七年级数学《绝对值》教案
- 格式:docx
- 大小:31.67 KB
- 文档页数:21
初中教案绝对值一、教学目标:1. 让学生理解绝对值的概念,掌握绝对值的性质。
2. 培养学生运用绝对值解决实际问题的能力。
3. 提高学生对数学的兴趣,培养学生的逻辑思维能力。
二、教学内容:1. 绝对值的概念2. 绝对值的性质3. 绝对值在实际问题中的应用三、教学重点与难点:1. 重点:绝对值的概念、绝对值的性质。
2. 难点:绝对值在实际问题中的应用。
四、教学过程:1. 导入:利用数轴引出绝对值的概念,让学生直观地理解绝对值的含义。
2. 新课讲解:a) 绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值。
b) 绝对值的性质:性质1:一个正数的绝对值是它本身。
性质2:一个负数的绝对值是它的相反数。
性质3:0的绝对值是0。
c) 绝对值在实际问题中的应用:例1:已知数轴上两点A、B之间的距离是5,求点A、B的坐标。
例2:已知数轴上两点C、D之间的距离是7,且点C在点D的左边,求点C、D的坐标。
3. 课堂练习:让学生独立完成练习题,巩固所学知识。
4. 总结与拓展:总结绝对值的概念与性质,引导学生思考绝对值在实际生活中的应用。
五、课后作业:1. 复习绝对值的概念与性质。
2. 运用绝对值解决实际问题。
六、教学反思:本节课通过数轴引入绝对值的概念,让学生直观地理解绝对值的含义。
在讲解绝对值的性质时,通过实例让学生深刻掌握绝对值的性质。
在实际问题中的应用环节,培养学生运用绝对值解决问题的能力。
整体教学过程条理清晰,学生易于理解。
在课后,教师应关注学生的学习情况,及时解答学生在学习中遇到的问题。
同时,鼓励学生积极参与课后数学活动,提高学生的数学素养。
人教版数学七年级上册1.2.4《绝对值》教案一. 教材分析《绝对值》是人教版数学七年级上册第1章第2节的内容,本节课主要让学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些实际问题。
绝对值是数学中的一个基本概念,它在日常生活和工农业生产中有着广泛的应用。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,他们对数学概念的理解和运用已经有了一定的基础。
但同时,学生对新的数学概念的接受和理解还需要一定的引导和培养。
他们对绝对值的概念和性质可能还存在一些模糊的认识,需要通过实例和练习来加深理解。
三. 教学目标1.让学生理解绝对值的概念,掌握绝对值的性质。
2.培养学生运用绝对值解决实际问题的能力。
3.培养学生的抽象思维能力和逻辑思维能力。
四. 教学重难点1.绝对值的概念和性质。
2.运用绝对值解决实际问题。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法,引导学生通过观察、思考、讨论、操作等活动,掌握绝对值的概念和性质,提高学生的动手操作能力和解决问题的能力。
六. 教学准备1.PPT课件。
2.相关例题和练习题。
3.学生分组合作学习资料。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如温度、距离等,引导学生思考这些问题的共同特点,从而引出绝对值的概念。
2.呈现(10分钟)介绍绝对值的定义,用PPT展示绝对值的图形表示,让学生直观地理解绝对值的概念。
同时,给出绝对值的性质,让学生通过观察和思考来理解这些性质。
3.操练(10分钟)让学生分组合作,运用绝对值的性质解决一些实际问题,如求距离、计算温度等。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成,检验学生对绝对值概念和性质的掌握程度。
教师选取部分题目进行讲解,分析解题思路。
5.拓展(10分钟)让学生思考绝对值在实际生活中的应用,如地图上的距离、股票的涨跌等。
引导学生运用绝对值的知识解决这些问题,提高学生的应用能力。
初中数学绝对值教案初中数学绝对值教案一一、教材内容北师大2012年版《义务教育教科书数学》七年级上册第二章第三节“绝对值”。
二、设计思路1、设计理念《义务教育数学课程标准(2011年版)》指出:数学教学是数学活动的教学,是师生交往、互动、共同发展的过程。
学生是数学学习的主人,教师是学生学习数学学习的组织者、引导者和合作者。
教学中,有关相反数和绝对值的概念教学精心设置问题串,由浅入深,提出一系列有思维层次或不同理解深度的问题,力图使每一个学生都能投入到学习活动中,理解相反数和绝对值的几何意义以及两者之间的本质联系,使不同的学生有不同的收获。
教学过程中适时向学生提供以自主探究、合作交流等方式进行的主动式学习活动。
让学生经历归纳、概括绝对值的若干性质,提炼上述活动中对绝对值代数解释的理解和应用,并用自己熟悉的方式、语言及数学符号去表示。
2、教材内容分析(1)教材内容:这节课教学的主要内容为理解相反数、绝对值两个概念及它们之间的联系;掌握绝对值的相关性质,并能用符号语言来表示即讨论︱a︱与a之间的关系;利用绝对值比较两个负(2)教材地位:本节紧承前一节《数轴》的内容,首先从数字特征角度总结出相反数的概念,然后又借助数轴,从几何角度理解相反数的意义,同时自然从几何的角度引入绝对值的概念,然后又进行了代数解释。
理解并掌握绝对值的概念是有理数大小比较和有理数四则混合运算的重要基础,所以又自然过渡到下节课的《有理数的加法》中去。
