湖南省湘西州中考数学试卷及答案解析
- 格式:doc
- 大小:451.00 KB
- 文档页数:22
2023年湖南省湘西州中考数学试卷一、选择题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. −2023的相反数是( )A. −2023B. 2023C. −12023D. 120232. 今年五一假期,湘西州接待游客160.3万人次,实现旅游收入1673000000元,旅游复苏形势喜人将1673000000用科学记数法表示为( )A. 16.73×108B. 1.673×108C. 1.673×109D. 1.673×10103. 下列运算正确的是( )A. (−3)2=3B. (3a)2=6a2C. 3+2=32D. (a+b)2=a2+b24. 已知直线a//b,将一块直角三角板按如图所示的方式摆放.若∠1=40°,则∠2的度数是( )A. 40°B. 50°C. 140°D. 150°5. 某校九年级科技创新兴趣小组的7个成员体重(单位:kg)如下:38,42,35,40,36,42,75,则这组数据的众数和中位数分别是( )A. 42,36B. 42,42C. 40,40D. 42,406. 如图是由6个完全相同的小正方体搭成的几何体,其箭头所指方向为主视方向,则这个几何体的俯视图是( )A.B.C.D.7. 不等式组{x −1<21−x <4的解集在数轴上表示正确的是( )A.B.C.D.8. 七边形的内角和是( )A. 1080°B. 900°C. 720°D. 540°9. 如图,点A 在函数y =2x(x >0)的图象上,点B 在函数y =3x(x >0)的图象上,且AB //x 轴,BC ⊥x 轴于点C ,则四边形ABCO 的面积为( )A. 1B. 2C. 3D. 410. 如图,AB 为⊙O 的直径,点P 在AB 的延长线上,PC ,PD 与⊙O 相切,切点分别为C ,D .若AB =10,PC =12,则sin ∠CAD 等于( )A. 125B.1312C. 135D. 1213二、填空题(本大题共8小题,共32.0分)11. 在实数3,−2,1,2中,最小的实数是______ .212. 若二次根式2x−10在实数范围内有意义,则x的取值范围是______ .13. 分解因式:2x2−2=______ .14. 在一个不透明的袋中装有5个白球和2个红球,它们除颜色不同外,其余均相同现从袋中随机摸出一个小球,则摸到红球的概率是______ .15. 在平面直角坐标系中,已知点P(a,1)与点Q(2,b)关于x轴对称,则a+b=______ .16. 已知一元二次方程x2−4x+m=0的一个根为x1=1.则另一个根x2=______ .17. 如图,在矩形ABCD中,点E在边BC上,点F是AE的中点,AB=8,AD=DE=10,则B F的长为______ .18. 如图,⊙O是等边三角形ABC的外接圆,其半径为4.过点B作BE⊥AC于点E,点P为线段BE上一动点(点P不与B,E重合),则CP+12BP的最小值为______ .三、解答题(本大题共8小题,共78.0分。
2020年湘西土家族苗族自治州初中学业水平考试数学试题卷(时量120分钟,满分150分)一、选择题(本大题共10小题,每小题4分,共40分.每个小题所给四个选项中有唯一正确选项)1.下列各数中,比﹣2小的数是()A.0 B.﹣1 C.﹣3 D.32.2019年中国与“一带一路”沿线国家货物贸易进出口总额达到92700亿元,用科学记数法表示92700是()A.0.927×105B.9.27×104C.92.7×103D.927×1023.下列运算正确的是()A.=﹣2 B.(x﹣y)2=x2﹣y2C.+=D.(﹣3a)2=9a24.如图是由4个相同的小正方体组成的一个水平放置的立体图形,其箭头所指方向为主视方向,其俯视图是()A.B.C.D.5.从长度分别为1cm、3cm、5cm、6cm四条线段中随机取出三条,则能够组成三角形的概率为()A.B.C.D.6.已知∠AOB,作∠AOB的平分线OM,在射线OM上截取线段OC,分别以O、C为圆心,大于OC的长为半径画弧,两弧相交于E,F.画直线EF,分别交OA于D,交OB于G.那么△ODG一定是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形7.已知正比例函数y1的图象与反比例函数y2的图象相交于点A(﹣2,4),下列说法正确的是()A.正比例函数y1的解析式是y1=2xB.两个函数图象的另一交点坐标为(4,﹣2)C.正比例函数y1与反比例函数y2都随x的增大而增大D.当x<﹣2或0<x<2时,y2<y18.如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D.下列结论不一定成立的是()A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A、B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线9.如图,在平面直角坐标系xOy中,矩形ABCD的顶点A在x轴的正半轴上,矩形的另一个顶点D在y轴的正半轴上,矩形的边AB=a,BC=b,∠DAO=x,则点C到x轴的距离等于()A.acosx+bsinx B.acosx+bcosxC.asinx+bcosx D.asinx+bsinx10.已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:①abc>0,②b﹣2a<0,③a﹣b+c>0,④a+b>n(an+b),(n≠1),⑤2c<3b.正确的是()A.①③B.②⑤C.③④D.④⑤二、填空题(本大题共8小题,每小题4分,共32分)11.﹣的绝对值是.12.分解因式:2x2﹣2=.13.若一个多边形的内角和是外角和的两倍,则该多边形的边数是.14.不等式组的解集为.15.如图,直线AE∥BC,BA⊥AC,若∠ABC=54°,则∠EAC=度.16.从甲、乙两种玉米种子中选择一种合适的推荐给某地.考虑到庄稼人对玉米的产量和产量的稳定性十分的关心.选择之前,为了解甲、乙两种玉米种子的情况,某单位各用了10块自然条件相同的试验田进行试验,得到各试验田每公顷产量(单位:t)的数据,这两组数据的平均数分别是甲≈7.5,乙≈7.5,方差分别是S甲2=0.010,S2=0.002,你认为应该选择的玉米种子是.乙17.在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°,矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.将矩形CODE沿x轴向右平移,当矩形CODE与△ABO重叠部分的面积为6时,则矩形CODE向右平移的距离为.18.观察下列结论:(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC=60°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD=90°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE=108°;…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N 是A1A2,A2A3上的点,且A1M=A2N,A1N与A n M相交于O.也会有类似的结论,你的结论是.三、解答题(本大題关8小题,共78分,写出计算、解答或证明的主要步骤)19.(8分)计算:2cos45°+(π﹣2020)0+|2﹣|.20.(8分)化简:(﹣a﹣1)÷.21.(8分)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:△BAE≌△CDE;(2)求∠AEB的度数.22.(10分)为加强安全教育,某校开展了“防溺水”安全知识竞赛,想了解七年级学生对“防溺水”安全知识的掌握情况,现从七年级学生中随机抽取50名学生进行竞赛,并将他们的竞赛成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级参赛学生成绩频数分布直方图(数据分成五组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)如图所示b.七年级参赛学生成绩在70≤x<80这一组的具体得分是:70 71 73 75 76 76 76 77 77 78 79c.七年级参赛学生成绩的平均数、中位数、众数如下:年级平均数中位数众数七76.9 m 80d.七年级参赛学生甲的竞赛成绩得分为79分.根据以上信息,回答下列问题:(1)在这次测试中,七年级在75分以上(含75分)的有人;(2)表中m的值为;(3)在这次测试中,七年级参赛学生甲的竞赛成绩得分排名年级第名;(4)该校七年级学生有500人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.23.(10分)某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?24.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(1)若D为AC的中点,证明:DE是⊙O的切线;(2)若CA=6,CE=3.6,求⊙O的半径OA的长.25.(12分)问题背景:如图1,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.小李同学探究此问题的方法是:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论,他的结论就是;探究延伸1:如图2,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F,上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由;探究延伸2:如图3,在四边形ABCD中,BA=BC,∠BAD+∠BCD=180°,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由;实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处.且指挥中心观测两舰艇视线之间的夹角为70°.试求此时两舰艇之间的距离.26.(12分)已知直线y=kx﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的一个交点为A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(1)当直线y=kx﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的另一个交点为该抛物线的顶点E时,求k,b,c的值及抛物线顶点E的坐标;(2)在(1)的条件下,设该抛物线与y轴的交点为C,若点Q在抛物线上,且点Q的横坐标为b,当S△EQM=S△ACE时,求m的值;(3)点D在抛物线上,且点D的横坐标为b+,当AM+2DM的最小值为时,求b 的值.答案与解析一、选择题(本大题共10小题,每小题4分,共40分.每个小题所给四个选项中有唯一正确选项)1.下列各数中,比﹣2小的数是()A.0 B.﹣1 C.﹣3 D.3【知识考点】有理数大小比较.【思路分析】利用数轴表示这些数,从而比较大小.【解题过程】解:将这些数在数轴上表示出来:∴﹣3<﹣2<﹣1<0<3,∴比﹣2小的数是﹣3,故选:C.【总结归纳】考查了有理数大小比较法则.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.2.2019年中国与“一带一路”沿线国家货物贸易进出口总额达到92700亿元,用科学记数法表示92700是()A.0.927×105B.9.27×104C.92.7×103D.927×102【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为正整数.【解题过程】解:92700=9.27×104.故选:B.【总结归纳】此题考查科学记数法表示较大的数的方法,把一个大于10的数记成a×10n的形式,其中1≤|a|<10,n是正整数,这种记数法叫做科学记数法.3.下列运算正确的是()A.=﹣2 B.(x﹣y)2=x2﹣y2C.+=D.(﹣3a)2=9a2【知识考点】幂的乘方与积的乘方;完全平方公式;二次根式的性质与化简;二次根式的加减法.【思路分析】根据二次根式的加减法、幂的乘方与积的乘方、完全平方公式、二次根式的性质与化简,进行计算即可判断.【解题过程】解:A.=2,所以A选项错误;B.(x﹣y)2=x2﹣2xy+y2,所以B选项错误;C.+≠,所以C选项错误;D.(﹣3a)2=9a2.所以D选项正确.故选:D.【总结归纳】本题考查了二次根式的加减法、幂的乘方与积的乘方、完全平方公式、二次根式的性质与化简,解决本题的关键是综合运用以上知识.4.如图是由4个相同的小正方体组成的一个水平放置的立体图形,其箭头所指方向为主视方向,其俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据从上边看得到的图形是俯视图,可得答案.