高中数学排列组合习题精选
- 格式:doc
- 大小:183.50 KB
- 文档页数:6
高二数学“排列组合”专题训练(一)班级 姓名 学号一.选择填空题1.从编号分别为1,2,3,4,5,6,7,8,9,10,11的11个球中,取出5个小球,使这5个小球的编号之和为奇数,其方法总数为 ( C )(A )200 (B )230 (C )236 (D )2062. 从{1、2、3、4、…、20}中任选3个不同的数,使这三个数成等差数列,这样的等差数列最多有( B )(A )90个 (B )180个 (C )200个 (D )120个3兰州某车队有装有A ,B ,C ,D ,E ,F 六种货物的卡车各一辆,把这些货物运到西安,要求装A 种货物,B 种货物与E 种货物的车,到达西安的顺序必须是A ,B ,E (可以不相邻,且先发的车先到),则这六辆车发车的顺序有几种不同的方案 ( B )(A )80 (B )120 (C )240 (D )3604. 用0,1,2,3,4这五个数字组成无重复数字的五位数,其中恰有一个偶数夹在两个奇数之间的五位数的个数是( C )(A )48 (B )36 (C )28 (D )125. 某药品研究所研制了5种消炎药,,,,,54321a a a a a 4种退烧药,,,,4321b b b b 现从中取出两种消炎药和一种退烧药同时使用进行疗效实验,但又知,,21a a 两种药必须同时使用,且43,b a 两种药不能同时使用,则不同的实验方案有 ( D )(A )27种 (B )26种 (C )16种 (D )14种6. 某池塘有A ,B ,C 三只小船,A 船可乘3人,B 船可乘2 人,C 船可乘1 人,今天3个成人和2 个儿童分乘这些船只,为安全起见,儿童必须由成人陪同方能乘船,他们分乘这些船只的方法共有( D )(A )120种 (B )81种 (C )72种 (D )27种7. 将5枚相同的纪念邮票和8张相同的明信片作为礼品送给甲、乙两名学生,全部分完且每人至少有一件礼品,不同的分法是 ( A )(A )52 (B )40 (C )38 (D )118. 用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的共有( D )A.360个B.180个C.120个D.24个解:因为3+4+5+6=18能被9整除,所以共有44A =24个.9. 4名男生3名女生排成一排,若3名女生中有2名站在一起,但3名女生不能全排在一起,则不同的排法种数有 ( A )(A )2880 (B )3080 (C )3200 (D )360010. 在5付不同手套中任取4只,4只手套中至少有2只手套原来是同一付的可能取法有( C )(A) 190 (B) 140 (C )130 (D )3011.将某城市分为四个区(如图),需要绘制一幅城市分区地图,现有5种不同颜色,图中①②③④,每区只涂一色,且相邻两区必涂不同的颜色(不相邻两区所涂颜色不限),则不同的涂色方式有( A )A.240种B.180种C.120种D.60种12.圆周上有16个点,过任何两点连结一弦,这些弦在圆内的交点个数最多有( C )A.A 164B.A 162A 142C.C 164D.C 162C 14213.20个不同的小球平均分装到10个格子中,现从中拿出5个球,要求没有两个球取自同一格子中,则不同的取法一共有 ( B )A.C 510B.C 520 C.C 510C 12 D.A 210A 12 14.从6双不同的手套中任取4只,其中恰好有两只是一双的取法有 ( B )A.120种B.240种C.255种D.300种15.某人练习射击,射击8枪命中4枪,这4枪中恰好有3枪连在一起的不同种数为 ( D )A.72B.48C.24D.2016.某博物馆要在20天内接待8所学校的学生前去参观,其中一所学校因人数较多要连续参观3天,其余学校只需要1天,在这20天内不同的安排方法为 ( C )A.C 320A 717B.A 820C.C 118A 717D.A 1818种二. 填空题17.商店里有15种上衣,18种裤子,某人要买一件上衣或一条裤子,共有__33_种不同的选法;要买上衣、裤子各一件,共有_270_种不同的选法.18.将1,2,3,4,5,6,7,8,9这九个数排成三横三纵的方阵,要求每一竖列的三个数从前到后都是由从小到大排列,则不同的排法种数是_1680 _19.过正方体的每三个顶点都可确定一个平面,其中能与这个正方体的12条棱所成的角都相等的不同平面的个数为 8 个 20.3名老师带领6名学生平均分成三个小组到三个工厂进行社会调查,每小组有1名老师和2名学生组成,不同的分配方法有 540 种。
高中数学2018顿悟排列组合80题1、8本不同的书,按照以下要求分配,各有多少种不同的分法?(1)一堆1本,一堆2本,一堆5本;(2)甲得1本,乙得2本,丙得5本;(3)三人,一人1本,一人2本,一人5本;(4)平均分给甲、乙、丙、丁四人;(5)平均分成四堆;(6)分成三堆,一堆4本,一堆2本,一堆2本;⑺给三人一人4本,一人2本,一人2本.2、3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法种数共有______3、6名旅客安排在3个房间,每个房间至少安排一名旅客,则安排方法种数共多少种?4、把A、B、C、D四个小球平均分成两组,有______种分法5、七个人参加义务劳动,按下列方法分组有种不同的分法(1)分成三组,分别为1人、2人、4人;(2)选出5个人再分成两组,一组2人,另一组3人.6、四个不同的小球放入编号为1,2, 3, 4的四个盒子中,恰有一个空盒的放法有种.7、5本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为(A)480 (B)240 (C)120 (D)96 (E)808、将9个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为A. 70B. 140C. 280D. 840E. 809、将9个(含甲、乙)平均分成三组,甲、乙分在不同组,则不同分组方法的种数为A. 220B. 240C. 420D. 210E. 18010、从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有A. 300 B. 240 C. 144 D. 96 E. 28011、某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有种.(A)480 (B)600 (C)430 (D)500 (E)48012、将9本不同的书分成3堆,问:(1)每堆3本,有多少种不同的分法?若分给三人,每人3本,又有多少种不同分法?(2)一堆5本,其余两堆各2本,有多少种不同的分法?若分给甲,乙,丙3人,①每人拿一堆,有多少种不同的分法?②若甲得5本,乙与丙各得2本,又有多少种分法?(3)如果一堆4本,一堆3本,一堆2本,又有多少种的分法?【排队、排座位(元素--位置):相邻捆绑与相间插空】13、6人排成一排照相,甲不排在左端,乙不排在右端,共有____ 种不同的排法.14、6个人围圆桌而坐,一共有_______ 种不同的排法.15、7人照相,要求排成一排,甲乙两人相邻但不排在两端,不同的排法共有____ 种.A. 1440B. 960C. 720D. 480E. 28016、某人射击8枪,命中4枪,其中恰有3枪连中的不同种数有种A.72B.24C.20D.19E. 2817、3个男生和4个女生站成一排,男生不能相邻,有 ________ 种不同的排法18、现有8个人排成一排照相,其中甲、乙、丙三人不相邻的排法有一种.(A)36 3! 5! C (B)8! 6! 3! (C)35 3! 3! C (D)46 8! 4! C(E)46 8! 4! C19、,,, , A BCDE五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的排法种数有A、60 种B、48 种C、36 种D、24 种E、2820、1名老师和4名同学排成一排照相留念,若老师不站两端则有不同的排法有一种21、有两排座位,前排11个座位,后排12个座位,现安排2个人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是(A) 234 (B) 346 (C)350 (D) 363 (E)28022、电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有________ 种不同的播放方式.23、不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,则不同的排法种数共有A、12B、20C、24D、48E、2824、有6个座位连成一排,安排3人就座,恰有两个空位相邻的不同坐法有A、36B、48C、72D、96E、3825、5人站成一排,其中A不在左端也不和B相邻的排法种数为A、48B、54C、60D、66E、3826、由数字0,1,2, 3, 4, 5可以组成无重复数字且奇偶数字相间的六位数的个数有A、72B、60C、48D、52E、3827、用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻,5与6相邻,而7与8不.