思维及教学活动连接紧密,使前后形成整体,起到了承前启后的重要作用。
3、学情分析学生的知识能力基础:在前面一节课中,学生已经理解了有理数的意义,并能用数轴上的点表示有理数,能比较有理数的大小。
初步获得了分析问题和解决问题的一些基本方法,初步体验解决方法的多样性,初步发展了创新意识。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探究活动,解决了一些简单的现实问题,感受到了从数学活动中积累数学经验的过程;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
绝对值第一课时教学目标借助数轴初步理解绝对值的概念,能求一个数的绝对值. 1. 通过应用绝对值解决实际问题,体会绝对值的意义和作用. 2.探索一个数的绝对值与这通过观察实例及绝对值的几何意义,3. 个数之间的关系,培养学生语言描述能力.培养学生积极参与探索活动,体会数形结合的方法. 4.教学重、难点正确理解绝对值的概念,能求一个数的绝对值..重点:1正确理解绝对值的几何意义和代数意义..难点: 2教学过程一、复习提问,新课引入 1 .什么叫互为相反数?.在数轴上表示互为相反数的两个点和原点的位置关系怎样? 2二、新授在一些量的计算中,有时并不注意其方向,例如,为了计算汽车行驶所耗的油量,起作用的是汽车行驶的路程而不是行驶的方向.,回答:2-5.1页图11.观察课本第 1 )两辆汽车行驶的路线相同吗?1()它们行驶路程的远近相同吗?2(但行驶的路程的远近•,这两辆车行驶的路线不同(方向相反)• •。
七年级数学《绝对值》教案【优秀9篇】学习难点: 篇一绝对值的综合运用绝对值教案篇二绝对值教学目标:通过数轴,使学生理解绝对值的概念及表示方法1、理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算2、通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法3、通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力教学重点:理解绝对值的概念、意义,会求一个数的绝对值教学难点:绝对值的概念、意义及应用教学方法:探索自主发现法,启发引导法设计理念:绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义。
通过“想一想”,“议一议”,“做一做”,“试一试”,“练一练”等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力。
教学过程:一、创设情境,复习导入。
今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题。
(用多媒体出示引例)星期天张老师从学校出发,开车去游玩,她先向东行千米,到了游乐园,下午她又向西行千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,①用有理数表示张老师两次所行的路程;②如果汽车每公里耗油升,计算这天汽车共耗油多少升?① 千米,千米;②()×升。
在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的路程有关,而与行驶的方向没有关系,所以没有负数。
这说明在实际生活中,有些问题中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了。
你还能举出其他类似的例子吗?。
小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许,气氛热烈。
初中数学绝对值教案初中数学绝对值教案「篇一」学习目的1.使学生理解相反数的意义;2.给出一个数,能求出它的相反数;3.理解绝对值的意义,熟悉绝对值符号;4.给一个数,能求它的绝对值。
教学重点、难点:1.理解掌握双重符号的化简法则。
2.能正确理解绝对值在数轴上表示的意义。
教学过程一、交流与发现:1.相反数的概念:首先,咱们来画一条数轴,然后在数轴上标出下列各点:3和-3,1.6和-1.6,请同学们观察:(1)上述这两对数有什么特点?(2)表示这两对数的数轴上的点有什么特点?(3)请你再写出同样的几对点来?同学们通过观察思考可以总结出以下几点:(1)上面的这两对数中,每一对数,只有符号不同。
(2)这两对数所对应的点中每一组中的两个点,一个在原点的左边,一个在原点的右边,而且离开原点的`距离相同。
练一练:请同学们举出几个相反数的例子(强调)我们还规定:0的相反数是0说明:(1)注意理解相反数定义中“只有”的含义。
(2)相反数是相对而言的,即如果6是-6的相反数,则-6也是6的相反数,因而相反数全是成对出现的。
(3)两个互为相反数的数在数轴上的对应点(除0外),在原点的两旁,并且距离原点距离相等的两个点,至于0的相反数是0的几何意义,可理解为这两点距离原点都是零。
二、典型例题例(1)分别指出9和-7的相反数;解:由相反数的定义可知:(1)9的相反数是-9,-7的相反数是7;(2)-2.4是2.4的相反数。
同学们思考交流,老师最后讲解,学生交流得出:一个正数的相反数是一个负数,而一个负数的相反数是一个正数。