【解题过程】解:从上边看有两层,底层右边是一个小正方形,上层是两个小正方形,故选:C.【总结归纳】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.5.从长度分别为1cm、3cm、5cm、6cm四条线段中随机取出三条,则能够组成三角形的概率为()A.B.C.D.【知识考点】三角形三边关系;列表法与树状图法.【思路分析】列举出所有可能出现的结果情况,进而求出能构成三角形的概率.【解题过程】解:从长度为1cm、3cm、5cm、6cm四条线段中随机取出三条,共有以下4种结果(不分先后):1cm、3cm、5cm,1cm、3cm、6cm,3cm、5cm、6cm,1cm、5cm、6cm,其中,能构成三角形的只有1种,∴P(构成三角形)=.故选:A.【总结归纳】本题考查随机事件发生的概率,列举出所有可能出现的结果情况,是正确解答的关键.6.已知∠AOB,作∠AOB的平分线OM,在射线OM上截取线段OC,分别以O、C为圆心,大于OC的长为半径画弧,两弧相交于E,F.画直线EF,分别交OA于D,交OB于G.那么△ODG一定是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形【知识考点】等腰三角形的判定;作图—基本作图.【思路分析】依据已知条件即可得到∠ODP=∠OGP,即可得到OD=OG,进而得出△ODG是等腰三角形.【解题过程】解:如图所示,∵OM平分∠AOB,∴∠AOC=∠BOC,由题可得,DG垂直平分OC,∴∠OPD=∠OPG=90°,∴∠ODP=∠OGP,∴OD=OG,∴△ODG是等腰三角形,故选:C.【总结归纳】本题主要考查了基本作图以及等腰三角形的判定,如果一个三角形有两个角相等,那么这两个角所对的边也相等.7.已知正比例函数y1的图象与反比例函数y2的图象相交于点A(﹣2,4),下列说法正确的是()A.正比例函数y1的解析式是y1=2xB.两个函数图象的另一交点坐标为(4,﹣2)C.正比例函数y1与反比例函数y2都随x的增大而增大D.当x<﹣2或0<x<2时,y2<y1【知识考点】反比例函数与一次函数的交点问题.【思路分析】由题意可求正比例函数解析式和反比例函数解析式,根据正比例函数和反比例函数的性质可判断求解.【解题过程】解:∵正比例函数y1的图象与反比例函数y2的图象相交于点A(﹣2,4),∴正比例函数y1=﹣2x,反比例函数y2=﹣,∴两个函数图象的另一个交点为(2,﹣4),∴A,B选项说法错误;∵正比例函数y1=﹣2x中,y随x的增大而减小,反比例函数y2=﹣中,在每个象限内y随x 的增大而增大,∴C选项说法错误;∵当x<﹣2或0<x<2时,y2<y1,∴选项D说法正确.故选:D.【总结归纳】本题考查了反比例函数与一次函数的交点问题,熟练运用反比例函数与一次函数的性质解决问题是本题的关键.8.如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D.下列结论不一定成立的是()A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A、B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线【知识考点】线段垂直平分线的性质;等腰三角形的判定;切线的性质.【思路分析】根据切线的性质即可求出答案.【解题过程】解:(A)∵PA、PB为圆O的切线,∴PA=PB,∴△BPA是等腰三角形,故A选项不符合题意.(B)由圆的对称性可知:PD垂直平分AB,但AB不一定平分PD,故B选项符合题意.(C)连接OB、OA,∵PA、PB为圆O的切线,∴∠OBP=∠OAP=90°,∴点A、B、P在以OP为直径的圆上,故C选项不符合题意.(D)∵△BPA是等腰三角形,PD⊥AB,∴PC为△BPA的边AB上的中线,故D选项不符合题意.故选:B.【总结归纳】本题考查切线的性质,解题的关键是熟练运用切线的性质,本题属于中等题型.9.如图,在平面直角坐标系xOy中,矩形ABCD的顶点A在x轴的正半轴上,矩形的另一个顶点D在y轴的正半轴上,矩形的边AB=a,BC=b,∠DAO=x,则点C到x轴的距离等于()A.acosx+bsinx B.acosx+bcosxC.asinx+bcosx D.asinx+bsinx【知识考点】坐标与图形性质;矩形的性质;解直角三角形.【思路分析】作CE⊥y轴于E,由矩形的性质得出CD=AB=a,AD=BC=b,∠ADC=90°,证出∠CDE=∠DAO=x,由三角函数定义得出OD=bsinx,DE=acosx,进而得出答案.【解题过程】解:作CE⊥y轴于E,如图:∵四边形ABCD是矩形,∴CD=AB=a,AD=BC=b,∠ADC=90°,∴∠CDE+∠ADO=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠CDE=∠DAO=x,∵sin∠DAO=,cos∠CDE=,∴OD=AD×sin∠DAO=bsinx,DE=CD×cos∠CDE=acosx,∴OE=DE+OD=acosx+bsinx,∴点C到x轴的距离等于acosx+bsinx;故选:A.【总结归纳】本题考查了矩形的性质、坐标与图形性质、三角函数定义等知识;熟练掌握矩形的性质和三角函数定义是解题的关键.10.已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:①abc>0,②b﹣2a<0,③a﹣b+c>0,④a+b>n(an+b),(n≠1),⑤2c<3b.正确的是()A.①③B.②⑤C.③④D.④⑤【知识考点】二次函数图象与系数的关系.【思路分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解题过程】解:①由图象可知:a<0,b>0,c>0,abc<0,故①错误;②由于a<0,所以﹣2a>0.又b>0,所以b﹣2a>0,故②错误;③当x=﹣1时,y=a﹣b+c<0,故③错误;④当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故④正确;⑤当x=3时函数值小于0,y=9a+3b+c<0,且该抛物线对称轴是直线x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故⑤正确;故④⑤正确.故选:D.【总结归纳】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点确定.二、填空题(本大题共8小题,每小题4分,共32分)11.﹣的绝对值是.【知识考点】绝对值.【思路分析】根据绝对值的意义,求出结果即可.【解题过程】解:根据负数的绝对值等于它的相反数可得,|﹣|=,故答案为:.【总结归纳】本题考查绝对值的意义,理解负数的绝对值等于它的相反数.12.分解因式:2x2﹣2=.【知识考点】提公因式法与公式法的综合运用.【思路分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.【解题过程】解:2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1).故答案为:2(x+1)(x﹣1).【总结归纳】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.13.若一个多边形的内角和是外角和的两倍,则该多边形的边数是.【知识考点】多边形内角与外角.【思路分析】任何多边形的外角和是360°,内角和等于外角和的2倍则内角和是720°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解题过程】解:设该多边形的边数为n,根据题意,得,(n﹣2)•180°=720°,解得:n=6.故这个多边形的边数为6.故答案为:6【总结归纳】本题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题来解决,难度适中.14.不等式组的解集为.【知识考点】解一元一次不等式组.【思路分析】求出每个不等式的解集,最后求出不等式组的解集即可.【解题过程】解:,∵解不等式①得:x≥﹣3,解不等式②得:x≥﹣1,∴不等式组的解集为x≥﹣1,故答案为:x≥﹣1.【总结归纳】本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.15.如图,直线AE∥BC,BA⊥AC,若∠ABC=54°,则∠EAC=度.【知识考点】垂线;平行线的性质.【思路分析】根据垂直的定义得到∠BAC=90°,根据三角形的内角和定理得到∠C=90°﹣54°=36°,根据平行线的性质即可得到结论.【解题过程】解:∵BA⊥AC,∴∠BAC=90°,∵∠ABC=54°,∴∠C=90°﹣54°=36°,∵AE∥BC,∴∠EAC=∠C=36°,故答案为:36.【总结归纳】本题考查了平行线的性质,三角形的内角和定理,熟练掌握平行线的性质是解题的关键.16.从甲、乙两种玉米种子中选择一种合适的推荐给某地.考虑到庄稼人对玉米的产量和产量的稳定性十分的关心.选择之前,为了解甲、乙两种玉米种子的情况,某单位各用了10块自然条件相同的试验田进行试验,得到各试验田每公顷产量(单位:t)的数据,这两组数据的平均数分别是甲≈7.5,乙≈7.5,方差分别是S甲2=0.010,S乙2=0.002,你认为应该选择的玉米种子是.【知识考点】算术平均数;方差.【思路分析】在平均数基本相等的前提下,方差越小产量越稳定,据此求解可得.【解题过程】解:∵甲=乙≈7.5,S甲2=0.010,S乙2=0.002,∴S甲2>S乙2,∴乙玉米种子的产量比较稳定,∴应该选择的玉米种子是乙,故答案为:乙.【总结归纳】本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.17.在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°,矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.将矩形CODE沿x轴向右平移,当矩形CODE与△ABO重叠部分的面积为6时,则矩形CODE向右平移的距离为.【知识考点】三角形的面积;矩形的性质;坐标与图形变化﹣平移.【思路分析】由已知得出AD=OA﹣OD=4,由矩形的性质得出∠AED=∠ABO=30°,在Rt △AED中,AE=2AD=8,由勾股定理得出ED=4,作出图形,根据三角形面积公式列出方程即可得出答案.【解题过程】解:∵点A(6,0),∴OA=6,∵OD=2,∴AD=OA﹣OD=6﹣2=4,∵四边形CODE是矩形,∴DE∥OC,∴∠AED=∠ABO=30°,在Rt△AED中,AE=2AD=8,ED===4,∵OD=2,∴点E的坐标为(2,4);∴矩形CODE的面积为4×2=8,∵将矩形CODE沿x轴向右平移,矩形CODE与△ABO重叠部分的面积为6∴矩形CODE与△ABO不重叠部分的面积为2,如图,设ME′=x,则FE′=x,依题意有x×x÷2=2,解得x=±2(负值舍去).故矩形CODE向右平移的距离为2.故答案为:2.【总结归纳】考查了矩形的性质、坐标与图形性质、勾股定理、平移的性质、直角三角形的性质等知识;本题综合性强,有一定难度,熟练掌握含30°角的直角三角形的性质是解题的关键.18.观察下列结论:(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC=60°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD=90°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE=108°;…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N 是A1A2,A2A3上的点,且A1M=A2N,A1N与A n M相交于O.也会有类似的结论,你的结论是.【知识考点】规律型:图形的变化类;全等三角形的判定与性质;正多边形和圆.【思路分析】根据已知所给得到规律,进而可得在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程会有类似的结论.【解题过程】解:∵(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC==60°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD==90°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE==108°;…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与A n M相交于O.也有类似的结论是A1N=A n M,∠NOA n=.故答案为:A1N=A n M,∠NOA n=.【总结归纳】本题考查了正多边形和圆、规律型:图形的变化类、全等三角形的判定与性质,解决本题的关键是掌握正多边形的性质.三、解答题(本大題关8小题,共78分,写出计算、解答或证明的主要步骤)19.