相邻,这样的八位数共有个.A、182B、146C、196D、576E、38028、有8个不同元素排成两排,每排4个元素,其中a、b不可以相邻和相对,有多少种排法?29、标号为1,2,3,4的红球与标号为1,2的白球排成一排,要求每个白球的两边都有红球,且要求2号白球与4号红球排在一起,一共有种不同的排法.30、有红,黄,蓝三种颜色的球各7个,每种颜色的7个球分别标有数字123,4,5,6,7, 从中任取3个标号不同的球,这3个球颜色互不相同且所标数字互不相邻的取法种数是多少?【隔板法-相同元素分配】31、方程10 abcd 的正整数解有多少组?32、现有30块相同的糖,分给6个小朋友,(1)每人至少分1块,有多少种分法?(2)每人至少分2块,有多少种分法?33、将20个相同的小球放入编号分别为1, 2, 3, 4的四个盒子中,要求每个盒子中的球数不少于它的编号数,求放法总数.【可重复问题---人房模型】34、将三封信投入4个信箱,问在下列两种情形下各有______ 种投法?(1)每个信箱至多只许投入一封信;(2)每个信箱允许投入的信的数量不受限制.35、运动会上有四项比赛的冠军在甲、乙、丙三人中产生,不同的夺冠情况共有一种.(A) 34 3! C (B) 34 (C) 43 (D) 34 C (E)4!【定序问题-无区别元素问题】36、书架上某层有6本书,新买了3本书放进该层,要保持原来6本书原有顺序,有― 种不同插法.37、信号兵把红旗与白旗从上到下挂在旗杆上表示信号,现有3面红旗、2面白旗,把5面旗都挂上去,可表示不同信号的种数是_____38、文艺团体下基层宣传演出,准备的节目表中原有4个歌舞节目,如果保持这些节目的相对顺序不变,拟再添2个小品节目,则不同的排列方法有39、有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有种不同的方法.(A)1800 (B)1600 (C)1320 (D)1260 (E) 188040、某工程队有6项工程需要先后单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,又工程丁必须在工程丙完成后立即进行,那么安排这6项工程的不同排法种数是(A)18 (B)36 (C)20 (D)50 (E) 80【对号与不对号-元素对应问题】41、将数字1, 2, 3, 4填入标号为1, 2, 3, 4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A、6 种B、9 种C、11 种D、23 种E、842、设有编号为1, 2, 3, 4, 5的五个球和编号为1, 2, 3, 4, 5的盒子现将这5个球投入5个盒子要求每个盒子放一个球,并且恰好有两个球的号码与盒子号码相同,问有种不同的方法.43、将标号为1, 2,-10的10个放入标号为1, 2,-10的10个盒子内,每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的放入的方法共有种.(A)120 (B)240 (C)260 (D)220 (E) 80【特殊要求元素选取(多元素、多要求):合理分类与准确分步】44、某书店有11种杂志,2元1本的8种,1元1本的3种.小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是 _____45、从6台甲机器和5台乙机器中任意选取5台,其中至少有甲机器与乙机器各两台,则不同的取法有种.46、4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲、乙两道题中任选一道作答,选甲题答对得10分,答错得-10分;选乙题答对得9分,答错得-9分.若4位同学的总分为零,则这4位同学不同得分的种数为(A) 48 (B) 36 (C) 24 (D) 18 (E) 8047、完成某项工作需4个步骤,每一步方法数相等,完成这项工作共有81种方法.改革后完成这项工作减少了一个步骤,则改革后完成该项工作有种方法.48、由1到30个数,挑三个相加使它们的和必须被3整除,有多少种方法?49、平面上有10个点,有且只有4点在一直线上,其他任何3点不共线,问能组成多少个不同的三角形?50、假设在200件产品中,有3件次品,现在从中任意抽出5件,其中至少有2件次品的抽法有种.51、有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A、1260 种B、2025 种C、2520 种D、5040 种E、288052、用1、2、3、4、5、6这六个数字可组成个无重复数字且不能被5整除的五位数.53、从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有种.54、某交通岗共有3人,从周一到周日的七天中,每天安排一人值班,每人至少值2天,其不同的排法共有种.(A)5040 (B)1260 (C)210 (D)630 (E)480 55、已知0 2 b ax是关于x的一元二次方程,其中a、} 4,3,2,1 { b,则解不同的一元二次方程的个数___________________56、现有1角、2角、5角、1元、2元、5元、10元、20元、50元人民币各一张,100元人民币2张,从中至少取一张,共可组成不同的币值种数是(A)1024 种(B)1023 种(C)1536 种(D)1535 种(E)108057、高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中甲工厂必须有班级去,其他可自由选择,则不同的分配方案有(A)16 (B)18 (C)37 (D)48 (E)8058、从1,3, 5, 7中任取2个数字,从0,2, 4, 6, 8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有个.59、某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加西部开发建设,其中甲同学不到第一个城市,乙不到第二个城市,共有 __________ 种不同派遣方案.60、6个身高不同的人分成2排,每排3人,每排从左到右,由低到高,且后排的人比他身前的人高,问有多少种排法?61、甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有(A)48 (B)12 (C)24 (D)30 (E)8062、甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(A)150 (B)180 (C)300 (D)345 (E)38063、从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有(A)70 (B)80 (C)100 (D)140 (E)8064、从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法A.120B.96C.60D.48E. 8065、政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为A. 14B. 16C. 20D. 12E. 1866、从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为A 85B 56C 49D 28E 8067、移动公司推出一组手机卡号码,卡号的前七位数字固定,从“XXXXXXX0000”到“XXXXXXX9999”共10000个号码.公司规定:凡卡号的后四位带有数字“4”或“7” 的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为A. 200B. 4096C. 5904D. 8320E. 688068、在一块并排10垄的田地中,选择2垄分别种植A、B两种作物,每种作物种植一垄为有利于生长,要求A、B两种作物的间隔不小于6垄,则不同的选垄方法共有一种. 69、从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有A. 36B. 12C. 18D. 48E. 2870、有11名翻译人员,其中5名英语翻译员,4名日语翻译员,另2人英语、日语都精通.从中找出8人,使他们组成两个翻译小组,其中4人翻译英文,另4人翻译日文,这两个小组能同时工作.