三、实验与探究同学们观察数轴比思考下列问题(1)数轴上表示有理数5,2,0.5的点到原点的距离各是多少?(2)数轴上表示有理数-5,-2,-0.5的点到原点的距离各是多少?(3)数轴上表示0的点到原点的距离是多少?学生思考回答,老师引导总结出绝对值的定义:在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。
绝对值教案(优秀6篇)七年级数学《绝对值》教案篇一教学目标1、了解绝对值的概念,会求有理数的绝对值;2、会利用绝对值比较两个负数的大小;3、在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力。
教学建议一、重点、难点分析绝对值概念既是本节的教学重点又是教学难点。
关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有。
教材上绝对值的定义是从几何角度给出的。
,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。
这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。
此外,0的绝对值是0,从几何定义出发,就十分容易理解了。
二、知识结构绝对值的定义;绝对值的表示方法;用绝对值比较有理数的大小。
三、教法建议用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即在教学中,只能突出一种定义,否则容易引起混乱。
可以把利用数轴给出的定义作为绝对值的一种直观解释。
此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数。
“非负数”的概念视学生的情况,逐步渗透,逐步提出。
四、有关绝对值的一些内容1.绝对值的代数定义一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
2.绝对值的几何定义在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值。
3.绝对值的主要性质(2)一个实数的绝对值是一个非负数,即|a|≥0,因此,在实数范围内,绝对值最小的数是零。
(4)两个相反数的绝对值相等。
五、运用绝对值比较有理数的大小1、两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小。
1.2.4 绝对值第1课时绝对值【教学目标】(一)知识技能1.使学生掌握有理数的绝对值概念及表示方法。
2.使学生熟练掌握有理数绝对值的求法和有关计算问题。
(二)过程方法1.在绝对值概念形成的过程中,渗透数形结合等思想方法,并注意培养学生的概括能力。
2.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念。
3.给出一个数,能求它的绝对值。
(三)情感态度从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性。
教学重点给出一个数会求它的绝对值。
教学难点绝对值的几何意义,代数定义的导出;负数的绝对值是它的相反数。
【情景引入】问题:两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米.为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米.这样,利用有理数就可以明确表示每辆汽车在公路上的位置了.我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向.当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离).这里的5叫做+5的绝对值,4叫做-4的绝对值.【教学过程】1.绝对值的定义:我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值)。
记作|a|。
例如,在数轴上表示数―6与表示数6的点与原点的距离都是6,所以―6和6的绝对值都是6,记作|―6|=|6|=6。
同样可知|―4|=4,|+1.7|=1.7。
2.试一试:你能从中发现什么规律? 由绝对值的意义,我们可以知道: (1)|+2|= ,51= ,|+8.2|= ; (2)|0|= ; (3)|―3|= ,|―0.2|= ,|―8.2|= 。
概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数(负数)的绝对值又有什么特点?由学生分类讨论,归纳出数a 的绝对值的一般规律:(1)一个正数的绝对值是它本身;(2) 0的绝对值是0;(3) 一个负数的绝对值是它的相反数。
七年级数学《绝对值》教案精选3篇七年级数学《绝对值》教案篇一一、教学目标:1.知识目标:①能准确理解绝对值的几何意义和代数意义。
②能准确熟练地求一个有理数的绝对值。
③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。
2.能力目标:①初步培养学生观察、分析、归纳和概括的思维能力。
②初步培养学生由抽象到具体再到抽象的思维能力。
3.情感目标:①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。