(8分)计算:2cos45°+(π﹣2020)0+|2﹣|.【知识考点】实数的运算;零指数幂;特殊角的三角函数值.【思路分析】分别根据特殊角的三角函数值,任何非零数的零次幂定义以及绝对值的定义计算即可.【解题过程】解:原式===3.【总结归纳】本题主要考查了实数的运算,熟记相应定义以及特殊角的三角函数值是解答本题的关键.20.(8分)化简:(﹣a﹣1)÷.【知识考点】分式的混合运算.【思路分析】先计算括号内分式的减法、将除式分母因式分解,再将除法转化为乘法,最后约分即可得.【解题过程】解:原式=(﹣)÷=•=.【总结归纳】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.21.(8分)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:△BAE≌△CDE;(2)求∠AEB的度数.【知识考点】全等三角形的判定与性质;等边三角形的性质;正方形的性质.【思路分析】(1)利用等边三角形的性质得到AD=AE=DE,∠EAD=∠EDA=60°,利用正方形的性质得到AB=AD=CD,∠BAD=∠CDA=90°,所以∠EAB=∠EDC=150°,然后根据“SAS”判定△BAE≌△CDE;(2)先证明AB=AE,然后根据等腰三角形的性质和三角形内角和计算∠AEB的度数.【解题过程】(1)证明:∵△ADE为等边三角形,∴AD=AE=DE,∠EAD=∠EDA=60°,∵四边形ABCD为正方形,∴AB=AD=CD,∠BAD=∠CDA=90°,∴∠EAB=∠EDC=150°,在△BAE和△CDE中,∴△BAE≌△CDE(SAS);(2)∵AB=AD,AD=AE,∴AB=AE,∴∠ABE=∠AEB,∵∠EAB=150°,∴∠AEB=(180°﹣150°)=15°.【总结归纳】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.也考查了全等三角形的判定与性质和等边三角形的性质.22.(10分)为加强安全教育,某校开展了“防溺水”安全知识竞赛,想了解七年级学生对“防溺水”安全知识的掌握情况,现从七年级学生中随机抽取50名学生进行竞赛,并将他们的竞赛成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级参赛学生成绩频数分布直方图(数据分成五组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)如图所示b.七年级参赛学生成绩在70≤x<80这一组的具体得分是:70 71 73 75 76 76 7677 77 78 79c.七年级参赛学生成绩的平均数、中位数、众数如下:年级平均数中位数众数七76.9 m 80d.七年级参赛学生甲的竞赛成绩得分为79分.根据以上信息,回答下列问题:(1)在这次测试中,七年级在75分以上(含75分)的有人;(2)表中m的值为;(3)在这次测试中,七年级参赛学生甲的竞赛成绩得分排名年级第名;(4)该校七年级学生有500人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.【知识考点】用样本估计总体;频数(率)分布直方图;加权平均数;中位数;众数.【思路分析】(1)将频数分布直方图中第3、4、5组数据相加可得答案;(2)根据中位数的定义求解可得;(3)由90≤x≤100的频数为8、80≤x<90的频数为15,据此可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数占被调查人数的比例即可得.【解题过程】解:(1)在这次测试中,七年级在75分以上(含75分)的有8+15+8=31(人),故答案为:31.(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为77、78,∴m==77.5,故答案为:77.5;(3)在这次测试中,七年级参赛学生甲的竞赛成绩得分排名年级第24名,故答案为:24;(4)估计七年级成绩超过平均数76.9分的人数为500×=270(人).【总结归纳】本题主要考查频数分布直方图、中位数及样本估计总体,解题的关键是根据直方图得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.23.(10分)某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?【知识考点】一元二次方程的应用.【思路分析】(1)根据题意设口罩日产量的月平均增长率为x,根据题意列出方程即可求解;(2)结合(1)按照这个增长率,根据3月份平均日产量为24200个,即可预计4月份平均日产量.【解题过程】解:(1)设口罩日产量的月平均增长率为x,根据题意,得20000(1+x)2=24200解得x1=﹣2.1(舍去),x2=0.1=10%,答:口罩日产量的月平均增长率为10%.(2)24200(1+0.1)=26620(个).答:预计4月份平均日产量为26620个.【总结归纳】本题考查了一元二次方程的应用,解决本题的关键是掌握增长率问题应用题的等量关系.24.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(1)若D为AC的中点,证明:DE是⊙O的切线;(2)若CA=6,CE=3.6,求⊙O的半径OA的长.【知识考点】圆周角定理;切线的判定与性质;相似三角形的判定与性质.【思路分析】(1)连接AE,OE,由AB是⊙O的直径,得到∠AEB=90°,根据直角三角形的性质得到AD=DE,求得∠DAE=∠AED,根据切线的性质得到∠CAE+∠EAO=∠CAB=90°,等量代换得到∠DEO=90°,于是得到结论;(2)证明△AEC∽△BAC,列比例式可得BC的长,最后根据勾股定理可得OA的长.【解题过程】(1)证明:连接AE,OE,∵AB是⊙O的直径,且E在⊙O上,∴∠AEB=90°,∴∠AEC=90°,∵D为AC的中点,∴AD=DE,∴∠DAE=∠AED,∵AC是⊙O的切线,∴∠CAE+∠EAO=∠CAB=90°,∵OA=OE,∴∠OAE=∠OEA,∴∠DEA+∠OEA=90°,即∠DEO=90°,∴DE是⊙O的切线;(2)解:∵∠AEC=∠CAB=90°,∠C=∠C,∴△AEC∽△BAC,∴,∵CA=6,CE=3.6,∴,∴BC=10,∵∠CAB=90°,∴AB2+AC2=BC2,∴AB==8,∴OA=4,即⊙O的半径OA的长是4.。
初中毕业升学考试(湖南湘西卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】2的相反数是.【答案】2.【解析】试题分析:根据相反数的定义可知﹣2的相反数是2.考点:相反数.【题文】使代数式有意义的x取值范围是.【答案】x≥1.【解析】试题分析二次根式有意义的条件为被开方数为非负,由此可得x﹣1≥0,解得x≥1.考点::二次根式有意义的条件.【题文】四边形ABCD是某个圆的内接四边形,若∠A=100°,则∠C=.【答案】80°.【解析】试题分析:已知四边ABCD是圆的内接四边形,∠A=100°,根据圆内接四边形的对角互补可得∠C=180°﹣100°=80°.考点:圆内接四边形的性质.【题文】如图,直线CD∥BF,直线AB与CD、EF分别相交于点M、N,若∠1=30°,则∠2=.【答案】30°.【解析】试题分析:根据对顶角的性质可得∠1=∠DMN=30°,再由平行线的性质可得∠2=∠DMN=30°.考点:平行线的性质.【题文】某地区今年参加初中毕业学业考试的九年级考生人数为31000人,数据31000人用科学记数法表示为人.评卷人得分【答案】3.1×104.【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.n的值等于这个数的整数位数减1,所以31000=3.1×104,考点:科学记数法.【题文】分解因式:x2﹣4x+4=.【答案】(x﹣2)2.【解析】试题分析:直接用完全平方公式分解即可,即x2﹣4x+4=(x﹣2)2.考点:分解因式.【题文】如图,在⊙O中,圆心角∠AOB=70°,那么圆周角∠C=.【答案】35°.【解析】试题分析:根据在同圆或等圆中,同弧所对的圆周角等于圆心角的一半,可得∠C=∠AOB=×70°=35°.考点:圆周角定理.【题文】如图,已知菱形ABCD的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD的面积为.【答案】24.【解析】试题分析:根据菱形面积等于两条对角线的长度的乘积的一半即可得,菱形的面积=×6×8=24.考点:菱形的性质.【题文】一组数据1,8,5,3,3的中位数是()A.3 B.3.5 C.4 D.5【答案】A.【解析】试题分析:把这组数据按照从小到大的顺序排列为:1,3,3,5,8,根据中位数的定义可知这组数据的中位数是3.故答案选A.考点:中位数.【题文】下列图形中,是轴对称图形但不是中心对称图形的是()A.平行四边形 B.等腰三角形 C.矩形 D.正方形【答案】B.【解析】试题分析:根据轴对称图形的概念和中心对称图形的概念可得选项A,平行四边形不是轴对称图形,是中心对称图形,错误;选项B,等腰三角形是轴对称图形,不是中心对称图形,正确.选项C,矩形是轴对称图形,也是中心对称图形;错误;选项D,正方形是轴对称图形,也是中心对称图形,错误;故答案选B.考点:轴对称图形的概念和中心对称图形的概念.【题文】下列说法错误的是( )A. 对角线互相平分的四边形是平行四边形B. 两组对边分别相等的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 一组对边相等,另一组对边平行的四边形是平行四边形【答案】D【解析】试题分析:根据平行四边形的判定定理可得选项A,两条对角线互相平分的四边形是平行四边形,,正确;选项B,两组对边分别相等的四边形是平行四边形,正确;选项C,一组对边平行且相等的四边形是平行四边形,正确;选项D,一组对边相等,另一组对边平行的四边形不一定是平行四边形,例如:等腰梯形,错误;故答案选D.考点:平行四边形的判定.【题文】计算﹣的结果精确到0.01是(可用科学计算器计算或笔算)()A.0.30 B.0.31 C.0.32 D.0.33【答案】C.【解析】试题分析:用计算器计算可得≈1.732,≈1.414,所以﹣≈1.732﹣1.414=0.318≈0.32.故答案选C.考点:计算器的运用.【题文】不等式组的解集是()A.x>1 B.1<x≤2 C.x≤2 D.无解【答案】B.【解析】试题分析:解不等式①得:x≤2,解不等式②得:x>1,所以不等式组的解集为1<x≤2,故答案选B.考点:解一元一次不等式组.【题文】一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对【答案】C.【解析】试题分析:分4cm为等腰三角形的腰和5cm为等腰三角形的腰两种情况:①当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,周长为13cm;②当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,周长为14cm,故答案选C.考点:等腰三角形的性质;三角形三边关系.【题文】在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球,摸到红球的概率为()A. B. C. D.1【答案】A.【解析】试题分析:先求出总的球的个数,再出摸到红球的概率.已知袋中装有6个红球,2个绿球,可得共有8个球,根据概率公式可得摸到红球的概率为;故答案选A.考点:概率公式.【题文】一次函数y=﹣2x+3的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】C.【解析】试题分析:由题意可知,k=﹣2<0,必过第二、四象限,又因b=3,可知交y轴于正半轴.所以y=﹣2x+3的图象过第一、二、四象限,不过第三象限,故答案选C.考点:一次函数的性质.【题文】如图,在△ABC中,DE∥BC,DB=2AD,△ADE的面积为1,则四边形DBCE的面积为()A.3 B.5 C.6 D.8【答案】D.【解析】试题分析:由DE∥BC,DB=2AD可得△ADE∽△ABC,.根据相似三角形的性质可得,得S△ABC=9.SDBCE=SABC﹣S△ADE=8,故答案选D.考点:相似三角形的判定与性质.【题文】在RT△ABC中,∠C=90°,BC=3cm,AC=4cm,以点C为圆心,以2.5cm为半径画圆,则⊙C与直线AB的位置关系是()A.相交 B.相切 C.相离 D.不能确定【答案】A.【解析】试题分析:如图,过C作CD⊥AB于D,在Rt△ABC中,∠C=90,AC=4,BC=3,根据勾股定理AB=5,再根据△ABC的面积=AC×BC=AB×CD,可得3×4=5CD,解得CD=2.4<2.5,即d<r,所以以2.5为半径的⊙C 与直线AB的关系是相交;故答案选A.考点:直线与圆的位置关系.【题文】计算:(﹣3)0﹣2sin30°﹣.【答案】2.【解析】试题分析:先根据零指数幂、特殊角的三角函数值、二次根式的化简方法依次计算后,再合并即可.试题解析:原式==1﹣2×﹣2=1﹣1﹣2=﹣2.考点:实数的运算.