问这样的分配名单共可开出一张.71、某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语各1人,有种不同的选法.72、从编号1,2,3,4,5,6的六个小球中任取4个,放在标号为ABCD的四个盒子中,每盒一球,且2号球不能放在B中,4号球不能放在D中,则不同放法的种数A、96B、180C、252D、280E、29073、一个口袋内装有4个不同的红球,6个不同的白球,若取出一个红球记2分,取出一个白球记1分,从口袋中取5个球,使总分不小于7分的取法有多少种?A、180B、186C、196D、20674、把同一排6张座位编号为1, 2, 3, 4, 5, 6的电影票全部分给4个人,每人至少1张,至多2张,且这两张票具有连续的编号,那么不同的分法种数是A. 168B. 96C. 72D. 144E.18875、5名乒乓球队员中,有2名老队员和3名新队员,现从中选出3名队员排成1, 2, 3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1, 2号中至少有1名新队员的排法有种.(A)48 (B)36 (C)43 (D)50 (E) 8076、在由数字1、2、3、4、5组成的所有没有重复数字的五位数中,大于23145且小于43521的数共有(A)56 (B)57 (C)58 (D)60 (E)8077、球队的10名队员中有3名主力队员,派5名参加比赛.3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,不同的出场安排共有种.(A)256 (B)252 (C) 118 (D) 238 (E) 280【涂色问题】78、如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种.79、四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色的方法有80、将3种作物种植在一排的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共有 ___ 种.A. 42B. 48C. 52 D . 66 E、38。
高中数学排列组合专题练习题一、选择题1、从 5 名男同学和 4 名女同学中选出 3 名男同学和 2 名女同学,分别担任 5 种不同的职务,不同的选法共有()A 5400 种B 18000 种C 7200 种D 14400 种解析:第一步,从 5 名男同学中选出 3 名,有\(C_{5}^3\)种选法;第二步,从 4 名女同学中选出 2 名,有\(C_{4}^2\)种选法;第三步,将选出的 5 名同学进行排列,有\(A_{5}^5\)种排法。
所以不同的选法共有\(C_{5}^3 × C_{4}^2 × A_{5}^5 = 10×6×120 =7200\)种,故选 C。
2、有 5 本不同的书,其中语文书 2 本,数学书 2 本,物理书 1 本。
若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是()A 24B 48C 72D 96解析:先排语文书有\(A_{2}^2 = 2\)种排法,再在语文书的间隔(含两端)处插数学书有\(A_{3}^2 = 6\)种插法,最后将物理书插入 4 个间隔中的一个有 4 种方法。
所以共有\(2×6×4 = 48\)种排法,故选 B。
3、从 0,1,2,3,4,5 这 6 个数字中,任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A 300B 216C 180D 162解析:分两类情况讨论:第一类:取出的偶数含 0。
偶数 0 和另外一个偶数的取法有\(C_{2}^1\)种,奇数的取法有\(C_{3}^2\)种。
0 在个位时,其他三个数字全排列,有\(A_{3}^3\)种;0 不在个位时,0 有 2 种位置,其他三个数字全排列,有\(2×A_{2}^1×A_{2}^2\)种。
此时共有\(C_{2}^1×C_{3}^2×(A_{3}^3 + 2×A_{2}^1×A_{2}^2) = 108\)种。
排列组合一、知识点讲解1.排列与组合的概念2.排列数与组合数(1)排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的________的个数,叫做从n 个不同元素中取出m 个元素的排列数,用____表示.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的________的个数,叫做从n 个不同元素中取出m 个元素的组合数,用____表示.3.排列数、组合数的公式及性质)(!n m m −+)m n n n C C =二、课堂练习题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列. ( ) (2)一个组合中取出的元素讲究元素的先后顺序. ( ) (3)两个组合相同的充要条件是其中的元素完全相同. ( ) (4)(n +1)!-n !=n ·n !.( )(5)若组合式C x n =C mn ,则x =m 成立. ( ) (6)k C k n =n C k -1n -1.( )题组二 教材改编2.[P29习题T5]6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为________.3.[P16例7]用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为________.题组三易错自纠4.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有_______种.5.为发展国外孔子学院,教育部选派6名中文教师到泰国、马来西亚、缅甸任教中文,若每个国家至少去一人,则不同的选派方案种数为________.6.寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种. (用数字作答)三、课中讲解题型一排列问题1.某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写了_______条毕业留言. (用数字作答)2.用1,2,3,4,5,6组成一个无重复数字的六位数,要求三个奇数1,3,5有且只有两个相邻,则不同的排法种数为________.3.在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列种数为________.排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.题型二组合问题例1.某市工商局对35种商品进行抽样检查,已知其中有15种假货. 现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解. 用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.练1.在某校2017年举办的第32届秋季运动会上,甲、乙两位同学从四个不同的运动项目中各选两个项目报名,则甲、乙两位同学所选的项目中至少有1个不相同的选法种数为________.练2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.题型三排列与组合问题的综合应用命题点1相邻、相间及特殊元素(位置)问题例1.在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________.例2.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在. 某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有________种.命题点2分组与分配问题例1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教. 现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有_____种不同的分派方法.例2.有4名优秀学生A,B,C,D全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.(1)解排列、组合问题要遵循的两个原则①按元素(位置)的性质进行分类;②按事情发生的过程进行分步. 具体地说,解排列、组合问题常以元素(位置)为主体,即先满足特殊元素(位置),再考虑其他元素(位置).(2)分组、分配问题的求解策略①对不同元素的分配问题a.对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为均分的组数),避免重复计数.b.对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.c.对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.②对于相同元素的“分配”问题,常用方法是采用“隔板法”.练1.(2017·全国Ⅱ改编)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有________种.练2.