②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。
二、教学重点和难点教学重点:绝对值的几何意义和代数意义,以及求一个数的`绝对值。
教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。
三、教学方法启发引导式、讨论式和谈话法四、教学过程(一)复习提问问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?(二)新授1.引入结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。
2.数a的绝对值的意义①几何意义一个数a的绝对值就是数轴上表示数a的点到原点的距离。
数a的绝对值记作|a|。
举例说明数a的绝对值的几何意义。
(按教材P63的倒数第二段进行讲解。
)强调:表示0的点与原点的距离是0,所以|0|=0。
指出:表示“距离”的数是非负数,所以绝对值是一个非负数。
②代数意义把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。
七年级数学《绝对值》教案篇二各位专家领导:你们好!今天我说课的内容是人教版七年级上册1、2、4 绝对值内容。
首先,我对本节教材进行一些分析:一、教材分析(说教材):(一)、教材所处的地位与作用:本节内容在全书及章节的地位是:《绝对值》是七年级数学教材上册1、2、4 节内容。
1.2.4绝对值【教学目标】1.能理解绝对值的概念.2.经历探索正数、负数、零的绝对值的过程,归纳出有理数绝对值的求法.3.经历绝对值概念的形成,初步体会数形结合、分类讨论的数学思想方法,丰富解决问题的策略.【教学重点难点】重点:绝对值的概念及求一个数的绝对值.难点:绝对值的几何意义、代数定义的导出.代数定义转化为数学式子.【教学过程】一、创设情境1.如图,如果王奇与李明两人同时出发以相同的速度去学校,谁将先到达学校?这与什么有关?A点表示的数是什么?它到原点的距离是多少?B点表示的数是什么?它到原点的距离是多少?2.星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关.二、探究归纳探究点1:绝对值的意义及求法问题:(1)甲、乙两辆出租车在一条东西走向的街道上行驶,记向东行驶的里程数为正.两辆出租车都从O 地出发,甲车向东行驶10 km 到达A 处,记作 km,乙车向西行驶10 km 到达B 处,记作 km .(2)以O 为原点,取适当的单位长度画数轴,并在数轴上标出A ,B 的位置,则A ,B 两点与原点距离分别是多少?它们的实际意义是什么?要点归纳:一般地,数轴上表示数a 的点与原点的距离叫作数a 的绝对值,记作|a |.-5到原点的距离是5,所以-5的绝对值是 ,记作 =5; 0到原点的距离是 ,所以0的绝对值是 ,记作|0|= ;4到原点的距离是 ,所以4的绝对值是 ,记作|4|= .探究点2:绝对值的性质及应用问题1:请同学们画出数轴,并在画出的数轴上标出下列相反数: +3与-3;-5与5;4与-4;-1与1;-12与12.问题2:每组相反数所对应的点,在数轴上的位置有什么关系?问题3:每组相反数所对应的点与原点的距离有什么关系?【处理方式】从形的角度进一步理解相反数,先由学生利用数轴表示出相反数,通过观察相反数在数轴上的位置及与原点的距离,理解绝对值.在数轴上,一个数所对应的点与原点的距离叫作这个数的绝对值.思考1:(1)如果a表示有理数,那么|a|有什么含义?(2)互为相反数的两个数的绝对值又有什么关系呢?(3)一个数的绝对值与这个数有什么关系?要点归纳:结论1:一个正数的绝对值是正数,一个负数的绝对值是正数,0的绝对值是0.结论2:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数.思考2:我们如何用符号来表示绝对值的性质呢?若字母a表示一个有理数,你知道a的绝对值等于什么吗?(1)当a是正数时,|a|=;正数的绝对值是它本身.(2)当a是负数时,|a|=;负数的绝对值是它的相反数.(3)当a=0时,|a|=.0的绝对值是0.要点归纳:写成:|a|={a(a>0), 0(a=0), -a(a<0).思考3:(1)一个有理数的绝对值可能是负数吗?可能小于它本身吗?(2)请说出哪个数的绝对值最大?离原点多远?哪个数的绝对值最小?离原点多远?要点归纳:1.绝对值不可能是负数,任何一个有理数的绝对值都是非负数,即|a |≥0.2.一个数的绝对值越大,这个数在数轴上对应的点离原点越远;相反,绝对值越小,离原点越近.3.没有绝对值最大的数,绝对值最小的数是0.【典例剖析】例1:教材P13【例4】例2:化简:(1)|-(+12)|.(2)-|-113|. 解:(1)|-(+12)|=|-12|=12. (2)-|-113|=-113. 例3:若|a |+|b |=0,求a ,b 的值.提示:由绝对值的性质可得|a |≥0,|b |≥0.例4:已知|x -4|+|y -3|=0,求x +y 的值.三、检测反馈1.-6的绝对值为 ,6的绝对值是 ,0的绝对值是 .2.求下列各数的绝对值:-3,5,0,+58,0.6.3.(1)|+2|= ,|15|= ,|+8.2|= . (2)|-3|= ,|-0.2|= ,|-8.2|= .4.绝对值最小的数是 .5.相反数等于本身的数有,绝对值等于本身的数有.6.已知一个数的绝对值等于3,那么这个数是.四、本课小结1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一个数a的绝对值就是数轴上表示数a的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.求一个数的绝对值注意先判断这个数是正数还是负数.五、布置作业P14练习,P17T4六、板书设计七、教学反思1.情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.2.一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间.。