【题文】先化简,再求值:(a+b)(a﹣b)﹣b(a﹣b),其中,a=﹣2,b=1.【答案】原式=a2﹣ab,当a=﹣2,b=1时,原式=6.【解析】试题分析:先运用平方差公式,单项式乘以多项式法则计算,再去括号合并得到最简结果,把a与b的值代入计算即可求值.试题解析::原式=a2﹣b2﹣ab+b2=a2﹣ab,当a=﹣2,b=1时,原式=4+2=6.考点:整式的化简求值.【题文】如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.【答案】详见解析.【解析】试题分析:(1)已知点O是线段AB和线段CD的中点,可得AO=BO,CO=DO,根据对顶角相等可得∠AOD=∠BOC ,根据全等三角形的判定定理SAS即可得△AOD≌△BOC;(2)根据全等三角形的性质可得出∠A=∠B,依据“内错角相等,两直线平行”即可证出结论.试题解析:证明:(1)∵点O是线段AB和线段CD的中点,∴AO=BO,CO=DO.在△AOD和△BOC中,有,∴△AOD≌△BOC(SAS).(2)∵△AOD≌△BOC,∴∠A=∠B,∴AD∥BC.考点:全等三角形的判定与性质.【题文】如图,已知反比例函数y=的图象与直线y=﹣x+b都经过点A(1,4),且该直线与x轴的交点为B.(1)求反比例函数和直线的解析式;(2)求△AOB的面积.【答案】(1)y=,y=﹣x+5;(2)10.【解析】试题分析:(1)把A点坐标(1,4)分别代入y=和y=﹣x+b中分别求出k和b即可得到两函数解析式;(2)根据一次函数解析式求出B点坐标,然后根据三角形面积公式求解即可.试题解析:(1)把A(1,4)代入y=得k=1×4=4,所以反比例函数的解析式为y=;把A(1,4)代入y=﹣x+b得﹣1+b=4,解得b=5,所以直线解析式为y=﹣x+5;(2)当y=0时,﹣x+5=0,解得x=5,则B(5,0),所以△AOB的面积=×5×4=10.考点:反比例函数与一次函数的交点问题.【题文】某校为了了解学生家长对孩子用手机的态度问题,随机抽取了100名家长进行问卷调查,每位学生家长只有一份问卷,且每份问卷仅表明一种态度(这100名家长的问卷真实有效),将这100份问卷进行回收整理后,绘制了如下两幅不完整的统计图.(1)“从来不管”的问卷有份,在扇形图中“严加干涉”的问卷对应的圆心角为.(2)请把条形图补充完整.(3)若该校共有学生2000名,请估计该校对手机问题“严加干涉”的家长有多少人.【答案】(1)25,72°;(2)详见解析;(3)400.【解析】试题分析:(1)用100乘以问卷数“从来不管”所占百分比即可;用“严加干涉”部分占问卷总数的百分比乘以360°即可;(2)由(1)知“从来不管”的问卷数,再将问卷总数减去其余两个类别数量可得“严加干涉”的数量,进而补全条形统计图;(3)用“严加干涉”部分所占的百分比的乘以2000即可得到结果.试题解析:(1)“从来不管”的问卷有100×25%=25(份),在扇形图中“严加干涉”的问卷对应的圆心角为:360°×20%=72°,(2)由(1)知,“l(1)若已知CD=20米,求建筑物BC的高度;(2)若已知旗杆的高度AB=5米,求建筑物BC的高度.【答案】(1)4m;(2)25m.【解析】试题分析:(1)根据tan50°=,tan50°≈1.2,DC=20,可求得AC=24,由∠BDC=45°,可得DC=BC=20m,所以AB=AC﹣BC=4m;(2)设DC=BC=xm,可得tan50°==≈1.2,解得x的值即可得建筑物BC的高.试题解析:(1)由题意可得:tan50°=≈1.2,DC=20,解得:AC=24,∵∠BDC=45°,∴DC=BC=20m,∴AB=AC﹣BC=24﹣20=4(m),答:建筑物BC的高度为4m;(2)设DC=BC=xm,根据题意可得:tan50°==≈1.2,解得:x=25,答:建筑物BC的高度为25m.考点:解直角三角形的应用.【题文】某商店购进甲、乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同.(1)求甲、乙商品的进货单价;(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案?(3)在条件(2)下,并且不再考虑其他因素,若甲、乙两种商品全部售完,哪种方案利润最大?最大利润是多少?【答案】(1)甲商品的进货单价是100元,乙商品的进货单价是80元;(2)有3种进货方案:①甲商品进货48件,乙商品进货52件;②甲商品进货49件,乙商品进货51件;③甲商品进货50件,乙商品进货50件(3)当甲商品进货48件,乙商品进货52件时,可获得最大利润,最大的利润是1520元.【解析】试题分析:(1)设甲商品的进货单价是x元,乙商品的进货单价是y元,根据“甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同”列方程组,解方程组即可求解;(2)设甲商品进货x件,则乙商品进货(100﹣x)件,根据两种商品的进货总价不高于9000元,两种商品全部售完后的销售总额不低于10480元即可列不等式组求解,即可确定方案;(3)找出销售利润与x 的函数关系式,利用一次函数的性质即可求解.试题解析:(1)设甲商品的进货单价是x元,乙商品的进货单价是y元.根据题意得:,解得:x=100,y=80,答:甲商品的进货单价是100元,乙商品的进货单价是80元;(2)设甲商品进货x件,则乙商品进货(100﹣x)件.根据题意得:,解得:48≤x≤50.又∵x是正整数,则x的正整数值是48或49或50,则有3种进货方案:①商品进货48件,乙商品进货52件;②甲商品进货49件,乙商品进货51件;③甲商品进货50件,乙商品进货50件(3)销售的利润w=100×10%x+80(100﹣x)×25%,即w=2000﹣10x,则当x取得最小值48时,w取得最大值,是2000﹣10×48=1520(元).此时,乙商品进货100﹣48=52(件).答:当甲商品进货48件,乙商品进货52件时,可获得最大利润,最大的利润是1520元.考点:二元一次方程组的应用;一次函数的应用【题文】如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B (1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.【答案】(1)y=﹣2x2+6x;(2)D(0,1);(3)△BDM的周长最小值为,M(,);(4)点P的坐标为(,).【解析】试题分析:(1)将点B(1,4),E(3,0)的坐标代入抛物线的解析式,得到关于a、b的方程组,求得a、b的值,从而可得到抛物线的解析式;(2)依据同角的余角相等证明∠BDC=∠DE0,然后再依据AAS证明△BDC≌△DEO,从而得到OD=AO=1,于是可求得点D的坐标;(3)作点B关于抛物线的对称轴的对称点B′,连接B′D交抛物线的对称轴与点M.先求得抛物线的对称轴方程,从而得到点B′的坐标,由轴对称的性质可知当点D、M、B′在一条直线上时,△BMD的周长有最小值,依据两点间的距离公式求得BD和B′D 的长度,从而得到三角形的周长最小值,然后依据待定系数法求得D、B′的解析式,然后将点M的横坐标代入可求得点M的纵坐标;(4)过点F作FG⊥x轴,垂足为G.设点F(a,﹣2a2+6a),则OG=a,FG=﹣2a2+6a.然后依据S△FDA=S梯形DOGF﹣S△ODA﹣S△AGF的三角形的面积与a的函数关系式,然后依据二次函数的性质求解即可.试题解析:(1)将点B(1,4),E(3,0)的坐标代入抛物线的解析式得:,解得:a=-2,b=6,抛物线的解析式为y=﹣2x2+6x.(2)如图1所示;∵BD⊥DE,∴∠BDE=90°.∴∠BDC+∠EDO=90°.又∵∠ODE+∠DEO=90°,∴∠BDC=∠DE0.在△BDC和△DOE中,,∴△BDC≌△DEO.∴OD=AO=1.∴D(0,1).(3)如图2所示:作点B关于抛物线的对称轴的对称点B′,连接B′D交抛物线的对称轴与点M.∵x=﹣=,∴点B′的坐标为(2,4).∵点B与点B′关于x=对称,∴MB=B′M.∴DM+MB=DM+MB′.∴当点D、M、B′在一条直线上时,MD+MB有最小值(即△BMD的周长有最小值).∵由两点间的距离公式可知:BD=,DB′=,∴△BDM的最小值=.设直线B′D的解析式为y=kx+b.将点D、B′的坐标代入得:,解得:k=,b=1.∴直线DB′的解析式为y=x+1.将x=代入得:y=.∴M(,).(4)如图3所示:过点F作FG⊥x轴,垂足为G.设点F(a,﹣2a2+6a),则OG=a,FG=﹣2a2+6a.∵S梯形DOGF=(OD+FG)•OG=(﹣2a2+6a+1)×a=﹣a3+3a2+a,S△ODA=OD•OA=×1×1=,S△AGF=AG•FG=﹣a3+4a2﹣3a,∴S△FDA=S梯形DOGF﹣S△ODA﹣S△AGF=﹣a2+a﹣.∴当a=时,S△FDA的最大值为.∴点P的坐标为(,).考点:二次函数综合题.。
湖南省湘西州20××年中考数学试卷一、填空题(共6小题,每小题3分,满分18分)1.(3分)(20×ו湘西州)﹣20××的绝对值是20××.考点:绝对值分析:根据负数的绝对值等于它的相反数即可求解.解答:解:|﹣20××|=20××.故答案为:20××.点评:考查了绝对值,计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.2.(3分)(20×ו湘西州)如图,直线a和直线b相交于点O,∠1=50°,则∠2=50°.考点:对顶角、邻补角.分析:根据对顶角相等即可求解.解答:解:∵∠2与∠1是对顶角,∴∠2=∠1=50°.故答案为=50°.点评:本题考查了对顶角的识别与对顶角的性质,牢固掌握对顶角相等的性质是解题的关键.3.(3分)(20×ו湘西州)吉首至怀化的高速公路20××年12月23日顺利通车后,赴凤凰古城游玩的游客越来越多.据统计,今年春节期间,凤凰古城接待游客约为210000人,其中210000人用科学记数法表示为 2.1×105人.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将210000用科学记数法表示为2.1×105.故答案为:2.1×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(20×ו湘西州)函数y=的自变量x的取值范围是x.函数自变量的取值范围.考点:函数思想.专题:分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.解答:解:根据题意得:3x﹣1≥0,解得:x≥.故答案为:x≥.点评:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.(3分)(20×ו湘西州)下面是一个简单的数值运算程序,当输入x的值为3时,则输出的数值为1.(用科学记算器计算或笔算)考点:代数式求值.专题:图表型.分析:输入x的值为3时,得出它的平方是9,再加(﹣2)是7,最后再除以7等于1.解答:解:由题图可得代数式为:(x2﹣2)÷7.当x=3时,原式=(32﹣2)÷7=(9﹣2)÷7=7÷7=1 故答案为:1.点评:此题考查了代数式求值,此类题要能正确表示出代数式,然后代值计算,解答本题的关键就是弄清楚题目给出的计算程序.6.(3分)(20×ו湘西州)小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是.考点:几何概率.分析:先根据矩形的性质求出矩形对角线所分的四个三角形面积相等,再求出S1=S2即可.解答:解:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据平行线的性质易证S1=S2,故阴影部分的面积占一份,故针头扎在阴影区域的概率为.点评:此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比.二、选择题(本大题小题,每小题分,共分,将每个小题所给四个选项中唯一正确选项的代号涂在答题卡上)7.(3分)(20×ו湘西州)下列运算正确的是()A.a2﹣a4=a8B.(x﹣2)(x﹣3)=x2﹣6C.(x﹣2)2=x2﹣4 D.2a+3a=5a考点:完全平方公式;合并同类项;多项式乘多项式.分析:根据合并同类项的法则,多项式乘多项式的法则,完全平方公式对各选项分析判断后利用排除法求解.解答:解:A、a2与a4不是同类项,不能合并,故本选项错误;B、(x﹣2)(x﹣3)=x2﹣5x+6,故本选项错误;C、(x﹣2)2=x2﹣4x+4,故本选项错误;D、2a+3a=5a,故本选项正确.故选D.点评:本题考查了合并同类项,多项式乘多项式,完全平方公式,属于基础题,熟练掌握运算法则与公式是解题的关键.8.(3分)(20×ו湘西州)若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.>考点:不等式的性质.分析:根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案.解答:解:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.