人大版应用时间序列分析(第5版)习题答案
- 格式:docx
- 大小:4.86 MB
- 文档页数:98
第五章时间序列分析一、单项选择题1.构成时间数列的两个基本要素是( C )(2012年1月)A.主词和宾词B.变量和次数C.现象所属的时间及其统计指标数值D.时间和次数2.某地区历年出生人口数是一个( B )(2011年10月)A.时期数列 B.时点数列C.分配数列D.平均数数列3.某商场销售洗衣机,2008年共销售6000台,年底库存50台,这两个指标是( C ) (2010年10)A.时期指标B.时点指标C.前者是时期指标,后者是时点指标D.前者是时点指标,后者是时期指标4.累计增长量( A ) (2010年10)A.等于逐期增长量之和B.等于逐期增长量之积C.等于逐期增长量之差D.与逐期增长量没有关系5.某企业银行存款余额4月初为80万元,5月初为150万元,6月初为210万元,7月初为160万元,则该企业第二季度的平均存款余额为( C )(2009年10)万元万元万元万元6.下列指标中属于时点指标的是( A ) (2009年10)A.商品库存量B.商品销售量C.平均每人销售额D.商品销售额7.时间数列中,各项指标数值可以相加的是( A ) (2009年10)A.时期数列B.相对数时间数列C.平均数时间数列D.时点数列8.时期数列中各项指标数值( A )(2009年1月)A.可以相加B.不可以相加C.绝大部分可以相加D.绝大部分不可以相加10.某校学生人数2005年比2004年增长了8%,2006年比2005年增长了15%,2007年比2006年增长了18%,则2004-2007年学生人数共增长了( D )(2008年10月)%+15%+18%%×15%×18%C.(108%+115%+118%)-1 %×115%×118%-1二、多项选择题1.将不同时期的发展水平加以平均而得到的平均数称为( ABD )(2012年1月)A.序时平均数B.动态平均数C.静态平均数D.平均发展水平E.一般平均数2.定基发展速度和环比发展速度的关系是( BD )(2011年10月)A.相邻两个环比发展速度之商等于相应的定基发展速度B.环比发展速度的连乘积等于定基发展速度C.定基发展速度的连乘积等于环比发展速度D.相邻两个定基发展速度之商等于相应的环比发展速度E.以上都对3.常用的测定与分析长期趋势的方法有( ABC ) (2011年1月)A.时距扩大法B.移动平均法C.最小平方法D.几何平均法E.首末折半法4.时点数列的特点有( BCD ) (2010年10)A.数列中各个指标数值可以相加B.数列中各个指标数值不具有可加性C.指标数值是通过一次登记取得的D.指标数值的大小与时期长短没有直接的联系E.指标数值是通过连续不断的登记取得的5.增长1%的绝对值等于( AC )(2010年1)A.增加一个百分点所增加的绝对量B.增加一个百分点所增加的相对量C.前期水平除以100D.后期水平乘以1%E.环比增长量除以100再除以环比发展速度6.计算平均发展速度常用的方法有( AC )(2009年10)A.几何平均法(水平法)B.调和平均法C.方程式法(累计法)D.简单算术平均法E.加权算术平均法7.增长速度( ADE )(2009年1月)A.等于增长量与基期水平之比B.逐期增长量与报告期水平之比C.累计增长量与前一期水平之比D.等于发展速度-1E.包括环比增长速度和定基增长速度8.序时平均数是( CE )(2008年10月)A.反映总体各单位标志值的一般水平B.根据同一时期标志总量和单位总量计算C.说明某一现象的数值在不同时间上的一般水平D.由变量数列计算E.由动态数列计算三、判断题1.职工人数、产量、产值、商品库存额、工资总额指标都属于时点指标。
第一章习题答案略第二章习题答案2.1答案:(1)不平稳,有典型线性趋势(2)1-6阶自相关系数如下(3)典型的具有单调趋势的时间序列样本自相关图2.2答案:(1)不平稳(2)延迟1-24阶自相关系数(3)自相关图呈现典型的长期趋势与周期并存的特征2.3答案:(1)1-24阶自相关系数(2)平稳序列(3)非白噪声序列2.4计算该序列各阶延迟的Q统计量及相应P值。
由于延迟1-12阶Q统计量的P值均显著大于0.05,所以该序列为纯随机序列。
2.5答案(1)绘制时序图与自相关图(2)序列时序图显示出典型的周期特征,该序列非平稳(3)该序列为非白噪声序列2.6答案(1)如果是进行平稳性图识别,该序列自相关图呈现一定的趋势序列特征,可以视为非平稳非白噪声序列。