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,则共有________种不同的选法. (用数字作答)练3.把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.四、课后练习1.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是________.2.有5本不同的书,其中语文书3本,数学书2本,若将它们随机并排摆放到书架的同一层上,则同一科目的书都不相邻的摆放方法数为________.3.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为________.4.方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同. 在所有这些方程所表示的曲线中,不同的抛物线共有________条.5.有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次. A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名. 请你分析一下,这五位学生的名次排列的种数为________.6.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为________.7.若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种. (用数字作答)8. 在8张奖券中有一、二、三等奖各1张,其余5张无奖. 将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种. (用数字作答)9. 某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有______种.10. 用数字0,1,2,3,4组成的五位数中,中间三位数字各不相同,但首末两位数字相同的共有_____个.11. 某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________.12. 某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有________种不同的安排方法. (用数字作答)13. 7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为________.14. 将标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,则一共有________种放法.15. 在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现为其中的五个参会国的人员安排酒店,这五个参会国的人员要在a,b,c三家酒店中任选一家,且这三家都至少有一个参会国的人员入住,则这样的安排方法共有________种.16. 设三位数n=abc,若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有多少个?排列组合一、知识点讲解1.排列与组合的概念2.排列数与组合数(1)排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用.3.排列数、组合数的公式及性质)(!n m m −+C m -1n__ 二、课堂练习题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列. ()(2)一个组合中取出的元素讲究元素的先后顺序. ( ) (3)两个组合相同的充要条件是其中的元素完全相同. ( )(4)(n +1)!-n !=n ·n !.( )(5)若组合式C x n =C mn ,则x =m 成立. ( ) (6)k C k n =n C k -1n -1.( )【答案】×;×;√;√;×;√题组二教材改编2. [P29习题T5]6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为________.【答案】24“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A34=4×3×2=24.3. [P16例7]用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为________.【答案】48末位数字排法有A12种,其他位置排法有A34种,共有A12A34=48(种)排法,所以偶数的个数为48.题组三易错自纠4. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有_______种. 【答案】216第一类:甲在左端,有A55=5×4×3×2×1=120(种)排法;第二类:乙在最左端,甲不在最右端,有4A44=4×4×3×2×1=96(种)排法.所以共有120+96=216(种)排法.5. 为发展国外孔子学院,教育部选派6名中文教师到泰国、马来西亚、缅甸任教中文,若每个国家至少去一人,则不同的选派方案种数为________.【答案】540②一个国家派3名,一个国家派2名,一个国家派1名,有C36C23C11A33=360(种);③每个国家各派6. 寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种. (用数字作答)【答案】45设5名同学也用A,B,C,D,E来表示,若恰有一人坐对与自己车票相符的坐法,设E同学坐在自己的座位上,则其他四位都不坐自己的座位,则有BADC,BDAC,BCDA,CADB,CDAB,CDBA,DABC,DCAB,DCBA,共9种坐法,则恰有一人坐对与自己车票相符座位的坐法有9×5=45(种).三、课中讲解题型一排列问题1. 某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写了_______条毕业留言. (用数字作答)【答案】1 560由题意知两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了A240=40×39=1 560(条)留言.2. 用1,2,3,4,5,6组成一个无重复数字的六位数,要求三个奇数1,3,5有且只有两个相邻,则不同的排法种数为________.【答案】432根据题意,分三步进行:第一步,先将1,3,5分成两组,共C23A22种排法;第二步,将2,4,6排成一排,共A33种排法;第三步,将两组奇数插入三个偶数形成的四个空位,共A24种排法. 综上,共有C23A22A33 A24=3×2×6×12=432(种)排法.3. 在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列种数为________. 【答案】864解析先把数字1,3,5,7作全排列,有A44=24种排法,再排数字6,由于数字6不与3相邻,在排好的排列中,除去3的左、右2个空隙,还有3个空隙可排数字6,故数字6有3种排法,最后排数字2,4,又数字2,4不与6相邻,故在剩下的4个空隙中排上2,4,有A24种排法,故共有A44×3×A24=864(种)排法.排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.题型二组合问题例1.某市工商局对35种商品进行抽样检查,已知其中有15种假货. 现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?【答案】(1)从余下的34种商品中,选取2种有C234=561种取法,∴某一种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984种取法.∴某一种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1种,从15种假货中选取2种有C120C215=2 100种取法.∴恰有2种假货在内的不同的取法有2 100种.(4)选取2种假货有C120C215种,选取3种假货有C315种,共有选取方式C120C215+C315=2 100+455=2 555(种).∴至少有2种假货在内的不同的取法有2 555种.(5)方法一(间接法)选取3种的总数为C335,因此共有选取方式C335-C315=6 545-455=6 090(种).∴至多有2种假货在内的不同的取法有6 090种.方法二(直接法)选取3种真货有C320种,选取2种真货有C220C115种,选取1种真货有C120C215种,因此共有选取方式C320+C220C115+C120C215=6 090(种).∴至多有2种假货在内的不同的取法有6 090种.组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解. 