点评:此题考查了不等式的性质,掌握不等式的性质是解题的关键,不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.(3分)(20×ו湘西州)下列图形中,是圆锥侧面展开图的是()A.B.C.D.考点:几何体的展开图.分析:根据圆锥的侧面展开图的特点作答.解答:解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选B.点评:考查了几何体的展开图,圆锥的侧面展开图是扇形.10.(3分)(20×ו湘西州)在某次体育测试中,九年级(2)班6位同学的立定跳远成绩(单位:米)分别是:1.83,1,85,1.96,2.08,1.85,1.98,则这组数据的众数是()A.1.83 B.1.85 C.2.08 D.1.96考点:众数.分析:根据众数的定义:一组数据中出现次数最多的数据求解即可.解答:解:这组数据出现次数最多的是:1.85,共两次,故众数为:1.85.故选B.点评:本题考查了众数的定义,属于基础题,解答本题的关键是掌握众数的定义:一组数据中出现次数最多的数据.11.(3分)(20×ו湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°考点:三角形的外角性质.专题:探究型.分析:先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.解答:解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°﹣45°﹣120°=15°.故选A.点评:本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.12.(3分)(20×ו湘西州)下列说法中,正确的是()A.同位角相等B.对角线相等的四边形是平行四边形C.四条边相等的四边形是菱形D.矩形的对角线一定互相垂直考点:菱形的判定;同位角、内错角、同旁内角;平行四边形的判定;矩形的性质.分析:根据平行线的性质判断A即可;根据平行四边形的判定判断B即可;根据菱形的判定判断C即可;根据矩形的性质判断D即可.解答:解:A、如果两直线平行,同位角才相等,故本选项错误;B、对角线互相平分的四边形是平行四边形,故本选项错误;C、四边相等的四边形是菱形,故本选项正确;D、矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选C.点评:本题考查了平行线的性质,平行四边形、菱形的判定、矩形的性质的应用,主要考查学生的理解能力和辨析能力.13.(3分)(20×ו湘西州)如图,在平面直角坐标系中,将点A(﹣2,3)向右平移3个单位长度后,那么平移后对应的点A′的坐标是()A.(﹣2,﹣3)B.(﹣2,6)C.(1,3)D.(﹣2,1)考点:坐标与图形变化-平移.分析:根据平移时,点的坐标变化规律“左减右加”进行计算即可.解答:解:根据题意,从点A平移到点A′,点A′的纵坐标不变,横坐标是﹣2+3=1,故点A′的坐标是(1,3).故选C.点评:此题考查了点的坐标变化和平移之间的,平移时点的坐标变化规律是“上加下减,左减右加”.14.(3分)(20×ו湘西州)已知⊙O1与⊙O2的半径分别为3cm和5cm,若圆心距O1O2=8cm,则⊙O1与⊙O2的位置关系是()A.相交B.相离C.内切D.外切考圆与圆的位置关系.点:分析:由两圆的半径分别为3cm和5cm,圆心距为8cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的即可得出两圆位置关系.解答:解:∵两圆的半径分别为3cm和5cm,圆心距为8cm,又∵5+3=8,∴两圆的位置关系是:外切.故选D.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r 的数量关系间的是解此题的关键.15.(3分)(20×ו湘西州)小芳的爷爷每天坚持体育锻炼,某天他慢步行走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步到家里,下面能够反映当天小芳爷爷离家的距离y(米)与时间x(分钟)之间的关系的大致图象是()A .B.C.D.考点:函数的图象.分析:分三段考虑,①漫步到公园,此时y随x的增大缓慢增大;②打太极,y随x的增大,不变;③跑步回家,y随x的增大,快速减小,结合选项判断即可.解答:解:小芳的爷爷点的形成分为三段:①漫步到公园,此时y随x的增大缓慢增大;②打太极,y随x的增大,不变;③跑步回家,y随x的增大,快速减小,结合图象可得选项C中的图象符合.故选C.点评:本题考查了函数的图象,理解每阶段中,离家的距离与时间的关系是解答本题的关键.16.(3分)(20×ו湘西州)如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是()A.1:2 B.1:3 C.1:4 D.1:5考点:平行四边形的性质;全等三角形的判定与性质分析:根据平行四边形性质得出AD=BC,AD∥BC,推出△EDF∽△BCF,得出△EDF与△BCF的周长之比为,根据BC=AD=2DE代入求出即可.解答:解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴△EDF∽△BCF,∴△EDF与△BCF的周长之比为,∵E是AD边上的中点,∴AD=2DE,∵AD=BC,∴BC=2DE,∴△EDF与△BCF的周长之比1:2,故选A.点评:本题考查了平行四边形性质,相似三角形的性质和判定的应用,注意:平行四边形的对边平行且相等,相似三角形的周长之比等于相似比.三、解答题(本大题9个小题,共72分,每个题目都要求在答题卡的相应位置写出计算或证明的主要步骤)17.(8分)(20×ו湘西州)计算:()﹣1﹣﹣sin30°.考点:实数的运算;负整数指数幂;特殊角的三角函数值专题:计算题.分析:本题涉及负指数幂、平方根、特殊角的三角函数值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=﹣2﹣=3﹣2﹣=.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负指数幂、平方根、特殊角的三角函数值等考点的运算.18.(8分)(20×ו湘西州)解方程组:.考解二元一次方程组.分析:先由①得出x=1﹣2y,再把x的值代入求出y的值,再把y的值代入x=1﹣2y,即可求出x的值,从而求出方程组的解.答:解:,由①得:x=1﹣2y ③,把③代入②得:y=﹣1,把y=﹣1代入③得:x=3,则原方程组的解为:.点评:此题考查了解二元一次方程组,解二元一次方程组常用的方法是加减法和代入法两种,般选用加减法解二元一次方程组较简单.19.(8分)(20×ו湘西州)如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE.(1)求证:△BEC≌△DFA;(2)求证:四边形AECF是平行四边形.考点:矩形的性质;全等三角形的判定与性质;平行四边形的判定专题:证明题.分析:(1)根据E、F分别是边AB、CD的中点,可得出BE=DF,继而利用SAS可判断△BEC≌△DFA;(2)由(1)的结论,可得CE=AF,继而可判断四边形AECF是平行四边形.解答:证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,又∵E、F分别是边AB、CD的中点,∴BE=DF,∵在△BEC和△DFA中,,∴△BEC≌△DFA(SAS).(2)由(1)得,CE=AF,AD=BC,故可得四边形AECF是平行四边形.点评:本题考查了矩形的性质、全等三角形的判定与性质及平行四边形的判定,解答本题的关键是熟练掌握矩形的对边相等,四角都为90°,及平行四边形的判定定理.20.(8分)(20×ו湘西州)雅安地震,牵动着全国人民的心,地震后某中学举行了爱心捐款活动,下图是该校九年级某班学生为雅安灾区捐款情况绘制的不完整的条形统计图和扇形统计图.(1)求该班人数;(2)补全条形统计图;(3)在扇形统计图中,捐款“15元人数”所在扇形的圆心角∠AOB的度数;(4)若该校九年级有800人,据此样本,请你估计该校九年级学生共捐款多少元?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据5元占总数的百分比以及5元的人数,即可求出总人数;(2)用总人数减去5元的人数和10元的人数,即可求出15元的人数,补全条形统计图即可;(3)先利用15元的人数除以总人数得到其所占总数的百分比,用360度乘以所占的百分比即可得到“15元人数”所在扇形的圆心角∠AOB的度数;(4)根据调查的某班的捐款数与每种情况的捐款人数,求出某班的平均一个人的捐款数,用九年级的总人数乘以一个人的捐款数,即可估计出九年级学生共捐款的钱数.解答:解:(1)15÷30%=50(人);(2)15元的人数为50﹣15﹣25=10(人),补全条形统计图为:(3)10÷50=20%,捐款“15元人数”所在扇形的圆心角∠AOB的度数360°×20%=72°;(4)15×5+25×10+10×15=475元,则平均每人捐款为475÷50=9.5元,估计该校九年级学生共捐款800×9.5=7600元.点评:此题查考了条形统计图,扇形统计图,以及用样本估计总体,理解清题意是解本题的关键.21.(8分)(20×ו湘西州)钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号)考点:解直角三角形的应用-方向角问题.分析:(1)根据垂线段最短知B点应是过C点所作南北方向的垂线的垂足.(2)在Rt△ABC中,利用三角函数的知识求BC即可.解答:解:(1)如图:(2)在Rt△ABC中∵AB=30×0.5=15(海里),∴BC=ABtan30°=15×=5(海里).答:钓鱼岛C到B处距离为5海里.点评:考查了解直角三角形的应用﹣方向角问题,此题为基础题,涉及用手中工具解题,如尺规,计算器等.22.(8分)(20×ו湘西州)吉首城区某中学组织学生到距学校20km的德夯苗寨参加社会实践活动,一部分学生沿“谷韵绿道”骑自行车先走,半小时后,其余学生沿319国道乘汽车前往,结果他们同时到达(两条道路路程相同),已知汽车速度是自行车速度的2倍,求骑自行车学生的速度.考点:分式方程的应用.分析:首先设骑自行车学生的速度是x千米/时,则汽车速度是2x千米/时,由题意可得等量关系;骑自行车学生行驶20千米所用时间﹣汽车行驶20千米所用时间=,根据等量关系,列出方程即可.解答:解:设骑自行车学生的速度是x千米/时,由题意得:﹣=,解得:x=20,经检验:x=20是原分式方程的解,答:骑自行车学生的速度是20千米/时.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意分式方程要进行检验,这是同学们最容易出错的地方.23.(8分)(20×ו湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.考点:角平分线的性质;勾股定理分析:(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出AB的长,然后计算△ADB的面积.解解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,答:∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.点评:本题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等.24.(8分)(20×ו湘西州)如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数y=的图象有一个交点A(m,2).(1)求m的值;(2)求正比例函数y=kx的解析式;(3)试判断点B(2,3)是否在正比例函数图象上,并说明理由.考点:反比例函数与一次函数的交点问题.分析:(1)将A(m,2)点代入反比例函数y=,即可求得m的值;(2)将A点坐标代入正比例函数y=kx,即可求得正比例函数的解析式;(3)将x=2代入(2)中所求的正比例函数的解析式,求出对应的y值,然后与3比较,如果y=3,那么点B(2,3)是否在正比例函数图象上;否则不在.解答:解:(1)∵反比例函数y=的图象过点A(m,2),∴2=,解得m=1;(2)∵正比例函数y=kx的图象过点A(1,2),∴2=k×1,解得k=2,∴正比例函数解析式为y=2x;(3)点B(2,3)不在正比例函数图象上,理由如下:将x=2代入y=2x,得y=2×2=4≠3,所以点B(2,3)不在正比例函数y=2x的图象上.点评:本题主要考查反比例函数与一次函数的交点问题,待定系数法求反比例函数解析式和反比例函数图象上点的坐标特征等底知识,解答本题的关键是进行数形结合进行解题,熟练掌握反比例函数的性质,本题是一道比较不错的习题.25.(8分)(20×ו湘西州)如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).(1)求抛物线的解析式及它的对称轴方程;(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;(3)试判断△AOC与△COB是否相似?