如果通过adf检验进行序列平稳性识别,该序列带漂移项的0阶滞后P值小于0.05,可以视为平稳非白噪声序列(2)差分后序列为平稳非白噪声序列2.7答案(1)时序图和自相关图显示该序列有趋势特征,所以图识别为非平稳序列。
(2)单位根检验显示带漂移项0阶延迟的P值小于0.05,所以基于adf检验可以认为该序列平稳(3)如果使用adf检验结果,认为该序列平稳,则白噪声检验显示该序列为非白噪声序列如果使用图识别认为该序列非平稳,那么一阶差分后序列为平稳非白噪声序列2.8答案(1)时序图和自相关图都显示典型的趋势序列特征(2)单位根检验显示该序列可以认为是平稳序列(带漂移项一阶滞后P值小于0.05)(3)一阶差分后序列平稳第三章习题答案 3.10101()0110.7t E x φφ===--() 221112() 1.96110.7t Var x φ===--() 22213=0.70.49ρφ==()12122221110.490.7=0110.71ρρρφρρ-==-(4) 3.21111222211212(2)7=0.515111=0.30.515AR φφφρφφφρφρφφφ⎧⎧⎧=⎪=⎪⎪⎪--⇒⇒⎨⎨⎨⎪⎪⎪=+=+⎩⎩⎪⎩模型有:,2115φ=3.312012(1)(10.5)(10.3)0.80.15()01t t t t t tt B B x x x x E x εεφφφ----=⇔=-+==--,22121212()(1)(1)(1)10.15=(10.15)(10.80.15)(10.80.15)1.98t Var x φφφφφφ-=+--+-+--+++=()1122112312210.83=0.70110.150.80.70.150.410.80.410.150.70.22φρφρφρφρφρφρ==-+=+=⨯-==+=⨯-⨯=() 1112223340.70.15=0φρφφφ====-()3.41211110011AR c c c c c ⎧<-<<⎧⎪⇒⇒-<<⎨⎨<±<⎪⎩⎩() ()模型的平稳条件是 1121,21,2k k k c c k ρρρρ--⎧=⎪-⎨⎪=+≥⎩() 3.5证明:该序列的特征方程为:320c c λλλ--+=,解该特征方程得三个特征根:11λ=,2λ=3λ=无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。
第七章时间序列分析一、填空1、下表为两个地区的财政收入数据:则A地区财政收入的增长速度是,B地区财政收入的增长速度是,A 地区财政收入的增长1%的绝对值为,B地区财政收入的增长1%的绝对值为。
2、已知环比增长速度为7.1%、3.4%、3.6%、5.3%,则定基增长速度是。
3、年劳动生产率r(千元和职工工资y (元之间的回归方程为110x=,这意味着120y+年劳动生产率每提高1千元时,职工工资平均。
4、拉氏价格或销售量指数的同度量因素都是选期,而派许指数的同度量因素则选期。
5、动态数列的变动一般可以分解为四部分,即趋势变动、变动、变动和不规则变动。
二、选择题1.反映了经济现象在一个较长时间内的发展方向,它可以在一个相当长的时间内表现为一种近似直线的持续向上或持续向下或平稳的趋势。
A长期趋势因素B季节变动因素C周期变动因素D不规则变动因素2.是经济现象受季节变动影响所形成的一种长度和幅度固定的周期波动。
A长期趋势因素B季节变动因素C周期变动因素D不规则变动因素3、时间序列在一年内重复出现的周期性波动称为(A、趋势B、季节性C、周期性D、随机性4、在使用指数平滑法进行预测时,如果时间序列比较平稳,则平滑系数α的取值(A、应该小些B、应该大些C、等于0D、等于15、某银行投资额2004年比2003年增长了10%,2005年比2003年增长了15%,2005年比2004年增长了(A、15%÷10%B、115%÷110%C、(110%×115%+1D、(115%÷110%-1三、判断1、若1998年的产值比1997年上涨10%,1999年比1998年下降10%,则1999年的产值比1997年的产值低。
(2、若三期的环比增长速度分别为9%、8%、10%,则三期的平均增长速度为9% (。
3、去年物价下降10%,今年物价上涨10%,今年的1元钱比前年更值钱。
(。