用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.练1.在某校2017年举办的第32届秋季运动会上,甲、乙两位同学从四个不同的运动项目中各选两个项目报名,则甲、乙两位同学所选的项目中至少有1个不相同的选法种数为________.【答案】30因为甲、乙两位同学从四个不同的项目中各选两个项目的选法有C24C24种.其中甲、乙所选的项目完全相同的选法有C24种,所以甲、乙所选的项目中至少有1个不相同的选法共有C24C24-C24=30(种).练2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种. 【答案】66共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故不同的取法有C45+C44+C25C24=66(种).题型三排列与组合问题的综合应用命题点1相邻、相间及特殊元素(位置)问题例1.在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________.【答案】602位男生不能连续出场的排法共有N1=A33×A24=72(种),女生甲排第一个且2位男生不连续出场的排法共有N2=A22×A23=12(种),所以出场顺序的排法种数为N=N1-N2=60.例2.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在. 某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有________种.【答案】24根据题意,分两种情况讨论:①A家庭的孪生姐妹在甲车上,甲车上另外的两个孩子要来自不同的家庭,可以在剩下的三个家庭中任选2个,再从每个家庭的2个孩子中任选一个来乘坐甲车,有C23×C12×C12=12(种)乘坐方式;②A家庭的孪生姐妹不在甲车上,需要在剩下的三个家庭中任选1个,让其2个孩子都在甲车上,对于剩余的两个家庭,从每个家庭的2个孩子中任选一个来乘坐甲车,有C13×C12×C12=12(种)乘坐方式,故共有12+12=24(种)乘坐方式.命题点2分组与分配问题例1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教. 现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.【答案】90例2.有4名优秀学生A,B,C,D全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.【答案】36则共有6×6=36(种)不同的保送方案.(1)解排列、组合问题要遵循的两个原则①按元素(位置)的性质进行分类;②按事情发生的过程进行分步. 具体地说,解排列、组合问题常以元素(位置)为主体,即先满足特殊元素(位置),再考虑其他元素(位置).(2)分组、分配问题的求解策略①对不同元素的分配问题a. 对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为均分的组数),避免重复计数.b. 对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.c. 对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.②对于相同元素的“分配”问题,常用方法是采用“隔板法”.练1.(2017·全国Ⅱ改编)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有________种.【答案】36由题意可知,其中1人必须完成2项工作,其他2人各完成1项工作,可得安排方式为C13·C24·A22=练2.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,则共有________种不同的选法. (用数字作答)【答案】660方法一只有1名女生时,先选1名女生,有C12种方法;再选3名男生,有C36种方法;然后排队长、副队长位置,有A24种方法. 由分步计数原理知,共有C12C36A24=480(种)选法.有2名女生时,再选2名男生,有C26种方法;然后排队长、副队长位置,有A24种方法. 由分步计数原理知,共有C26A24=180(种)选法. 所以依据分类计数原理知,共有480+180=660(种)不同的选法.方法二不考虑限制条件,共有A28C26种不同的选法,而没有女生的选法有A26C24种,故至少有1名女生的选法有A28C26-A26C24=840-180=660(种).练3.把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.【答案】36将产品A与B捆绑在一起,然后与其他三种产品进行全排列,共有A22A44种方法,将产品A,B,C 捆绑在一起,且A在中间,然后与其他两种产品进行全排列,共有A22A33种方法. 于是符合题意的摆法共有A22A44-A22A33=36(种).四、课后练习1.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是________.【答案】18为A25-2=18.2. 有5本不同的书,其中语文书3本,数学书2本,若将它们随机并排摆放到书架的同一层上,则同一科目的书都不相邻的摆放方法数为________.【答案】12A33A22=12.3. 某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为________.【答案】24将4个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在3个车位上任意排列,有A33=6种排法,再将捆绑在一起的4个车位插入4个空档中,有4种方法,故共有4×6=24(种)方法.4. 方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同. 在所有这些方程所表示的曲线中,不同的抛物线共有________条.【答案】62a,b均不为0,且b取互为相反数的两数时抛物线相同,故分a取1与a不取1两类:①a取1时,b2取值为4,9两类,当b2=4和b2=9时,c都有5种情况,此时有2×5=10(种);②a不取1时有C14种,不妨设a取2,则b2取值有1,4,9三类,当b2=1时,c有4种,当b2=4时,c有4种,当b2=9时,c有5种,此时有C14(4+4+5)=52(条)不同的抛物线.故共有10+52=62(种)不同的抛物线.5. 有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次. A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名. 请你分析一下,这五位学生的名次排列的种数为________.【答案】18由题意知,名次排列的种数为C13A33=18.6. 用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为________.【答案】72由题可知,五位数要为奇数,则个位数只能是1,3,5.分为两步:先从1,3,5三个数中选一个作为个位数有C13种选法,再将剩下的4个数字排列有A44种排法,则满足条件的五位数有C13·A44=72(个).7. 若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种. (用数字作答)【答案】11把g,o,o,d 4个字母排一列,可分两步进行,第一步:排g和d,共有A24种排法;第二步:排两个o,共1种排法,所以总的排法种数为A24=12.其中正确的有一种,所以错误的共有A24-1=12-1=11(种).8. 在8张奖券中有一、二、三等奖各1张,其余5张无奖. 将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种. (用数字作答)【答案】60分两类:第一类:3张中奖奖券分给3个人,共A34种分法;第二类:3张中奖奖券分给2个人相当于把3张中奖奖券分两组再分给4人中的2人,共有C23A24种分法.总获奖情况共有A34+C23A24=60(种).9. 某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有______种.【答案】362名内科医生的分法为A22,3名外科医生与3名护士的分法为C23C13+C13C23,共有A22(C23C13+C13C23)=36(种)不同的分法.10. 用数字0,1,2,3,4组成的五位数中,中间三位数字各不相同,但首末两位数字相同的共有________个.【答案】240由题意,知本题是一个分步计数问题,从1,2,3,4四个数中选取一个有四种选法,接着从这五个数中选取3个在中间三个位置排列,共有A35=60个,根据分步计数原理知,有60×4=240(个).11. 某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________.