并说明理由;(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若不存在,求出符合条件的Q点坐标;若不存在,请说明理由.考二次函数综合题.点:分(1)利用待定系数法求出抛物线解析式,利用配方法或利用公式x=求出对称析:轴方程;(2)在抛物线解析式中,令x=0,可求出点C坐标;令y=0,可求出点B坐标.再利用待定系数法求出直线BD的解析式;(3)根据,∠AOC=∠BOC=90°,可以判定△AOC∽△COB;(4)本问为存在型问题.若△ACQ为等腰三角形,则有三种可能的情形,需要分类讨论,逐一计算,避免漏解.解解:(1)∵抛物线y=﹣x2+bx+4的图象经过点A(﹣2,0),答:∴﹣×(﹣2)2+b×(﹣2)+4=0,解得:b=,∴抛物线解析式为y=﹣x2+x+4,又∵y=﹣x2+x+4=﹣(x﹣3)2+,∴对称轴方程为:x=3.(2)在y=﹣x2+x+4中,令x=0,得y=4,∴C(0,4);令y=0,即﹣x2+x+4=0,整理得x2﹣6x﹣16=0,解得:x=8或x=﹣2,∴A(﹣2,0),B(8,0).设直线BC的解析式为y=kx+b,把B(8,0),C(0,4)的坐标分别代入解析式,得:,解得k=,b=4,∴直线BC的解析式为:y=x+4.(3)可判定△AOC∽△COB成立.理由如下:在△AOC与△COB中,∵OA=2,OC=4,OB=8,∴,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB.(4)∵抛物线的对称轴方程为:x=3,可设点Q(3,t),则可求得:AC===,AQ==,CQ==.i)当AQ=CQ时,有=,25+t2=t2﹣8t+16+9,解得t=0,∴Q1(3,0);ii)当AC=AQ时,有=,t2=﹣5,此方程无实数根,∴此时△ACQ不能构成等腰三角形;iii)当AC=CQ时,有=,整理得:t2﹣8t+5=0,解得:t=4±,∴点Q坐标为:Q2(3,4+),Q3(3,4﹣).综上所述,存在点Q,使△ACQ为等腰三角形,点Q的坐标为:Q1(3,0),Q2(3,4+),Q3(3,4﹣).点评:本题考查了二次函数与一次函数的图象与性质、待定系数法、相似三角形的判定、勾股定理、等腰三角形的判定等知识点.难点在于第(4)问,符合条件的等腰三角形△ACQ可能有多种情形,需要分类讨论.。
湖南湘西自治州中考数学测验(含完整答案)湖南省湘西州2022年中考数学试卷一、填空题(本大题6小题,每小题3分,共18分,将正确答案填在相应的横线上)1.(3分)(2022湘西州)2022的相反数是﹣2022.考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:2022的相反数是﹣2022,故答案为:﹣2022.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2022湘西州)分解因式:ab﹣2a=a(b﹣2).考点:因式分解-提公因式法.分析:观察原式,公因式为a,然后提取公因式即可.解答:解:ab﹣2a=a(b﹣2).(提取公因式)点评:本题主要考查提公因式法分解因式,确定出公因式为a是解题的关键.3.(3分)(2022湘西州)已知∠A=60°,则它的补角的度数是120度.考点:余角和补角.分析:根据互补的两角之和为180°即可得出这个角的补角.解答:解:这个角的补角=180°﹣60°=120°.故答案为:120.点评:本题考查了补角的知识,属于基础题,掌握互补的两角之和为180°是关键.4.(3分)(2022湘西州)据中国汽车协会统计,2022年我国汽车销售量约为2198万辆,7连续五年位居全球第一位,请用科学记数法表示21980000=2.198某10.考点:科学记数法—表示较大的数.n分析:科学记数法的表示形式为a某10的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.7解答:解:21980000=2.198某10.故答案为:2.198某10.n点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a某10的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.71/155.(3分)(2022湘西州)如图,直线AB和CD相交于点O,OE平分∠DOB,∠AOC=40°,则∠DOE=20度.考点:对顶角、邻补角;角平分线的定义.分析:由∠AOC=40°,根据对顶角相等求出∠DOB=40°,再根据角平分线定义求出∠DOE即可.解答:解:∵∠AOC=40°,∴∠DOB=∠AOC=40°,∵OE平分∠DOB,∴∠DOE=∠BOD=20°,故答案为:20.点评:本题考查了对顶角的性质角、角平分线定义的应用,关键是求出∠BOD的度数.6.(3分)(2022湘西州)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=6cm,则OE=4cm.考点:垂径定理;勾股定理.分析:先根据垂径定理得出CE的长,再在Rt△OCE中,利用勾股定理即可求得OE的长.解答:解:∵CD⊥AB∴CE=CD=某6=3cm,∵在Rt△OCE中,OE=cm.故答案为:4.点评:本题主要考查了垂径定理以及勾股定理,是基础知识要熟练掌握.二、选择题(本大题10小题,每小题4分,共40分)7.(4分)(2022湘西州)下列运算正确的是()2223252A.C.5某﹣2某=3D.(m+n)=m+nB.(某)=某(a+b)(a﹣b)=a﹣b考点:完全平方公式;合并同类项;幂的乘方与积的乘方;平方差公式.2分析:根据完全平方公式,幂的乘方,合并同类项法则,平方差公式分别求出每个式子的值,再判断即可.222解答:解:A、(m+n)=m+2mn+n,故本选项错误;2/15B、(某)=某,故本选项错误;C、5某﹣2某=3某,故本选项错误;22D、(a+b)(a﹣b)=a﹣b,故本选项正确;故选D.点评:本题考查了对完全平方公式,幂的乘方,合并同类项法则,平方差公式的应用,注意:222222完全平方公式有(a+b)=a+2ab+b,(a﹣b)=a﹣2ab+b,题目比较好,难度适中.8.(4分)(2022湘西州)已知某﹣2y=3,则代数式6﹣2某+4y的值为()03A.B.﹣1C.﹣3D.考点:代数式求值.326分析:先把6﹣2某+4y变形为6﹣2(某﹣2y),然后把某﹣2y=3整体代入计算即可.解答:解:∵某﹣2y=3,∴6﹣2某+4y=6﹣2(某﹣2y)=6﹣2某3=6﹣6=0故选:A.点评:本题考查了代数式求值:先把所求的代数式根据已知条件进行变形,然后利用整体的思想进行计算.9.(4分)(2022湘西州)如图,在Rt△ABC中,∠ACB=90°,CA=CB,AB=2,过点C作CD⊥AB,垂足为D,则CD的长为()A.考点:等腰直角三角形.分析:由已知可得Rt△ABC是等腰直角三角形,得出AD=BD=AB=1,再由Rt△BCD是等腰直角三角形得出CD=BD=1.解答:解:∵∠ACB=90°,CA=CB,∴∠A=∠B=45°,∵CD⊥AB,∴AD=BD=AB=1,∠CDB=90°,∴CD=BD=1.故选:C.点评:本题主要考查了等腰直角三角形,解题的关键是灵活运用等腰直角三角形的性质求角及边的关系.B.1C.2D.3/1510.(4分)(2022湘西州)如图,直线a∥b,c⊥a,则c与b相交所形成的∠2度数为()45°A.60°B.90°C.120°D.考点:平行线的性质;垂线.分析:根据垂线的定义可得∠1=90°,再根据两直线平行,同位角相等可得∠2=∠1.解答:解:∵c⊥a,∴∠1=90°,∵a∥b,∴∠2=∠1=90°.故选C.点评:本题考查了平行线的性质,垂线的定义,是基础题,熟记性质是解题的关键.11.(4分)(2022湘西州)在一个不透明的口袋中,装有5个红球和3个绿球,这些球除了颜色外都相同,从口袋中随机摸出一个球,它是红球的概率是()1A.B.C.D.考点:概率公式.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:根据题意可知,共有8个球,红球有3个,故抽到红球的概率为,故选B.点评:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4/1512.(4分)(2022湘西州)下列图形,既是轴对称图形,又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.解答:解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.(4分)(2022湘西州)每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,样本是()A.500名学生所抽取的50名学生对“世界读书日”的知晓情况B.50名学生C.D.每一名学生对“世界读书日”的知晓情况考点:总体、个体、样本、样本容量.分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,据此即可判断.解答:解:样本是所抽取的50名学生对“世界读书日”的知晓情况.故选B.点评:本题考查了样本的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.14.(4分)(2022湘西州)已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为()78A.B.C.6或8D.7或8考点:等腰三角形的性质;三角形三边关系.分析:因为等腰三角形的两边分别为2和3,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.解答:解:当2为底时,三角形的三边为3,2、3可以构成三角形,周长为8;当3为底时,三角形的三边为3,2、2可以构成三角形,周长为7.故选D.点评:题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.5/1515.(4分)(2022湘西州)正比例函数y=某的大致图象是()A.B.C.D.考点:正比例函数的图象.分析:正比例函数的图象是一条经过原点的直线,且当k>0时,经过一、三象限.解答:解:∵正比例函数的图象是一条经过原点的直线,且当k>0时,经过一、三象限.∴正比例函数y=某的大致图象是C.故选:C.点评:此题比较简单,主要考查了正比例函数的图象特点:是一条经过原点的直线.16.(4分)(2022湘西州)下列说法中,正确的是()A.相等的角一定是对顶角四个角都相等的四边形一定是正方形B.平行四边形的对角线互相平分C.D.矩形的对角线一定垂直考点:正方形的判定;对顶角、邻补角;平行四边形的性质;矩形的性质.分析:根据对顶角的定义,正方形的判定,平行四边形的性质,矩形的性质对各选项分析判断利用排除法求解.解答:解:A、相等的角一定是对顶角错误,例如,角平分线分成的两个角相等,但不是对顶角,故本选项错误;B、四个角都相等的四边形一定是矩形,不一定是正方形,故本选项错误;C、平行四边形的对角线互相平分正确,故本选项正确;D、矩形的对角线一定相等,但不一定垂直,故本选项错误.故选C.点评:本题考查了正方形的判定,平行四边形的性质,矩形的性质,对顶角的定义,熟记各性质与判定方法是解题的关键.三、解答题(本大题9小题,共92分,每个题目都要求写出计算或证明的主要步骤)17.(6分)(2022湘西州)计算:2+2co60°+﹣1.考点:实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用负指数幂法则计算,第二项利用特殊角的三角函数值计算,最后一项利用平方根定义化简,计算即可得到结果.解答:解:原式=+2某+3=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.6/1518.(8分)(2022湘西州)解不等式:3(某+2)≥0,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:不等式两边同时除以3,然后移项,即可求解.解答:解:不等式两边同时除以3,得:某+2≥0,移项,得:某≥﹣2.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.19.(8分)(2022湘西州)如图,在ABCD中,点E、F分别在边BC和AD上,且BE=DF.(1)求证:△ABE≌△CDF;(2)求证:AE=CF.考点:平行四边形的性质;全等三角形的判定与性质.分析:(1)根据平行四边形的性质得出AB=CD,∠B=∠D,根据SAS证出△ABE≌△CDF;(2)根据全等三角形的对应边相等即可证得.解答:证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,在△ABE和△CDF 中,∴△ABE≌△CDF(SAS),∴AE=CF.点评:本题主要考查对平行四边形的性质,全等三角形的性质和判定等知识点的理解和掌握,能根据性质证出△ABE≌△CDF是证此题的关键.7/1520.