4、若平均发展速度大于100%,则环比发展速度也大于100%。
应⽤时间序列分析习题标准答案第⼆章习题答案2.1(1)⾮平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本⾃相关图2.2(1)⾮平稳,时序图如下(2)-(3)样本⾃相关系数及⾃相关图如下:典型的同时具有周期和趋势序列的样本⾃相关图2.3(1)⾃相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118(2)平稳序列(3)⽩噪声序列2.4,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。
显著性⽔平=0.05不能视为纯随机序列。
2.5(1)时序图与样本⾃相关图如下(2)⾮平稳(3)⾮纯随机 2.6(1)平稳,⾮纯随机序列(拟合模型参考:ARMA(1,2))(2)差分序列平稳,⾮纯随机第三章习题答案3.1 解:1()0.7()()t t t E x E x E ε-=?+0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01(t t t B B B x εε)7.07.01()7.01(221 +++=-=- 229608.149.011)(εεσσ=-=t x Var49.00212==ρφρ 022=φ3.2 解:对于AR (2)模型:=+=+==+=+=-3.05.02110211212112011φρφρφρφρρφφρφρφρ解得:==15/115/721φφ3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E原模型可变为:t t t t x x x ε+-=--2115.08.02212122)1)(1)(1(1)(σφφφφφφ-+--+-=t x Var2)15.08.01)(15.08.01)(15.01()15.01(σ+++--+==1.98232σ=+==+==-=2209.04066.06957.0)1/(1221302112211ρφρφρρφρφρφφρ ??=-====015.06957.033222111φφφρφ 3.4 解:原模型可变形为:t t x cB B ε=--)1(2由其平稳域判别条件知:当1||2<φ,112<+φφ且112<-φφ时,模型平稳。
【分享】应用时间序列分析课后答案在学习应用时间序列分析这门课程的过程中,课后答案对于我们巩固知识、检验学习成果起着至关重要的作用。
今天,我就来和大家分享一下我所整理的应用时间序列分析课后答案,希望能对正在学习这门课程的同学们有所帮助。
首先,我们来谈谈为什么时间序列分析如此重要。
在现实生活中,许多现象都随着时间的推移而发生变化,比如股票价格的波动、气温的变化、销售量的起伏等等。
通过对这些时间序列数据的分析,我们可以揭示隐藏在数据背后的规律和趋势,从而做出更准确的预测和决策。
接下来,让我们直接进入课后答案的分享。
在第一章的课后习题中,有一道关于时间序列平稳性检验的题目。
对于这道题,我们需要先计算序列的均值和方差,如果均值和方差不随时间变化,那么初步可以判断该序列是平稳的。
然后,再通过自相关函数(ACF)和偏自相关函数(PACF)来进一步确定平稳性。
具体的计算过程和判断方法,答案中都有详细的步骤和解释。
再来看第二章关于模型识别的课后题。
在这部分,我们要根据给定的时间序列数据的自相关和偏自相关函数的特征,来判断适合的模型类型。
比如,如果 ACF 呈现拖尾,PACF 截尾,那么可能适合的模型是 AR 模型;反之,如果 ACF 截尾,PACF 拖尾,则可能是 MA 模型。
而当 ACF 和 PACF 都呈现拖尾时,就需要考虑 ARMA 模型了。
在第三章关于参数估计的习题中,涉及到了最小二乘法、极大似然估计等方法。
答案中会给出具体的计算公式和推导过程,帮助我们理解如何通过数据来估计模型的参数。
这部分的内容相对较难,需要我们认真思考和反复练习。
第四章的课后作业主要是关于模型诊断和检验。
我们需要通过残差分析来判断模型的拟合效果,如果残差是白噪声,说明模型拟合较好;否则,就需要对模型进行进一步的改进和调整。
答案中会有关于如何进行残差分析的详细示例和判断标准。
第五章则侧重于时间序列的预测。
这部分的课后题会让我们运用所建立的模型对未来的值进行预测,并计算预测误差。