【答案】120先安排小品节目和相声节目,然后让歌舞节目去插空. 安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”,“小品1,相声,小品2”和“相声,小品1,小品2”. 对于第一种情况,形式为“□小品1歌舞1小品2□相声□”,有A22C13A23=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有A22A34=48(种)安排方法. 由分类计数原理知,共有36+36+48=120(种)安排方法.12. 某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有________种不同的安排方法. (用数字作答)【答案】1145个人住3个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C35·A33=90种,A,B住同一房间有C23·A33=18种,故有90-18=72(种),根据分类计数原理可知,共有42+72=114(种).13. 7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为________.【答案】360前排3人有4个空,从甲、乙、丙3人中选1人插入,有C14C13种方法,对于后排,若插入的2人不相邻,有A25种方法;若相邻,有C15A22种,故共有C14C13(A25+C15A22)=360(种).14. 将标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,则一共有________种放法.【答案】150标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,故可分成(3,1,1)和(2,2,1)15. 在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现为其中的五个参会国的人员安排酒店,这五个参会国的人员要在a,b,c三家酒店中任选一家,且这三家都至少有一个参会国的人员入住,则这样的安排方法共有________种.【答案】150这三家酒店入住的参会国数目有以下两种可能:满足题意的安排方法共有90+60=150(种).。
高中数学选修2-3排列组合问题题目精选(附答案)1. 某班有20名学生,其中有5名男生和15名女生。
从中选出3名学生组成一个小组,求以下概率:- 小组中至少有1名男生的概率是多少?答案:小组中至少有1名男生的概率为1减去小组全为女生的概率。
全为女生的概率可以用排列组合来计算,即从15名女生中选出3名女生组成小组的概率。
因此,小组中至少有1名男生的概率为1减去(C(15, 3) / C(20, 3))。
2. 有6本不同的数学书和4本不同的物理书。
现从这些书中任选2本,求以下概率:- 所选的两本书中至少有1本是数学书的概率是多少?答案:所选的两本书中至少有1本是数学书的概率等于1减去两本书都是物理书的概率。
两本书都是物理书的概率可以用排列组合来计算,即从4本物理书中选出2本物理书的概率。
因此,所选的两本书中至少有1本是数学书的概率为1减去(C(4, 2) / C(10, 2))。
3. 某公司有8名员工,其中有3名男员工和5名女员工。
请问,从这8名员工中选出4名员工组成一个小组,使得小组中至少有1名男员工的概率是多少?答案:小组中至少有1名男员工的概率等于1减去小组全为女员工的概率。
全为女员工的概率可以用排列组合来计算,即从5名女员工中选出4名女员工组成小组的概率。
因此,小组中至少有1名男员工的概率为1减去(C(5, 4) / C(8, 4))。
4. 一批音乐CD包含5张古典音乐CD和7张摇滚音乐CD。
现从这批CD中随机选取3张,求以下概率:- 所选的3张CD中至少有2张是摇滚音乐CD的概率是多少?答案:所选的3张CD中至少有2张是摇滚音乐CD的概率等于1减去3张CD都是古典音乐CD的概率。
3张CD都是古典音乐CD的概率可以用排列组合来计算,即从5张古典音乐CD中选出3张古典音乐CD的概率。
因此,所选的3张CD中至少有2张是摇滚音乐CD的概率为1减去(C(5, 3) / C(12, 3))。
5. 一位学生参加了5项体育比赛,他能获得的奖牌有金牌、银牌和铜牌。
高中排列组合试题及答案一、选择题1. 从5个人中选出3个人参加比赛,不同的选法有()种。
A. 10B. 15C. 20D. 60答案:B2. 有3个不同的球和3个不同的盒子,每个盒子只能放一个球,不同的放法有()种。
A. 3B. 6C. 9D. 27答案:D3. 从6本不同的书中选3本送给3个不同的人,每人一本,不同的送法有()种。
A. 20B. 60C. 120D. 720答案:B二、填空题4. 一个班级有20名学生,需要选出5名学生组成一个小组,那么不同的选法有______种。
答案:15,5045. 从10个人中选出3个人担任班长、副班长和学习委员,不同的选法有______种。
答案:720三、解答题6. 某学校有5个不同学科的竞赛,每个学生可以选择参加1个或多个竞赛,求至少参加一个竞赛的学生的选法总数。
答案:首先,每个学生有6种选择:不参加任何竞赛,只参加一个竞赛,参加两个竞赛,参加三个竞赛,参加四个竞赛,参加所有五个竞赛。
对于每个学科,学生有两种选择:参加或不参加,所以总共有2^5=32种可能的组合。
但是,我们需要排除不参加任何竞赛的情况,所以选法总数为32-1=31种。
7. 一个班级有30名学生,需要选出一个5人的篮球队,其中必须包括1名队长和4名队员。
如果队长和队员可以是同一个人,那么不同的选法有多少种?答案:首先,选择队长有30种可能,然后从剩下的29人中选择4名队员,有C(29,4)种可能。
但是,由于队长和队员可以是同一个人,我们需要减去只选了4名队员的情况,即C(30,4)种。
所以,总的选法为30*C(29,4) - C(30,4) = 30*1911 - 27,405 = 57,330种。
四、计算题8. 一个数字密码由5个不同的数字组成,每位数字可以是0-9中的任意一个,求这个密码的所有可能组合。
答案:每位数字有10种可能,所以总的组合数为10^5 = 100,000种。
9. 一个班级有15名学生,需要选出一个7人的足球队,不同的选法有多少种?答案:从15名学生中选出7人,不同的选法有C(15,7) = 6,435种。
排列组合复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同3. 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同的排法三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种 四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。
高二数学排列与组合练习题黎岗排列练习1、将 3 个不同的小球放入 4 个盒子中,则不同放法种数有()A、81B、64C、12D、142、n∈N且 n<55,则乘积( 55-n )( 56-n )( 69-n )等于()A、B、C、D、3、用 1,2,3, 4 四个数字可以组成数字不重复的自然数的个数()A、64B、60C、24D、2564、3 张不同的电影票全部分给10 个人,每人至多一张,则有不同分法的种数是()A、2160B、120C、240D、7205、要排一张有 5 个独唱和 3 个合唱的节目表,如果合唱节目不能排在第一个,并且合唱节目不能相邻,则不同排法的种数是()A、B、C、D、6、5 个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有()A、B、C、D、7、用数字 1,2,3,4,5 组成没有重复数字的五位数,其中小于50000 的偶数有()A、24B、36C、46D、608、某班委会五人分工,分别担任正、副班长,学习委员,劳动委员,体育委员,其中甲不能担任正班长,乙不能担任学习委员,则不同的分工方案的种数是()A、B、C、D、答案:1-8 BBADCCBA一、填空题1、( 1)( 4P84+2P85)÷( P86-P95)× 0! =___________(2)若 P2n3=10P n3,则 n=___________2、从 a、b、c、 d 这四个不同元素的排列中,取出三个不同元素的排列为__________________________________________________________________3、4 名男生, 4 名女生排成一排,女生不排两端,则有_________种不同排法。
4、有一角的人民币 3 张,5 角的人民币 1 张,1 元的人民币 4 张,用这些人民币可以组成_________种不同币值。