七年级数学《绝对值》教案数学是人们对客观世界定性掌控和定量刻画逐渐抽象概括、形成方法和理论,并进行广泛运用的进程。
这里给大家分享一些关于七年级数学《绝对值》教案,方便大家学习。
七年级数学《绝对值》教案篇1一、说教材(五)教材的地位和作用《绝对值》是选自人教版初一数学第一章第二节第四部分的内容。
这部分内容之前已经学习了有理数、数轴、相反数的内容,这是本节课学习的基础。
绝对值的内容主要包括含义及有理数之间的大小比较,这也为后面学习有理数的加减法奠定了基础。
(六)教学目标根据对教材内容的分析,以及在新课改理念的指导下,制定了以下三维目标:(一)知识与技能知道、掌控绝对值的含义,并且会比较有理数之间的大小。
(二)进程与方法运用数轴来推理数的绝对值,并在推理的进程中清楚的论述自己的观点,从而逐渐发展产生的抽象思维。
(三)情感态度与价值观体验数学活动的探干脆和创造性,感受数学的严谨性以及数学结论的肯定性。
教学重难点通过以上对教材内容及教学目标的分析,以及学生已有的知识水平,本节课的教学重难点以下:重点:绝对值的知道以及有理数的比较难点:负数的绝对值的知道及比较二、说学情以上就是我对教材的分析,由于教学目标及重难点的肯定也是在学生情形的基础上进行的,所以下面我对学情进行分析。
初一学生的抽象思维开始有了一定的发展,但还需一定的感性材料作支持,同时思维比较活跃和积极,所以教学进程中会重视直观材料的运用,然后引导学生自主摸索并知道知识,以激发学生的学习爱好,调动学生的积极性和主动性。
三、说教材基于以上对教材、学情的分析,以及新课改的要求,我在本课中采取的教法有:讲授法、演示法和引导归纳法。
演示法中需要的教具有多媒体和温度计。
四、说教法新课改理念告知我们,学生不仅要学到具体的知识,更重要的是学生要学会怎样自己学习,为毕生学习奠定扎实的基础。
所以本课中我将引导学生通过自主探究、合作交换的学法来更好的掌控本节课的内容。
五、说教学程序为了更好的实现三维目标、突破重难点,我将本课的教学程序设计为以下五个环节:(一)情境导入出示温度计,北方某一城市的温度是零下15摄氏度,南方某一城市的温度是15摄氏度 ,学生在稿纸上画一条数轴,标出这两个温度,并请一位学生画在黑板上。
数轴的两个数值是相反数,是上节课的内容,0到-15°和0到15°的变化温度分别是15°,那么两个相同的变化温度,怎么用数学符号表示出来呢?(二)新授1、从上面的问题中,我引出今天的绝对值概念,然后和学生一起从数轴上推导出绝对值。
2、使用多媒体出现一组数字,包括几个正数,几个负数。
让大家在数轴上画出,并写出每个数字的绝对值。
然后学生来顺次说出每个绝对值,以巩固概念的掌控。
3、和大家一起写出这些绝对值,把负数、正数、0的绝对值分别写在三个地方,引导学生视察这些绝对值,并摸索其中的规律,然后和学生一起得出结论,即正数的绝对值是本身,负数的绝对值是它的相反数,0的绝对值的0、得出这个结论后顺势提问:数a的绝对值是多少?进行分组讨论,在讨论一段时间后提示学生刚刚的结论。
4、在每组的回答后,和学生一起总结出数a的绝对值,分三种情形,当a 大于0,绝对值为a;等于0时,为0;小于0时,为-a、这三种情形的分析后,学生就充分知道了绝对值的含义。
5、回到大家画的数轴,大家很容易比较出原点0右边的正数的大小,那么左边的.负数的大小怎么比较呢?提出这个问题后不急于让学生回答,而是把学生引入一个情境,即把数轴上的数都看成是温度,比较温度的大小就比较容易,然后回到数的比较。
在这个引导后,得出的结论是:离0越远的数,越小;也能够说绝对值越大的负数越小。
(三)巩固练习在PPT上出现一些数的绝对值,以及一些负数、正数、绝对值之间的比较的题。
(四)小结引导学生总结出今天的学习内容,培养学生的归纳以及逻辑思维能力。
(五)布置作业布置作业不是目的,目的是学生能够更好的掌控并运用本节课的内容。
所以我会布置这样一个作业:请学生回家可以在父母的帮助下,找出南方和北方分别三个城市的温度,比较这些温度的大小,并写出每个温度的绝对值并进行比较。
(六)说板书设计为了学生能够更清楚的掌控内容,我用写关键词的方式来有逻辑性的出现我的板书。
以上就是我说课的全部内容,谢谢!七年级数学《绝对值》教案篇2教学目标1,整理前两个学段学过的整数、分数(包括小数)的知识,掌控正数和负数的概念;2,能区分两种不同意义的量,会用符号表示正数和负数;3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的爱好。
教学难点正确区分两种不同意义的量。