时间序列分析参考答案时间序列分析参考答案时间序列分析是一种研究随时间变化的数据模式和趋势的统计方法。
它可以帮助我们理解数据的变化规律,预测未来的趋势,以及制定相应的决策。
在本文中,我们将探讨时间序列分析的基本概念、方法和应用。
一、时间序列分析的基本概念时间序列是按照时间顺序排列的一系列数据观测值。
它可以是连续的,比如每天的股票价格,也可以是离散的,比如每月的销售额。
时间序列分析的目标是找出数据中的模式和趋势,以便进行预测和决策。
时间序列分析的基本概念包括趋势、季节性和周期性。
趋势是指数据在长期内的整体变化方向,可以是上升、下降或平稳。
季节性是指数据在一年中周期性重复出现的变化模式,比如节假日销售额的增长。
周期性是指数据在较长时间内出现的波动,通常周期长度大于一年。
二、时间序列分析的方法时间序列分析的方法包括描述性分析、平稳性检验、模型建立和预测等。
描述性分析是对时间序列数据进行可视化和统计分析,以了解数据的基本特征。
常用的描述性分析方法包括绘制折线图、直方图和自相关图等。
折线图可以显示数据的整体趋势和季节性变化,直方图可以展示数据的分布情况,自相关图可以帮助我们发现数据的相关性。
平稳性检验是判断时间序列数据是否具有平稳性的方法。
平稳性是指数据的均值和方差在时间上保持不变。
常用的平稳性检验方法包括单位根检验和ADF检验等。
模型建立是根据时间序列数据的特征,选择合适的模型来描述数据的变化规律。
常用的模型包括AR模型、MA模型和ARMA模型等。
AR模型是自回归模型,表示当前观测值与过去观测值之间的线性关系;MA模型是移动平均模型,表示当前观测值与过去观测值的误差之间的线性关系;ARMA模型是自回归移动平均模型,综合考虑了自回归和移动平均的效果。
预测是利用已知的时间序列数据,通过建立模型来预测未来的观测值。
常用的预测方法包括滚动预测、指数平滑法和ARIMA模型等。
滚动预测是指根据当前观测值和过去观测值的模型,逐步预测未来的观测值;指数平滑法是基于历史数据的加权平均值,对未来的观测值进行预测;ARIMA模型是自回归移动平均差分整合模型,可以处理非平稳的时间序列数据。
第二章习题答案欧阳家百(2021.03. 07)2.1(1)非平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)- (3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图2.3(1)自相关系数为:0.2023 0.0130.042 -0.043 -0.179-0.251-0.0940.0248-0.068-0.0720.0140」09 0.2170.316 0.0070-0.0250.075-0.141-0.204 -0.2450.0660.0062-0.139-0.0340.206-0.010 0.080 0.118(2)平稳序列(3)白噪声序列LB=4.83, LB统计量对应的分位点为0.9634, P值为0.0363。
显著性水平芦词,序列不能视为纯随机序列。
欧阳家百创编(1) 时序图与样本自相关图如下(2) 非平稳 (3) 非纯随机 2.6(1) 平稳,非纯随机序列(拟合模型参考:ARMA( 1,2)) (2) 差分序列平稳,非纯随机 第三章习题答案3.1 解:E(x,) = 0.7-E(x,_1) + E(^/) 3.2解:对于AR (2)模型: 解得邓3.3解:根据该AR ⑵模型的形式,易得:£(x,) = 0(1 + 0」5)(1-0.15)(1-0.8 + 0.15)(1+ 0.8 + 0.15)3.4解:原模型可变形为:由其平稳域判别条件知:当|如<1, 0 +妬<1且血TV 时,模型平m 山川 山山川/沙少川川山山川 WWW■T* • *1*1 »• U® U* "T*1 ■ • *1® U* I* *1 «»••■ •Hi Hi alt Hi«pvpap«p•"沙山川山川•w*・••T<H* H*M*^T*H*■ »!• i \i • i| 11| • i| I 11| I qi i| •■山必心•丄■心*1* *!■ «(« ■!««|« <1 • «1 e «1 e f|« •!••••••••■• ■ 3山川川aw 山• n»<n<P■■ • 0•P^ " .•eHits>!■«je.■ahiiiniih ibUiiDditbibiliilBil* ibH| QIQ «■(«Q «Q «原模型可变为:x t =0・8兀『-]-0・15X _2 +祈2=1.98230Autocorrelat i ons-1 9 8 7 6 5 4 3 2 1 0 1 2 9 4 5 6 7 8 9 1由此可知 c 应满足:|ici<i|, |c-1 < 1 BfTTTTT] 即当-IvcvO 时,该AR (2)模型平稳。