二、解答题5、用 0,1,2, 3, 4, 5 这六个数字,组成没有重复数字的五位数,( 1)在下列情况,各有多少个?①奇数②能被 5 整除③能被 15 整除④比 35142 小⑤比 50000 小且不是 5 的倍数6、若把这些五位数按从小到大排列,第100 个数是什么?1××××10×××12×××13×××14×××1502×15032150347、7 个人排成一排,在下列情况下,各有多少种不同排法?(1)甲排头(2)甲不排头,也不排尾(3)甲、乙、丙三人必须在一起(4)甲、乙之间有且只有两人(5)甲、乙、丙三人两两不相邻(6)甲在乙的左边(不一定相邻)(7)甲、乙、丙三人按从高到矮,自左向右的顺序(8)甲不排头,乙不排当中8、从 2,3,4, 7, 9 这五个数字任取3 个,组成没有重复数字的三位数(1)这样的三位数一共有多少个?(2)所有这些三位数的个位上的数字之和是多少?(3)所有这些三位数的和是多少?答案:一、1、( 1)5(2)8二、2、abc,abd,acd,bac,bad,bcd,cab,cad,cbd,dab,dac,dbc3、86404、395、①3×=288②③④⑤6、=120 〉 100=24=24=24=24=27、( 1)=720(2) 5 =3600( 3)=720( 4)=960( 5)=1440( 6)=2520(7) =840(8)8、( 1)(2)(3)300×( 100+10+1) =33300排列与组合练习1、若,则n的值为()A、6B、7C、8D、92、某班有 30 名男生, 20 名女生,现要从中选出 5 人组成一个宣传小组,其中男、女学生均不少于 2 人的选法为()A、B、C、D、3、空间有 10 个点,其中 5 点在同一平面上,其余没有 4 点共面,则 10 个点可以确定不同平面的个数是()A、206B、205C、111D、1104、6 本不同的书分给甲、乙、丙三人,每人两本,不同的分法种数是()A、B、C、D、5、由 5 个 1,2 个 2 排成含 7 项的数列,则构成不同的数列的个数是()A、21B、25C、32D、426、设 P1、P2, P20是方程 z20=1 的 20 个复根在复平面上所对应的点,以这些点为顶点的直角三角形的个数为()A、360B、180C、90D、457、若,则k的取值范围是()A、[5 ,11]B、[4,11]C、[4,12]D、4,15]8、口袋里有 4 个不同的红球, 6 个不同的白球,每次取出 4 个球,取出一个线球记 2分,取出一个白球记 1 分,则使总分不小于 5 分的取球方法种数是()A、B、C、D、答案:1、B2、D3、C4、A5、A6、B7、B 8、C1、计算:( 1)=_______( 2)=_______2、把 7 个相同的小球放到10 个不同的盒子中,每个盒子中放球不超 1 个,则有_______种不同放法。
高二数学排列组合练习题1. 某班共有6个男生和5个女生,现从中选出3名男生和2名女生组成一个团队。
问有多少种不同的组队方式?解析:根据排列组合的知识,我们可以使用组合的方式求解。
选取3名男生可以有C(6,3)种选择,选取2名女生可以有C(5,2)种选择。
根据乘法原理,两者的选择方式相互独立,所以总的组队方式数量为C(6,3) * C(5,2) = 20 * 10 = 200种。
2. 某电影院有8个座位,现有8名观众前往观看电影。
其中3对观众是夫妻关系,要求夫妻不能坐在相邻的座位上。
问有多少种不同的座位安排方式?解析:对于夫妻关系的观众,他们不能坐在相邻的座位上,相邻的座位可以看作是一对座位。
首先,我们把3对夫妻的座位看作是3个座位,这样就有6个单独的座位。
对于这6个单独的座位,可以有6!种不同的座位安排方式。
而夫妻关系的座位本身可以有3!种不同安排方式。
根据乘法原理,总的座位安排方式为6! * 3! = 720 * 6 = 4320种。
3. 某商店有8本不同的书和4个不同的笔记本,现要从中选取3本书和2个笔记本作为一份礼品赠送给顾客。
问有多少种不同的礼品组合方式?解析:选取3本书可以有C(8,3)种选择,选取2个笔记本可以有C(4,2)种选择。
根据乘法原理,总的礼品组合方式为C(8,3) * C(4,2) =56 * 6 = 336种。
4. 某个数字锁的密码是由4位数字组成,每位数字可以使用0-9之间的任意数字且可重复。
问共有多少种不同的密码组合方式?解析:对于每一位数字,有10种选择(0-9)。
因此,对于4位数字组成的密码,一共有10^4种不同的组合方式,即10000种。
5. 某班级里有10个学生,其中5个人喜欢足球,2个人喜欢篮球,3个人喜欢乒乓球。
现从中选取4个学生组成一支球队,要求至少有1名喜欢足球、至少有1名喜欢篮球、至少有1名喜欢乒乓球。
问有多少种不同的球队组合方式?解析:可以分为几种情况讨论:情况一:选取1名足球爱好者、1名篮球爱好者和2名乒乓球爱好者。
高中数学排列组合练习题及答案1、小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?解:把路程看成1,得到时间系数去时时间系数:1/3÷12+2/3÷30返回时间系数:3/5÷12+2/5÷30两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)2、广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有()A. 36种B. 12种C. 18种D. 48种根据题意分2种情况讨论,①若小张或小赵入选,则有选法C21C21A33=24;②若小张、小赵都入选,则有选法A22A32=12,共有选法12+24=36种,故选A.根据题意,小张和小赵只能从事前两项工作,由此分2种情况讨论,①若小张或小赵入选,②若小张、小赵都入选,分别计算其情况数目,由加法原理,计算可得答案.3、4人在同一天的上下午做5个自己的测试ABCDE,每人上下午各做一个测试,且不重复,若上午不测A下午不测B,其余项目上下午各测试一人,则不同的安排方式有几种?分类:1.首先从四个人中选一个人参加特殊的ab则为4*2=8再将剩余的3人安排在cde的上下午为3*2*1=6则有6*8=48分类2.再算参加ab活动的人不同时有4*3=12对于剩下的两人进行讨论因为参加ab的人必需再选一个假设他们选的是同一样的则可算的有3种剩余两人只有2种,共有3*2=6假设参加ab的人选的不一样,则他们选的是3*2=6种,剩余两人只有两种可选,共6*2=1212+6=1818*12+48=2644、若把英语单词hello的字母写错了,则可能出现的错误共有 ( )A 119种B 36种C 59种D 48种解:5全排列5*4*3*2*1=120有两个l所以120/2=60原来有一种正确的所以60-1=595、在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?答案为100米300÷(5-4.4)=500秒,表示追及时间5×500=2500米,表示甲追到乙时所行的路程2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。
1、体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有( )种。
2、某公共汽车上有10名乘客,沿途有5个车站,乘客下车的可能方式有( )种3、(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?(2)4名同学争夺跑步、跳高、跳远三项冠军(各项目冠军都只有一人),共有多少种可能的结果?4、从集合{1,2,…,10}中任选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()5、有4位教师在同一年级的四个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有( )种。
A .8 B .9 C .10 D .116、3人玩传球游戏,由甲开始并做为第一次传球,经过4次传球后,球仍回到甲手中,有多少种不同的传球方式呢?7、集合A ={a ,b ,c ,d},B={1,2,3,4,5}。
(1)从集合A 到集合B 可以建立多少个不同的映射?(2)从集合A 到集合B 的映射中,要求集合A 中元素的象不同,这样的映射有多少个8、对一个各边长都不相等的凸五边形的各边进行染色,每条边都可以染红、黄、蓝三种不同的颜色,但是不允许相邻相邻的边染相同的颜色,则不同的染色方法共有( )种.9、用5种不同颜色给图中的A 、B 、C 、D 四个区域涂色,规定一个区域只涂一种颜色,相邻的区域颜色不同,共有( )种不同的涂色方案.10、将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,如图是一种填法,则不同的填写方法共有 A .6种 B .12种 C .24种 D .48种11、如图所示的五个区域中,中心区域是一幅图画,现要求在其余四个区域中涂色,有四种颜色可供选择.要求每个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A .64B .72C 。
