!它让我们看到了竞争和互动的复杂性,也让我们更加懂得如何在各种情况下做出明智的选择。
所以啊,别小瞧了这个概念,它可是有着大用处呢!。
混合策略纳什均衡例子混合策略纳什均衡是博弈论中的一个重要概念,指的是各参与者选择一个概率分布作为他们的策略,从而达到一个稳定的状态。
在混合策略纳什均衡中,没有任何参与者可以通过单独改变自己的策略来获得更好的结果。
一个经典的混合策略纳什均衡的例子是“岩石-剪刀-布”游戏。
在这个游戏中,两个参与者(称为玩家1和玩家2)可以选择出岩石、剪刀或布中的任意一种。
每一种选择都有一定的胜负规则:岩石胜剪刀,剪刀胜布,布胜岩石。
假设玩家1选择出岩石、剪刀和布的概率分别为p1、q1和r1,玩家2选择出岩石、剪刀和布的概率分别为p2、q2和r2。
两个玩家的利益可以用一个支付矩阵表示如下:| 岩石 | 剪刀 | 布-----------------------------岩石 | 0 | -1 | 1-----------------------------剪刀 | 1 | 0 | -1-----------------------------布 | -1 | 1 | 0在混合策略纳什均衡中,每个玩家选择的概率分布必须使得对于每一种选择,玩家都不希望改变自己的概率分布。
在这个例子中,我们可以通过计算来找到混合策略纳什均衡。
假设玩家1选择出岩石的概率为p1,则选择剪刀的概率为q1=1-p1-0=1-p1,选择布的概率为r1=0-0=0。
同样地,玩家2选择出岩石的概率为p2,则选择剪刀的概率为q2=1-p2-0=1-p2,选择布的概率为r2=0-0=0。
为了找到混合策略纳什均衡,我们需要检查每一种选择,并确保玩家对于每一种选择都不希望改变自己的概率分布。
在这个例子中,无论玩家1选择什么概率分布,玩家2都可以通过选择相应的概率分布来获得更好的结果。
所以,不存在一个混合策略纳什均衡。
总结起来,混合策略纳什均衡是博弈论中一种稳定的策略选择状态,即不存在任何参与者可以通过单独改变自己的策略来获得更好的结果。
岩石-剪刀-布游戏是一个经典的混合策略纳什均衡的例子,其中玩家的选择概率分布是关键因素。
博弈论混合策略纳什均衡名词解释博弈论混合策略纳什均衡是指在博弈论中,当参与者不能确定选
择某一个策略时,采取混合策略的情况下达到的均衡状态。
具体来说,混合策略是指在一个博弈中,参与者以一定的概率选
择不同的纯策略。
而纳什均衡是指在一个博弈中,参与者无法通过单
独改变自己的选择来获得更好的结果,即不存在任何参与者可以通过
改变自己的策略来让其他参与者不再选择当前策略。
混合策略纳什均衡是指游戏中所有参与者以一定的概率选择不同
的纯策略,并且这种概率分配对于所有参与者都是最优的。
也就是说,在混合策略纳什均衡下,参与者没有更好的选择可供其采取,而其他
参与者也没有更好的概率分配可供其选择。
拓展:
在博弈论中,还有许多其他类型的均衡概念,例如纯策略纳什均衡、帕累托均衡、部分均衡等等。
纯策略纳什均衡是指游戏中参与者
以确定性的纯策略进行选择,使得没有参与者可以通过改变其策略来
获得更好的结果。
帕累托均衡是指在一个博弈中,不存在可以改善任
何一个参与者的情况。
部分均衡是指只有某些参与者达到均衡状态,而其他参与者未达到均衡状态。
博弈论是研究决策制定者在相互影响下进行决策的数学工具。
通过分析不同的博弈策略和可能的结果,博弈论可以帮助我们理解冲突和合作的情况,并提供一些决策建议。
名词解释纳什均衡
纳什均衡(Nash equilibrium),又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。
在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。
如果任意一位参与者在其他所有参与者的策略确定的情况下,其选择的策略是最优的,那么这个组合就被定义为纳什均衡。
一个策略组合被称为纳什均衡,当每个博弈者的均衡策略都是为了达到自己期望收益的最大值,与此同时,其他所有博弈者也遵循这样的策略。
纳什均衡是指博弈中这样的局面,对于每个参与者来说,只要其他人不改变策略,他就无法改善自己的状况。
在每个参与者都只有有限种策略选择并允许混合策略的前提下,纳什均衡一定存在。
以两家公司的价格大战为例,价格大战存在着两败俱伤的可能在对方不改变价格的条件下既不能提价,否则会进一步丧失市场;也不能降价,,因为会出现赔本甩卖。
于是两家公司可以改变原先的利益格局,通过谈判寻求新的利益评估分摊方案,也就是纳什均衡。
我们用一个浅显的例子来解释。
假如你喜欢一个女孩儿,现在这个女孩儿把你当做很好很好的朋友。
如果你表白,女孩儿可能会觉得这样当朋友太尴尬,那以后可能一起玩的机会都没有了。