【分享】应用时间序列分析课后答案在学习应用时间序列分析这门课程时,课后答案对于我们巩固知识、检验学习成果以及发现自身的不足之处都具有重要的意义。
下面,我将为大家分享一下这门课程的课后答案,并结合答案对一些重点和难点问题进行分析和讲解。
首先,让我们来看看第一章的课后答案。
第一章主要介绍了时间序列分析的基本概念和方法,包括时间序列的定义、分类以及平稳性的概念等。
在课后习题中,有这样一道题:“请解释什么是时间序列,并举例说明。
”答案是:“时间序列是按时间顺序排列的一组数据。
例如,某地区每天的气温记录、股票市场每天的收盘价、某工厂每月的产量等都是时间序列。
”通过这道题,我们可以更清晰地理解时间序列的概念,并且能够将其与实际生活中的例子相结合,加深对知识的理解。
另一道题是:“判断一个时间序列是否平稳的方法有哪些?”答案为:“常见的方法有观察序列的均值、方差是否随时间变化;自相关函数是否只与时间间隔有关,而与时间起点无关等。
”这道题帮助我们掌握了判断时间序列平稳性的关键要点。
第二章主要讲解了时间序列的模型,如 AR 模型、MA 模型和ARMA 模型等。
比如,有这样一道习题:“请简述 AR(1)模型的表达式和特点。
”答案是:“AR(1)模型的表达式为 Xt =φXt-1 +εt,其中φ 为自回归系数,εt 为白噪声。
其特点是当前值主要由前一期的值和随机扰动项决定。
”通过这个答案,我们能够明确 AR(1)模型的数学形式和基本特征。
还有一道题是:“比较 AR 模型和 MA 模型的异同。
”答案从模型的表达式、参数含义、适用情况等方面进行了详细的比较,让我们对这两种模型有了更全面的认识。
第三章涉及时间序列的预测方法。
像“简述时间序列预测的基本步骤”这道题,答案是:“首先对时间序列进行平稳性检验和预处理;然后选择合适的模型进行拟合;接着对模型进行参数估计和诊断检验;最后利用模型进行预测。
”这个答案为我们提供了一个清晰的预测流程框架。
第一章习题答案略第二章习题答案2.1答案:(1)不平稳,有典型线性趋势(2)1-6阶自相关系数如下(3)典型的具有单调趋势的时间序列样本自相关图2.2答案:(1)不平稳(2)延迟1-24阶自相关系数(3)自相关图呈现典型的长期趋势与周期并存的特征2.3答案:(1)1-24阶自相关系数(2)平稳序列(3)非白噪声序列2.4计算该序列各阶延迟的Q统计量及相应P值。
由于延迟1-12阶Q统计量的P值均显著大于0.05,所以该序列为纯随机序列。
2.5答案(1)绘制时序图与自相关图(2)序列时序图显示出典型的周期特征,该序列非平稳(3)该序列为非白噪声序列2.6答案(1)如果是进行平稳性图识别,该序列自相关图呈现一定的趋势序列特征,可以视为非平稳非白噪声序列。
如果通过adf检验进行序列平稳性识别,该序列带漂移项的0阶滞后P值小于0.05,可以视为平稳非白噪声序列(2)差分后序列为平稳非白噪声序列2.7答案(1)时序图和自相关图显示该序列有趋势特征,所以图识别为非平稳序列。
(2)单位根检验显示带漂移项0阶延迟的P值小于0.05,所以基于adf检验可以认为该序列平稳(3)如果使用adf检验结果,认为该序列平稳,则白噪声检验显示该序列为非白噪声序列如果使用图识别认为该序列非平稳,那么一阶差分后序列为平稳非白噪声序列2.8答案(1)时序图和自相关图都显示典型的趋势序列特征(2)单位根检验显示该序列可以认为是平稳序列(带漂移项一阶滞后P值小于0.05)(3)一阶差分后序列平稳第三章习题答案 3.10101()0110.7t E x φφ===--() 221112() 1.96110.7t Var x φ===--() 22213=0.70.49ρφ==()12122221110.490.7=0110.71ρρρφρρ-==-(4) 3.21111222211212(2)7=0.515111=0.30.515AR