(8分)(2022湘西州)据省环保网发布的消息,吉首市空气质量评价连续两年居全省14个省辖市城市之最,下表是吉首市2022年5月份前10天的空气质量指数统计表(一)2022年5月1日~10日空气质量指数(AQI)情况12345678910日期日日日日日日日日日日283894536314953908435空气质量指数(AQI)(二)空气质量污染指数标准(AQI)污染指数0~5051~100等级优良101~150轻微污染151~200轻度污染(1)请你计算这10天吉首市空气质量指数的平均数,并据此判断这10填吉首市空气质量平均情况属于哪个等级;(用科学计算器计算或笔算,结果保留整数)(2)按规定,当空气质量指数AQI≤100时,空气质量才算“达标”,请你根据表(一)和表(二)所提供的信息,估计今年(365天)吉首市空气质量“达标”的天数.(结果保留整数)考点:用样本估计总体;统计表;算术平均数.分析:(1)求出这10天的空气质量平均平均数,再根据空气质量污染指数标准找出等级即可;(2)找出这10天空气质量“达标”的天数,求出占的比列,再乘以365即可.解答:解:(1)=68.7≈69,69在51~100之间,所以吉首市空气质量平均情况属于良;(2)∵这10天空气质量“达标”的天数为9天,今年(365天)吉首市空气质量“达标”的天数为=328.5≈329(天),答:估计今年(365天)吉首市空气质量“达标”的天数为329天.点评:本题考查从统计表中获取信息的能力,及统计中用样本估计总体的思想.8/1521.(8分)(2022湘西州)如图,一次函数y=﹣某+m的图象和y轴交于点B,与正比例函数y=某图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积.考点:两条直线相交或平行问题.专题:计算题.分析:(1)先把P(2,n)代入y=某即可得到n的值,从而得到P点坐标为(2,3),然后把P点坐标代入y=﹣某+m可计算出m的值;(2)先利用一次函数解析式确定B点坐标,然后根据三角形面积公式求解.解答:解:(1)把P(2,n)代入y=某得n=3,所以P点坐标为(2,3),把P(2,3)代入y=﹣某+m得﹣2+m=2,解得m=4,即m和n的值分别为4,3;(2)把某=0代入y=﹣某+4得y=4,所以B点坐标为(0,4),所以△POB的面积=某4某2=4.点评:本题考查了两条直线相交或平行问题:若直线y=k1某+b1与直线y=k2某+b2平行,则k1=k2;若直线y=k1某+b1与直线y=k2某+b2相交,则由两解析式所组成的方程组的解为交点坐标.22.(10分)(2022湘西州)五一期间,春华旅行社组织一个由成人和学生共20人组成的旅行团到凤凰古城旅游,景区门票售票标准是:成人门票148元/张,学生门票20元/张,该旅行团购买门票共花费1936元,问该团购买成人门票和学生门票各多少张?考点:二元一次方程组的应用.分析:设购买成人门票某张,学生门票y张,则由“成人和学生共20人”和“购买门票共花费1936元”列出方程组解决问题.解答:解:设购买成人门票某张,学生门票y张,由题意得解得答:购买成人门票12张,学生门票8张.点评:此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.9/1523.(10分)(2022湘西州)如图,在8某8的正方形网格中,△CAB和△DEF的顶点都在边长为1的小正方形的顶点上,AC与网格上的直线相交于点M.(1)填空:AC=2,AB=2.(2)求∠ACB的值和tan∠1的值;(3)判断△CAB和△DEF是否相似?并说明理由.考点:相似三角形的判定;勾股定理;锐角三角函数的定义.分析:(1)根据勾股定理来求AC、AB的长度;(2)利用勾股定理的逆定理和锐角三角函数的定义来解题;(3)由“三边法”法来证它们相似.解答:解:(1)如图,由勾股定理,得AC=AB=故答案是:2=2=2,2.;(2)如图所示,BC==2.又由(1)知,AC=2,AB=2,222∴AC+BC=AB=40,∴∠ACB=90°.tan∠1==.综上所述,∠ACB的值是90°和tan∠1的值是;(3)△CAB和△DEF相似.理由如下:如图,DE=DF=则===2,=,EF==.所以△CAB∽△DEF.10/15点评:本题考查了相似三角形的判定,勾股定理,勾股定理的逆定理以及锐角三角函数的定义.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.24.(12分)(2022湘西州)湘西盛产椪柑,春节期间,一外地运销客户安排15辆汽车装运A、B、C三种不同品质的椪柑120吨到外地销售,按计划15辆汽车都要装满且每辆汽车只能装同一种品质的椪柑,每种椪柑所用车辆部不少于3辆.(1)设装运A种椪柑的车辆数为某辆,装运B种椪柑车辆数为y辆,根据下表提供的信息,求出y与某之间的函数关系式;ABC椪柑品种1086每辆汽车运载量80012001000每吨椪柑获利(元)(2)在(1)条件下,求出该函数自变量某的取值范围,车辆的安排方案共有几种?请写出每种安排方案;(3)为了减少椪柑积压,湘西州制定出台了促进椪柑销售的优惠政策,在外地运销客户原有获利不变的情况下,政府对外地运销客户,按每吨50元的标准实行运费补贴.若要使该外地运销客户所获利润W(元)最大,应采用哪种车辆安排方案?并求出利润W(元)的最大值?考点:一次函数的应用.分析:(1)等量关系为:车辆数之和=15,由此可得出某与y的关系式;(2)关系式为:装运每种脐橙的车辆数≥3;(3)总利润为:装运A种椪柑的车辆数某10某800+装运B种椪柑的车辆数某8某1200+装运C种椪柑的车辆数某6某1000+运费补贴,然后按某的取值来判定.解答:解:(1)设装运A种椪柑的车辆数为某辆,装运B种椪柑车辆数为y辆,则装C种椪柑的车辆是15﹣某﹣y辆.则10某+8y+6(15﹣某﹣y)=120,即10某+8y+90﹣6某﹣6y=120,则y=15﹣2某;(2)根据题意得:,11/15解得:3≤某≤6.则有四种方案:A、B、C三种的车辆数分别是:3辆,9辆,3辆或4辆,7辆,4辆或5辆5辆、2辆、8辆或6辆、3辆、6辆;(3)W=10某800某+8某1200(15﹣某)+6某1000【15﹣某﹣(15﹣2某)】+120某50=4400某+150000,根据一次函数的性质,当某=6时,W有最大值,是4400某6+150000=176400(元).应采用A、B、C三种的车辆数分别是:6辆、3辆、6辆.点评:本题考查了一次函数的应用及不等式的应用,解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系,确定某的范围,得到装在的几种方案是解决本题的关键.25.(22分)(2022湘西州)如图,抛物线y=a某+b某+c关于y轴对称,它的顶点在坐标原点O,点B(2,﹣)和点C(﹣3,﹣3)两点均在抛物线上,点F(0,﹣)在y轴上,过点(0,)作直线l与某轴平行.(1)求抛物线的解析式和线段BC的解析式.(2)设点D(某,y)是线段BC上的一个动点(点D不与B,C重合),过点D作某轴的垂线,与抛物线交于点G.设线段GD的长度为h,求h与某之间的函数关系式,并求出当某为何值时,线段GD的长度h最大,最大长度h的值是多少?(3)若点P(m,n)是抛物线上位于第三象限的一个动点,连接PF并延长,交抛物线于另一点Q,过点Q作QS⊥l,垂足为点S,过点P作PN⊥l,垂足为点N,试判断△FNS的形状,并说明理由;(4)若点A(﹣2,t)在线段BC上,点M为抛物线上的一个动点,连接AF,当点M在何位置时,MF+MA的值最小,请直接写出此时点M的坐标与MF+MA的最小值.2考点:二次函数综合题;二次根式的性质与化简;待定系数法求一次函数解析式;二次函数的最值;待定系数法求二次函数解析式;线段的性质:两点之间线段最短.专题:压轴题.2分析:(1)由于抛物线的顶点在坐标原点O,故抛物线的解析式可设为y=a某,把点C的坐标代入即可求出抛物线的解析式;设直线BC的解析式为y=m某+n,把点B、C的坐标代入即可求出直线BC的解析式.2(2)由点D(某,y)在线段BC上可得yD=某﹣2,由点G在抛物线y=﹣某上可得yG=﹣某.由h=DG=yG﹣yD=﹣某﹣(某﹣2)配方可得h=﹣(某+)+222.根据二次函数的最值性即可解决问题.(3)可以证明PF=PN,结合PN∥OF可推出∠PFN=∠OFN;同理可得∠QFS=∠12/15OFS.由∠PFN+∠OFN+∠OFS+∠QFS=180°可推出∠NFS=90°,故△NFS是直角三角形.(4)过点M作MH⊥l,垂足为H,如图4,由(3)中推出的结论PF=PN可得:抛2物线y=﹣某上的点到点F(0,﹣)的距离与到直线y=的距离相等,从而有MF=MH,则MA+MF=MA+MH.由两点之间线段最短可得:当A、M、H三点共线(即AM⊥l)时,MA+MH(即MA+MF)最小,此时某M=某A=﹣2,从而可以求出点M及点A的坐标,就可求出MF+MA的最小值.解答:解:(1)如图1,∵抛物线y=a某+b某+c关于y轴对称,它的顶点在坐标原点O,2∴抛物线解析式为y=a某.2∵点C(﹣3,﹣3)在抛物线y=a某上,∴.9a=﹣3.∴a=﹣.2∴抛物线的解析式为y=﹣某.设直线BC的解析式为y=m某+n.∵B(2,﹣)、C(﹣3,﹣3)在直线y=m某+n上,∴.2解得:.∴直线BC的解析式为y=某﹣2.(2)如图2,∵点D(某,y)是线段BC上的一个动点(点D不与B,C重合),∴yD=某﹣2,且﹣3<某<2.∵DG⊥某轴,∴某G=某D=某.2∵点G在抛物线y=﹣某上,2∴yG=﹣某.∴h=DG=yG﹣yD2=﹣某﹣(某﹣2)2=﹣某﹣某+22=﹣(某+某)+22=﹣(某+某+﹣)+2=﹣(某+)+=﹣(某+)+22+2.∵﹣<0,﹣3<﹣<2,∴当某=﹣时,h取到最大值,最大值为.2∴h与某之间的函数关系式为h=﹣(某+)+,其中﹣3<某<2;13/15当某=﹣时,线段GD的长度h最大,最大长度h的值是.(3)△FNS是直角三角形.证明:过点F作FT⊥PN,垂足为T,如图3,2∵点P(m,n)是抛物线y=﹣某上位于第三象限的一个动点,2∴n=﹣m.m<0,n<0.2∴m=﹣3n.在Rt△PTF中,∵PT=﹣﹣n,FT=﹣m,∴PF=====﹣n.∵PN⊥l,且l是过点(0,)平行于某轴的直线,∴PN=﹣n.∴PF=PN.∴∠PNF=∠PFN.∵PN⊥l,OF⊥l,∴PN∥OF.∴∠PNF=∠OFN.∴∠PFN=∠OFN.同理可得:∠QFS=∠OFS.∵∠PFN+∠OFN+∠OFS+∠QFS=180°,∴2∠OFN+2∠OFS=180°.∴∠OFN+∠OFS=90°.∴∠NFS=90°.∴△NFS 是直角三角形.(4)过点M作MH⊥l,垂足为H,如图4,2在(3)中已证到PF=PN,由此可得:抛物线y=﹣某上的点到点F(0,﹣)的距离与到直线y=的距离相等.∴MF=MH.∴MA+MF=MA+MH.由两点之间线段最短可得:当A、M、H三点共线(即AM⊥l)时,MA+MH(即MA+MF)最小,等于AH.即某M=某A=﹣2时,MA+MF取到最小值.2此时,yM=﹣某(﹣2)=﹣,点M的坐标为(﹣2,﹣);yA=某(﹣2)﹣2=﹣,点A的坐标为(﹣2,﹣);MF+MA的最小值=AH=﹣(﹣)=.14/15∴当点M的坐标为(﹣2,﹣)时,MF+MA的值最小,最小值为.15/15。
湖南省湘西州中考数学真题及答案C 一、选择题(本大题共8个小题,每小题4分,共32分)1. 的相反数是________.【答案】【考点】相反数【解析】根据相反数的意义求解即可.【解答】的相反数是,2. 如图所示,直线,被直线所截,且,,则________.【答案】【考点】平行线的性质【解析】因为,所以,又因为,所以可求出,也就求出了.【解答】∵ ,∴ ,又∵ ,∴ .3. 分解因式:=________.【答案】【考点】因式分解-提公因式法【解析】直接提取公因式即可.【解答】=.4. 年月日张吉怀高铁开工,全程约,高铁开通后,将进一步加快三地之间的交流,促进经济发展.其中用科学记数法表示为________.【答案】【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.【解答】将用科学记数法表示为.5. 如图所示,在中,直径弦,垂足为,已知,,则直径________【答案】【考点】勾股定理垂径定理【解析】直接利用垂径定理结合勾股定理得出的长,进而得出答案.【解答】∵ 直径弦,,,∴ ,则,故直径.6. 使得代数式有意义的的取值范围是.【答案】【考点】分式有意义、无意义的条件二次根式有意义的条件【解析】本题主要考查了二次根式有意义的条件,如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.【解答】解:∵ 代数式有意义,∴ ,∴ ,∴ 的取值范围是.故答案为:.7. 掷两枚质地均匀的相同硬币,出现两枚都是正面朝上的概率为________.【答案】【考点】列表法与树状图法【解析】先列举出同时掷两枚质地均匀的硬币一次所有四种等可能的结果,然后根据概率的概念即可得到两枚硬币都是正面朝上的概率.【解答】同时掷两枚质地均匀的硬币一次,共有正正、反反、正反、反正种等可能的结果,两枚硬币都是正面朝上的占种,所以两枚硬币都是正面朝上的概率.8. 用科学计算器按如图所示的操作步骤,若输入的数值是,则输出的值为________(精确到)【答案】【考点】估算无理数的大小【解析】直接利用公式把数据代入,再利用估算无理数的大小的方法得出答案.