84 D .9612、(13山东)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .27913、(13福建)满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( ) A .14 B .13 C .12 D .1014、(16全国)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数。
若m =4,则不同的“规范01数列”共有(A)18(B )16(C )14(D )1215、有5本不同的书,从中选3本送给3名同学,每人一本,则选法共有多少种?16、某足球联赛共有12支球队参加,每队都要与其余各队在主客场分别比赛1次,则一共进行的比赛的场次为17、4444A A ⨯是下列那一个问题的答案:A 、4男4女排成一列,同性别的都不相邻B 、4男4女排成一列,女生都不相邻C 、4男4女分别到4个不同的兴趣小组,每组一男一女D 、4男4女分成两组,每组二男二女18、有6道选择题,答案分别为A 、B 、C 、D 、D 、D ,在安排题目顺序时,要求三道选D 的题目任意两道不能相邻,则不同的排序方法的种数为19、从-9,-5,0,1,2,3,7七个数中,每次选不重复的三个数作为直线方程0=++c by ax 的系数,则倾斜角为钝角的直线共有多少条?20、某人练习打靶,一共打了8枪,中了3枪,其中恰有2枪连中,则中靶的方式共有多少种?21、从包括甲乙两名同学在内的7名同学中任选出5名同学排成一列.(1)甲不在首位的排法有多少种?(2)甲既不在首位,又不在末位的排法有多少种?(3)甲与乙既不在首位,又不在末位的排法有多少种?(4)甲不在首位,同时乙不在末位的排法有多少种?22、(15四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()个23、(14重庆)某次联欢会要安排三个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是24、(14四川)6个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有多少种?25、某种产品的加工需要A 、B 、C 、D 、E 五道工艺,其中A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有多少种?26、已知身穿红黄两种颜色衣服的各有两人,穿蓝色衣服的有一人,现将这5人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法共有多少种27、将编号为1,2,3,4的4个小球放入3个不同的盒子中,每个盒子中至少放一个,则恰有1个盒子中放2个连号小球的不同放法有( )种。
28、(13四川)从1,3,5,7,9这5个数字中,每次取出两个不同的数分别记为a ,b,共得到lga -lgb 的不同值的个数为29、(12安徽)6位同学在毕业聚会活动中进行纪念品的交换,任意两同学之间最多交换1次,进行交换的两同学互赠一份纪念品.已知6位同学共进行了13次交换,则收到4份纪念品的同学人数为( )30、(12新课标)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )31、(14北京)把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有________种.32、(14广东)设集合A ={(x 1,x 2,x 3,x 4,x 5)|x i ∈{-1,0,1},i =1,2,3,4,5},那么集合A 中满足条件“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3"的元素个数为( )A .60 B .90 C .120 D .13033、(14浙江)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种.(用数字作答)34、(13浙江)将A B C D E F ,,,,,六个字母排成一排,且A B ,均在C 的同侧,则不同的排法共有( )种(用数字作答).35、已知7292210=++n n n n nC C C ,则=+++n n n n C C C 21 36、已知8822108)1()1()1(-++-+-+=x a x a x a a x ,则=7a37、求52323⎪⎪⎭⎫ ⎝⎛+x x 的展开式中二项式系数最大的项,及系数最大的项38、(13新课标Ⅱ)已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a ( )39、(14新课标Ⅰ)(x -y )(x +y )8的展开式中x 2y 7的系数为________.40、(13大纲)()()8411+x y +的展开式中22x y 的系数是( )41、(13陕西)设函数61,00.,()x x f x x x ⎧⎛⎫-<⎪ ⎪=⎝≥⎭⎨⎪⎩,则当x >0时,[()]f f x 表达式的展开式中常数项为 42、(16上海)在nx x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_____ 43、(13新课标1)设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )44、(12全国Ⅰ理)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为 45、(15新课标2)4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.46、(15上海)在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示). 47、(15新课标1)25()x x y ++的展开式中,52x y 的系数为( )48、若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为________.1、(15山东)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等)。
在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数"的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得1 分;若能被10整除,得1分。
(I)写出所有个位数字是5的“三位递增数”;(II )若甲参加活动,求甲得分X 的分布列和数学期望EX 。
2、(15四川)某市A,B 两中学的学生组队参加辩论赛,A 中学推荐3名男生,2名女生,B 中学推荐了3名男生,4名女生,两校推荐的学生一起集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队。
(1)求A 中学至少有1名学生入选代表队的概率。
(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 的分布列和数学期望。
3、某人提出一个问题,规定由甲先答,答对的概率为0。
4,若答对,则问题结束;若答错,则由乙接着答,但乙能否答对与甲的回答无关系,已知两人都答错的概率是0。
2,求问题由乙答对的概率为_________.4、(15新课标1)投篮测试中,每人投3次,至少投中2次才能通过测试。
已知某同学每次投篮投中的概率为0。
6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )5、(16山东)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分。
已知甲每轮猜对的概率是43,乙每轮猜对的概率是32;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响。
假设“星队”参加两轮活动,求:(I )“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X 的分布列和数学期望EX.6、排球赛决赛在中国队与日本队之间展开,据以往统计,中国队在每局比赛中胜日本队的概率为32,比赛采取五局三胜制,即谁先胜三局谁就获胜,并停止比赛.(1)求中国队以3:1获胜的概率;(2)设X 表示比赛的局数,求X 的分布列.10.、[2014·福建卷] 用a代表红球,b代表蓝球,c代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球、而“ab”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( )A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)(2013年高考北京卷(理))将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_________.1.(2013年普通高等学校招生统一考试重庆数学(理))从3名骨科。