φφφρφφφρφρφφφ⎧⎧⎧=⎪=⎪⎪⎪--⇒⇒⎨⎨⎨⎪⎪⎪=+=+⎩⎩⎪⎩模型有:,2115φ=3.312012(1)(10.5)(10.3)0.80.15()01t t t t t tt B B x x x x E x εεφφφ----=⇔=-+==--,22121212()(1)(1)(1)10.15=(10.15)(10.80.15)(10.80.15)1.98t Var x φφφφφφ-=+--+-+--+++=()1122112312210.83=0.70110.150.80.70.150.410.80.410.150.70.22φρφρφρφρφρφρ==-+=+=⨯-==+=⨯-⨯=() 1112223340.70.15=0φρφφφ====-()3.41211110011AR c c c c c ⎧<-<<⎧⎪⇒⇒-<<⎨⎨<±<⎪⎩⎩() ()模型的平稳条件是 1121,21,2k k k c c k ρρρρ--⎧=⎪-⎨⎪=+≥⎩() 3.5证明:该序列的特征方程为:320c c λλλ--+=,解该特征方程得三个特征根:11λ=,2λ=3λ=无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。
证毕。
3.6(1)错 ,2021=1εσγφ-(2)错,()()2111=t t E x x εμμγφσ---=⎡⎤⎣⎦ 抱歉(3)(4)(5)是第四章预测部分的知识,习题安排超前了(3)对(4)错, 1111()T l T l l T e l G G εεε++--+=+++(5)错,[]221ˆlim ()1T l T l Var x x l εσφ+→∞-=-3.72111111211=0.40.40.4021+2θρθθθθθ-=⇒++=⇒=-=-或者 所以该模型有两种可能的表达式:11+2t t t x εε-=和1+2t t t x εε-=。
3.8将123100.50.8t t t t t x x C εεε---=++-+等价表达为23210.810(1)10.5t t t B CB x aB bB Bεε-+-==++-则()2322310.8(1)10.5=1(0.5)(0.5)0.5B CB aB bB B a B b a B bB-+=++-+-+--根据待定系数法:0.8=0.50.300.500.50.15a ab b C b a C --⇒=-=-⇒==-⇒=3.9(1) ()0t E x =222()10.70.4 1.65t Var x =++=()(3)10.70.70.40.591.65ρ--⨯==-,20.40.241.65ρ==,0,3k k ρ=≥3.10(1)证明:因为对任意常数C ,有22()lim(1)t k Var x kC εσ→∞=+=∞所以该序列为非平稳序列。
(2)11(1)t t t t t y x x C εε--=-=+-,则序列{}t y 满足如下条件:均值、方差为常数,()0t E y =,22()1(1)t Var y C εσ⎡⎤=+-⎣⎦自相关系数只与时间间隔长度有关,与起始时间无关121,0,21(1)k C k C ρρ-==≥+-所以该差分序列为平稳序列。
3.11(1)非平稳,(2)平稳,(3)可逆,(4)不可逆,(5)平稳可逆,(6)不平稳不可逆3.12该模型的Green 函数为:01G =11010.60.30.3G G φθ=-=-=1111110.30.6,2k k k k G G G k φφ---===⨯≥所以该模型可以等价表示为:100.30.6kt t t k k x εε∞--==+⨯∑3.13212012()(10.5)=0.5=0.253()4110.50.25t B B E x φφφφφΘ=-⇒-===---+,3.14证明: 已知112φ=,114θ=,根据(1,1)ARMA 模型Green 函数的递推公式得:01G =,2110110.50.25G G φθφ=-=-=,1111111,2k k k k G G G k φφφ-+-===≥01ρ=52232111112245011111142422(1)11112011170.27126111j jj j j j jj j G GGφφφφφφφφρφφφφφ∞∞++==∞∞+==++--+======-+++-∑∑∑∑()11111122200,2jj kjj k jj k j j j k k jjjj j j G G G GG Gk GGGφρφφρ∞∞∞++-+-===-∞∞∞=======≥∑∑∑∑∑∑证毕。