知识重点两种相反意义的量教学进程(师生活动)设计理念设置情境引入课题上课开始时,教师应通过具体的例子,扼要说明在前两个学段我们已经学过的数,并由此请学生摸索:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是__,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…问题1:老师刚才的介绍中显现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:摸索,交换师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).问题2:在生活中,仅有整数和分数够用了吗?请同学们看书(视察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并摸索讨论,然落后行交换。
(也能够出示气象预报中的气温图,地图中表示地势高低地势图,工资卡中存取钱的记录页面等)学生交换后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。
先回想小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设以下的问题情境,以尽量贴近学生的实际.这个问题能激发学生探究的愿望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。
以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。
分析问题探究新知问题3:前面带有“一”号的新数我们应怎样命名它呢?为何要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?这些问题都必须要求学生知道.教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交换.这阶段主要是让学生学会正数和负数的表示.强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。
举一反三思维拓展经过上面的讨论交换,学生对为何要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的知道,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的知道,并开辟思维.问题4:请同学们举出用正数和负数表示的例子.问题5:你是怎样知道“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.能否举出例子是学生对知识掌控程度的体现,也能进一步帮助学生知道引负数的必要性七年级数学《绝对值》教案篇3教学目标1,掌控有理数的概念,会对有理数依照一定的标准进行分类,培营养类能力;2,了解分类的标准与分类结果的相干性,初步了解“集合”的含义;3,体验分类是数学上的常用处理问题的方法。
教学难点正确知道分类的标准和依照一定的标准进行分类知识重点正确知道有理数的概念教学进程(师生活动)设计理念探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).问题1:视察黑板上的9个数,并给它们进行分类.学生摸索讨论和交换分类的情形.学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.例如,对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中全部的数,我们就称它为“正整数”,而5.1不是全部的数,称为“正分数,,.••…(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.依照书本的说法,得出“整数”“分数”和“有理数”的概念.看书了解有理数名称的由来.“统称”是指“合起来总的名称”的意思.试一试:依照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是依照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于知道。
有理数的分类表要在黑板或媒体上展现,分类的标准要引导学生去体会练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交换.2,教科书第10页练习.此练习中显现了集合的概念,可向学生作以下的说明.把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;数集一样用圆圈或大括号表示,由于集合中的数是无穷的,而本题中只填了所给的几个数,所以应当加上省略号.摸索:上面练习中的四个集合合并在一起就是全部有理数的集合吗?也能够教师说出一些数,让学生进行判定。
集合的概念不必深入展开。
创新探究问题2:有理数可分为正数和负数两大类,对吗?为何?教学时,要让学生总结已经学过的数,鼓励学生概括,通过交换和讨论,教师作适当的指导,逐渐得到以下的分类表。
有理数这个分类可视学生的程度肯定是否有必要教学。
应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也能够按性别、地域来分等小结与作业课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。