如果女孩儿把你拒绝了,她也会失去一个很好的朋友,这一点对现在的她来说也是比较糟糕的结果。
于是,你们俩谁都不愿意主动做出改变,也不愿意了解互相的根本想法,
即是纳什均衡。
你们俩在信息不完全的情况下达到了貌似最优解,但是在外人看来却不是。
混合纳什均衡
混合纳什均衡(MixedNashEquilibrium)是在现代经济学中应用最为广泛的博弈论研究方法之一,它是一种经济行为模式,考虑了不同参与者的选择,基本上可以处理各种类型的博弈。
在混合纳什均衡中,玩家们通过等待、掷骰子等方式,依据不同的市场状况及已知收益,来寻求使得他们收益最大化的完美策略。
在经济学研究中,混合纳什均衡是一种特殊的策略,它可以在多人博弈(multi-person games)中使用。
它的概念是从规划的角度描述了参与者把自己的收益最大化的策略组合起来,使得每一方都无法单独改变策略,从而获得更多的收益。
因此,在混合纳什均衡的设定中,每一方都需要在极限情况下,通过结合等待、掷骰子等方式,来解决博弈问题。
在实际应用中,混合纳什均衡是非常有用的。
例如,政府在设计税收分配政策时,可以通过设定不同的折扣税率和调整税收分配平衡,使得国家获得最大收益,而且不会出现某一方受损。
在公司战略运作方面,混合纳什均衡也是一个很好的参考,可以帮助公司设计一系列的战略游戏,使得公司的投资者和管理人员的利益最大化。
总之,混合纳什均衡是一种非常实用的经济学理论,可以用于解决各种复杂的博弈问题,因此它已经被广泛应用于税收、企业战略及其他经济学领域。
混合纳什均衡可以帮助我们更加清楚地理解博弈游戏,进而有助于我们更好地应用博弈论来解决经济和政治上的问题。
- 1 -。
经济博弈论复习题(课程代码262268)一、 名词解释混合战略纳什均衡;子博弈精炼纳什均衡:完全信息动态博弈:不完全信息动态博弈:完 全信息静态博弈:帕累托上策均衡;囚徒困境:纳什均衡:子博弈;完美信息动态博弈;颐 抖手均衡;柠檢原理:完美贝叶斯均衡二、 计算分析题1、 在市场进入模型中,市场需求函数为p=13-Q,进入者和在位者生产的边际成本都为1, 固泄成本为0,潜在进入者的进入成本为4。
博弈时序为:在位者首先决左产量水平;潜在 进入者在观察到在位者的产量水平之后决定是否进入:如果不进入,则博弈结束,如果进入, 则进入者选择产疑水平。
求解以上博弈精炼纳什均衡。
2、 考虑如下扰动的性别战略博弈,其中A 服从[0, 1]的均匀分布,Of£<l 山和匕是独 立的,匕是参与人i 的私人信息。
求出以上博弈所有纯战略贝叶斯均衡。
3、求下列信号传递模型的贝叶斯Nash 均衡(讨论分离均衡和混同均衡)(2.1)(6.2)(3.1)(4J)5、古诺IW 弈:市场反需求函数为P (Q )= a- Q,其中Q = q 】+q2为市场总产豊q :为企 业i (i = l, 2)的产量。
两个企业的总成本都为Ci (qJ = cqi 。
请您思考以下问题: 1)在完全信息静态条件下,这一博弈的纳什均衡是什么?2)假设这一阶段博弈重复无限次。
试问:在什么样的贴现条件下,证产量组合(響,響)是子博弈精炼纳什均衡的?6、考虑一卞工作申请的佔弈。
两个学生同时向两家企业申请工作,每家企业只有一个工作 岗位。
工作申请规则如下:每个学生只能向其中一家企业申请工作;如果一家企业只有一个 学生申请,该学生获得工作:如果一家企业有两个学生申请,则每个学生获得工作的概率为1/2。
现在假泄每家企业的工资满足:W 1/2<W :<2W 1,则问: a.写出以上博弈的战略式描述b.求出以上博弈的所有纳什均衡7、(差异价格竞争)假立两个寡头企业进行价格竞争,但产品并不完全相同,企业,的市场需求门厂)="-门+匕仏丿=1,2),两家企业的生产成本函数为 g 求两个寡头同 时选择价格时的纳什均衡。
博弈论混合策略纳什均衡名词解释
博弈论是研究决策者在相互影响下进行决策的数学理论。
在博
弈中,混合策略指的是玩家以一定的概率分布来选择纯策略的组合,而纳什均衡是指在博弈中,每个玩家都采取最优的策略,假设其他
玩家的策略不变。
混合策略纳什均衡则是指在博弈中,玩家以一定
的概率分布来选择策略的组合,并且不存在其他策略组合可以使得
任何一个玩家通过改变自己的策略来获得更好的收益。
换句话说,
混合策略纳什均衡是玩家在采取混合策略的情况下达到的稳定状态,使得任何玩家都无法通过改变自己的策略来获得更好的结果。
混合
策略纳什均衡在博弈论中具有重要的理论和实际意义,可以帮助分
析和预测玩家在博弈中的最优决策行为,以及博弈过程中可能出现
的稳定状态。
在实际应用中,混合策略纳什均衡被广泛运用于经济学、政治学、生物学等领域,对于理解和解决实际问题具有重要的
指导意义。