3.15(1)成立(2)成立(3)成立(4)不成立3.16该习题数据文件与2.7相同。
该题问题设置有问题:是要问如果判断该序列或差分序列是平稳序列,那该平稳序列具有ARMA族中哪个模型的特征。
(1)根据adf检验结果可以认为该序列平稳。
根据序列的自相关图可以认为是自相关系数拖尾。
根据偏自相关图,可以认为是偏自相关2阶截尾,所以该序列具有AR(2)模型的特征。
(2)根据图识别也可以认为该序列不平稳,对该序列进行一阶差分。
一阶差分后序列可以视为平稳序列,根据差分后序列的自相关图可以认为是自相关系数1阶截尾,具有MA(1)模型的特征。
根据偏自相关图,可以认为是偏自相关3阶截尾,具有AR(3)模型的特征。
具体哪个模型最适合拟合该序列,下一章介绍。
3.17该习题数据文件与2.8相同。
该题问题设置有问题:是要问如果判断该序列或差分序列是平稳序列,那该平稳序列具有ARMA族中哪个模型的特征。
(1)根据adf检验,该序列可以视为平稳序列。
自相关图呈现拖尾属性,偏自相关图呈现1阶截尾特征,所以该序列呈现出AR(1)模型特征。
(3)如果根据图识别,可以认为序列蕴含趋势,可以视为非平稳序列。
一阶差分后序列平稳。
一阶差分后序列呈现自相关系数2阶截尾,偏自相关系数2阶截尾的特征,可以视为一阶差分后序列具有MA(2)模型特征,或AR(2)模型特征。
具体哪个模型最适合拟合该序列,下一章介绍。
第四章习题答案4.1(1)绘制时序图(略)(2)该序列为平稳非白噪声(3)自相关图拖尾,偏自相关图一阶截尾(4)拟合AR(1)模型(5)五年预测值见sas输出(略)4.2(1)绘制时序图(略)(2)该序列为平稳非白噪声序列(3)自相关图一阶截尾,偏自相关图拖尾(4)拟合MA(1)模型(5)五年预测值见sas输出(略)4.3答案(1)绘制时序图(略)(2)该序列为平稳非白噪声序列(3)根据该序列自相关图,可以视为:自相关图一阶截尾,或偏自相关2阶截尾(4)分别拟合MA(1)模型和AR(2)模型,两个模型均参数显著非零,残差为检验为白噪声序列,AIC和SBC的结果几乎相等,最后考虑白噪声检验的P值,AR(2)模型的白噪声检验P值更大,说明该模型对序列的相关信息提取更为充分,所以选择AR(2)模型作为最优模型。
(5)基于AR(2)模型未来一年预测值为4.4本题SAS代码(1)绘制时序图(略)(2)该序列为平稳非白噪声序列(3)根据该序列自相关图,可以视为:自相关图一阶截尾,或偏自相关2阶截尾,或自相关和偏自相关均拖尾(4)分别拟合MA(1)模型,AR(2)模型和ARMA(1,1,) 。
ARMA(1,1)模型参数不能拒绝参数为零的原假设,所以淘汰。
MA(1)模型,AR(2)模型均参数显著非零,残差为检验为白噪声序列,MA(1)模型SBC 更小一点,所以选择MA(1)模型作为最优模型。
(5)基于MA(1)模型未来五年预测值为4.5(1)01123(1)10(10.3)7ˆ70.39.69.88ˆ70.39.889.964ˆ70.39.9649.9892t tt xxxφμφ+++=-=⨯-==+⨯==+⨯==+⨯=2222243012ˆ()()(10.3+0.39=9.8829t Var x G G G εσ+=++=+⨯)所以3ˆ95%9.9892 3.83,16.15t x +±的的置信区间等于()(2)更新数据后23ˆ70.310.510.15ˆ70.310.1510.045t t xx++=+⨯==+⨯=2222301ˆ()()(10.39=9.81t Var x G G εσ+=+=+⨯)所以3ˆ95%10.045 3.91,16.18t x +±的的置信区间等于()4.6答案(1)平稳非白噪声序列(2)自相关系数拖尾,偏自相关系数1阶截尾,拟合AR (1)模型0180.9941(10.31587)55.41=55.410.31587t t tx x φε-=-=++(3)未来5年的降雪量4.7答案(1)平稳非白噪声序列(2)自相关系数和偏自相关系数都拖尾,拟合ARMA(1,1)模型0110.86293(10.91851)0.07=0.070.918510.68251t t t t x x φεε--=⨯-=++-(3)未来5年的谷物产量预测:4.8SAS指令data a;input x@@;t=_n_;cards;81.9 89.4 79.0 81.4 84.8 85.9 88.0 80.3 82.6 83.5 80.2 85.2 87.2 83.5 84.3 82.9 84.7 82.9 81.5 83.4 87.7 81.8 79.6 85.8 77.9 89.7 85.4 86.3 80.7 83.8 90.5 84.5 82.4 86.7 83.0 81.8 89.3 79.3 82.7 88.0 79.6 87.8 83.6 79.5 83.3 88.4 86.6 84.6 79.7 86.0 84.2 83.0 84.8 83.6 81.8 85.9 88.2 83.5 87.2 83.7 87.3 83.0 90.5 80.7 83.1 86.5 90.0 77.5 84.7 84.6 87.2 80.5 86.1 82.6 85.4 84.7 82.8 81.9 83.6 86.8 84.084.2 82.8 83.0 82.0 84.7 84.4 88.9 82.4 83.085.0 82.2 81.6 86.2 85.4 82.1 81.4 85.0 85.8 84.2 83.5 86.5 85.0 80.4 85.7 86.7 86.7 82.3 86.4 82.5 82.0 79.5 86.7 80.5 91.7 81.6 83.9 85.6 84.8 78.4 89.9 85.0 86.2 83.0 85.4 84.4 84.5 86.2 85.6 83.2 85.7 83.5 80.1 82.2 88.6 82.0 85.0 85.2 85.3 84.3 82.3 89.7 84.8 83.1 80.6 87.4 86.8 83.5 86.2 84.1 82.3 84.8 86.6 83.5 78.1 88.8 81.9 83.3 80.0 87.2 83.3 86.6 79.5 84.1 82.2 90.8 86.5 79.7 81.0 87.2 81.6 84.4 84.4 82.2 88.9 80.9 85.1 87.1 84.0 76.5 82.7 85.1 83.3 90.4 81.0 80.3 79.8 89.0 83.7 80.9 87.3 81.1 85.6 86.6 80.0 86.6 83.3 83.1 82.3 86.7 80.2;proc arima data=a;identify var=x stationarity=(adf);答案(1)平稳非白噪声序列(2)自相关系数1阶截尾,偏自相关系数拖尾,拟合MA(1)模型1=84.130.48t t t x εε-+-(3)下一刻的95%置信区间为:(80.4131,,90.9580)4.9SAS 指令data a; input x@@;t=intnx("quarter","01OSep1971"d ,_n_-1); format t monyy7.; cards ;63.2 67.9 55.8 49.5 50.2 55.4 49.9 45.3 48.1 61.7 55.2 53.1 49.5 59.9 30.6 30.4 33.8 42.1 35.8 28.4 32.9 44.1 45.5 36.6 39.5 49.8 48.8 29 37.3 34.2 47.6 37.3 39.2 47.6 43.9 49 51.2 60.8 67 48.9 65.4 65.4 67.6 62.5 55.1 49.6 57.3 47.3 45.5 44.5 48 47.9 49.1 48.8 59.4 51.6 51.4 60.9 60.9 56.8 58.6 62.1 64 60.3 64.6 7179.4 59.9 83.4 75.4 80.2 55.9 58.5 65.2 69.5 59.1 21.5 62.5 170 -47.4 62.2 60 33.1 35.3 43.4 42.7 58.4 34.4 ;proc arima data =a;identify var =x stationarity =(adf); estimate p =(3,4) q =1; forecast id =t lead =20; run ;答案(1)平稳非白噪声序列(2)自相关系数和偏自相关系数都拖尾,拟合ARMA(4,1)模型(该模型有部分系数不能显著非零)。