【解答】由题意可得:.二、选择题(本大题共10小题,每小题4分,共40分,将每个小题所给四个选项中唯一正确选项的字母填在括号里)下列运算中错误的是()A.=B.=C. D.=【答案】C【考点】同底数幂的乘法平方差公式二次根式的加减混合运算【解析】直接利用二次根式加减运算法则以及同底数幂的乘法运算法则、完全平方公式等式知识分别判断得出答案.【解答】、=,正确,不合题意;、=,正确,不合题意;、,无法计算,故此选项符合题意;、=,正确,不合题意;习总书记提出“足球进校园”后,我们湘西自治州积极响应号召,把颠足球纳入了九年级体育达标测试.在今年月份体育达标测试中,某小组名同学的颠足球个数如下:,,,,,,,这组数据的众数和中位数分别是()A.,B.,C.,D.,【答案】D【考点】中位数众数【解析】首先把所给数据按从小到大排序,然后利用中位数和众数定义即可确定结果.【解答】把已知数据按从小到大排序后为:,,,,,,,这组数据中出现的次数最多,故众数是,中位数是:.已知点,则点关于轴的对称点的坐标为()A. B. C. D.【答案】B关于x轴、y轴对称的点的坐标【解析】关于轴对称的点,横坐标相同,纵坐标互为相反数,根据这一规律就可以得到.【解答】根据“关于轴对称的点,横坐标相同,纵坐标互为相反数”可知:点关于轴对称点的坐标为.下列四个图形中,不是中心对称图形的是()A. B. C. D.【答案】B【考点】中心对称图形【解析】根据中心对称图形的概念判断.【解答】、是中心对称图形,不合题意;、不是中心对称图形,符合题意;、是中心对称图形,不合题意;、是中心对称图形,不合题意.已知三角形的两边长分别为和,则第三边可能是()A. B. C. D.【答案】B【考点】三角形三边关系【解析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【解答】根据题意可得,设第三边长为,则第三边长的取值范围是:,只有选项符合题意.下列方程中,有两个不相等的实数根的方程是()A.=B.=C.=D.=【答案】A【考点】根的判别式【解析】分别计算出四个方程的根的判别式,然后根据判别式的意义判断根的情况.【解答】、==,则方程有两个不相等的实数根,故本选项正确;、==,则方程有两个相等的实数根,故本选项错误;、==,则方程没有实数根,故本选项错误;、==,则方程没有实数根,故本选项错误.反比例函数,当时,图象在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【考点】反比例函数的性质【解析】直接利用反比例函数图象分布规律进而得出答案.【解答】∵ 反比例函数,∴ 图象分布在第一、三象限,∵ ,∴ 图象在第三象限.一个正方体的平面展开图如图所示,则原正方体上,与“爱”相对面上的汉字是()A.美B.丽C.湘D.西【答案】C【考点】正方体相对两个面上的文字【解析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以在此正方体上与“爱”字相对的面上的汉字是“湘”.如图所示,在中,,相交于点,则下列结论中错误的是()A.=B.=C.=D.=【答案】D【考点】平行四边形的性质【解析】根据平行四边形的性质(①平行四边形的对边平行且相等,②平行四边形的对角相等,③平行四边形的对角线互相平分)判断即可.【解答】、∵ 四边形是平行四边形,∴ =(平行四边形的对角线互相平分),正确,不符合题意;、∵ 四边形是平行四边形,∴ =,正确,不符合题意;、∵ 四边形是平行四边形,∴ =,正确,不符合题意;、根据四边形是平行四边形不能推出=,错误,符合题意;已知抛物线=如图所示,则下列个代数式:,,,,,,其中值大于的个数为()A. B. C. D.【答案】C【考点】二次函数图象与系数的关系【解析】由抛物线的开口方向判断的符号,由抛物线与轴的交点判断的符号,然后根据对称轴及抛物线与轴交点情况进行推理,进而对所得结论进行判断.【解答】∵ 抛物线的开口向上,∴ ,∵ 与轴的交点为在轴的正半轴上,∴ ,∴ ,故正确;∵ 对称轴为,∴ ,,,故此选项正确,则,故此选项错误;∵ 抛物线与轴的交点可以看出,当=时,,∴ ,故此选项错误;∵ =时,=,∴ ,故正确;∵ 抛物线与轴有两个交点,∴ ,故正确,综上所述,值大于的个数为个.三、解答题(本大题共8小题,共78分)计算:【答案】原式.【考点】实数的运算零指数幂、负整数指数幂特殊角的三角函数值【解析】直接利用零指数幂的性质以及特殊角的三角函数值分别化简得出答案.【解答】原式.解不等式组并把解集在数轴上表示出来.【答案】,解不等式①得,解不等式②得,故不等式的解集为.把解集在数轴上表示出来为:【考点】解一元一次不等式组在数轴上表示不等式的解集【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】,解不等式①得,解不等式②得,故不等式的解集为.把解集在数轴上表示出来为:如图所示,在四边形中,于点,于点,=,=.求证:(1);(2)四边形是平行四边形.【答案】∵ ,,∴ ==,在与中,,∴ ;∵ ,∴ =,=,∴ ,∴ 四边形是平行四边形.【考点】平行线的判定全等三角形的性质与判定平行四边形的判定【解析】(1))由,,根据垂直的定义得到=,和已知=,=,推出;(2)根据全等三角形的性质得到=,=,进一步推出,根据平行四边形的判定即可得到答案.【解答】∵ ,,∴ ==,在与中,,∴ ;∵ ,∴ =,=,∴ ,∴ 四边形是平行四边形.如图所示,一次函数(为常数)的图象与反比例函数的图象都经过点.(1)求点的坐标及一次函数的解析式;(2)根据图象直接回答:在第一象限内,当取何值时.【答案】∵ 反比例函数的图象都经过点.∴ ,∴ ,把代入,得到,∴ 一次函数的解析式为.观察图象可知,在第一象限内,当,【考点】函数的综合性问题【解析】(1)利用待定系数法即可解决问题;(2)写出在第一象限,一次函数的图象在反比例函数的图象下方的自变量的取值范围即可;【解答】∵ 反比例函数的图象都经过点.∴ ,∴ ,把代入,得到,∴ 一次函数的解析式为.观察图象可知,在第一象限内,当,为了深化教育改革,某校计划开设四个课外兴趣活动小组:音乐、体育、美术、舞蹈,学校要求每名学生都自主选择其中一个兴趣活动小组,为此学校采取随机抽样的方式进行了问卷调查,对调查结果进行统计并绘制了如下统计表.选择课程音乐体育美术舞蹈所占百分比根据以上统计图表中的信息,解答下列问题:(1)本次调查的总人数为________人;其中________;________;________;(2)请把条形图补充完整;(3)若该校共有学生名,请估计该校选择“美术”的学生有多少人.【答案】,,,美术兴趣小组的人数为:,补全的条形统计图如右图所示;,答:该校共有学生名,该校选择“美术”的学生有人.【考点】用样本估计总体频数(率)分布表条形统计图【解析】(1)根据题意和统计图中的数据可以解答本题;(2)根据统计图中的数据可以求得美术兴趣小组的人数,从而可以将统计图补充完整;(3)根据统计图中的数据可以求得该校选择“美术”的学生的人数.【解答】由题意可得,本次调查的总人数为:,,,,故答案为:,,,;美术兴趣小组的人数为:,补全的条形统计图如右图所示;,答:该校共有学生名,该校选择“美术”的学生有人.某校为创建“书香校园”,现有图书册,计划创建大小图书角共个.其中每个小图书角需图书册,大图书角所需图书比小图书角的倍少册.问该校创建的大小图书角各多少个?【答案】创建小图书角个,则创建大图书角个【考点】一元一次方程的应用——工程进度问题【解析】直接利用题意设创建小图书角个,则创建大图书角个,进而表示出总的用书量,即可得出等式求出答案.【解答】设创建小图书角个,则创建大图书角个,根据题意可得:,解得:,则,如图,已知抛物线与轴交于,两点,与轴交于点,其中点的坐标为(1)求的值及点的坐标;(2)试判断的形状,并说明理由;(3)一动点从点出发,以每秒个单位的速度向点运动,同时动点从点出发,以每秒个单位的速度向点运动(当点运动到点时,点随之停止运动),设运动时间为秒,当为何值时与相似?【答案】把代入得,解得,∴ 抛物线解析式为,当时,,解得,,∴ 点坐标为;为直角三角形.理由如下:当时,,则,∵ ,,,∴ ,∴ 为直角三角形,;,,,,∵ ,∴ 当时,,即,解得;当,,即,解得,综上所述,的值为或时,与相似.【考点】二次函数综合题【解析】(1)把点坐标代入可得到,从而得到抛物线解析式,然后解方程可确定点坐标;(2)先确定,再利用两点间的距离公式分别计算、和的长,然后利用勾股定理的逆定理判断为直角三角形,;(3)先表示出,,,,由于,利用相似三角形的判定方法,当时,,即;当,,即,然后分别解关于的方程即可.【解答】把代入得,解得,∴ 抛物线解析式为,当时,,解得,,∴ 点坐标为;为直角三角形.理由如下:当时,,则,∵ ,,,∴ ,∴ 为直角三角形,;,,,,∵ ,∴ 当时,,即,解得;当,,即,解得,综上所述,的值为或时,与相似.如图所示,是的直径,为延长线上的一点,切于点,,垂足为,弦平分,交于点,连接.(1)求证:;(2)求证:;(3)若,,求线段的长.【答案】证明:∵ 为的切线,∴ ,∵ ,∴ ,∴ ,∵ ,∴ ,∴ ,∴ 平分;证明:∵ 平分,∴ ,∴ ,∴ ,∵ ,∴ ,∵ ,∴ ,∵ ,,∴ ,∴ ;∵ ,∴ ,又∵ 是直径,∴ ,,∴ ,∵ ,,∴ ,∴ ,∵ ,∴ ,设,则,在中,, 解得(舍),,∵ ,∴ ,∴ .【考点】角平分线的定义切线的性质相似三角形的性质与判定解直角三角形【解析】(1)由切线得:,再得平行,由同圆的半径相等:,根据等边对等角可得结论;(2)证明,根据等角对等边可得结论;(3)根据三角函数的比设未知数,利用勾股定理列方程可得结论.【解答】证明:∵ 为的切线,∴ ,∵ ,∴ ,∴ ,∵ ,∴ ,∴ ,∴ 平分;证明:∵ 平分,∴ ,∴ ,∴ ,∵ , ∴ ,∵ ,∴ ,∵ ,,∴ ,∴ ;∵ ,∴ ,又∵ 是直径,∴ ,,∴ ,∵ ,,∴ ,∴ ,∵ ,∴ ,设,则,在中,,解得(舍),, ∵ ,∴ ,∴ .。
2020年湖南省湘西州中考数学试卷和答案解析一、选择题(本大题共10小题,每小题4分,共40分.请将每个小题所给四个选项中唯一正确选项的代号填涂在答题卡相应的位置上)1.(4分)下列各数中,比﹣2小的数是()A.0B.﹣1C.﹣3D.3解析:利用数轴表示这些数,从而比较大小.参考答案:解:将这些数在数轴上表示出来:∴﹣3<﹣2<﹣1<0<3,∴比﹣2小的数是﹣3,故选:C.点拨:考查了有理数大小比较法则.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.2.(4分)2019年中国与“一带一路”沿线国家货物贸易进出口总额达到92700亿元,用科学记数法表示92700是()A.0.927×105B.9.27×104C.92.7×103D.927×102解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为正整数.参考答案:解:92700=9.27×104.故选:B.点拨:此题考查科学记数法表示较大的数的方法,把一个大于10的数记成a×10n的形式,其中1≤|a|<10,n是正整数,这种记数法叫做科学记数法.3.(4分)下列运算正确的是()A.=﹣2B.(x﹣y)2=x2﹣y2C.+=D.(﹣3a)2=9a2解析:根据二次根式的加减法、幂的乘方与积的乘方、完全平方公式、二次根式的性质与化简,进行计算即可判断.参考答案:解:A.=2,所以A选项错误;B.(x﹣y)2=x2﹣2xy+y2,所以B选项错误;C.+≠,所以C选项错误;D.(﹣3a)2=9a2.所以D选项正确.故选:D.点拨:本题考查了二次根式的加减法、幂的乘方与积的乘方、完全平方公式、二次根式的性质与化简,解决本题的关键是综合运用以上知识.4.(4分)如图是由4个相同的小正方体组成的一个水平放置的立体图形,其箭头所指方向为主视方向,其俯视图是()A.B.C.D.解析:根据从上边看得到的图形是俯视图,可得答案.参考答案:解:从上边看有两层,底层右边是一个小正方形,上层是两个小正方形,故选:C.点拨:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.5.(4分)从长度分别为1cm、3cm、5cm、6cm四条线段中随机取出三条,则能够组成三角形的概率为()A.B.C.D.解析:列举出所有可能出现的结果情况,进而求出能构成三角形的概率.参考答案:解:从长度为1cm、3cm、5cm、6cm四条线段中随机取出三条,共有以下4种结果(不分先后):1cm、3cm、5cm,1cm、3cm、6cm,3cm、5cm、6cm,1cm、5cm、6cm,其中,能构成三角形的只有1种,∴P(构成三角形)=.故选:A.点拨:本题考查随机事件发生的概率,列举出所有可能出现的结果情况,是正确解答的关键.6.(4分)已知∠AOB,作∠AOB的平分线OM,在射线OM上截取线段OC,分别以O、C为圆心,大于OC的长为半径画弧,两弧相交于E,F.画直线EF,分别交OA于D,交OB于G.那么△ODG一定是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形解析:依据已知条件即可得到∠ODP=∠OGP,即可得到OD=OG,进而得出△ODG是等腰三角形.参考答案:解:如图所示,∵OM平分∠AOB,∴∠AOC=∠BOC,由题可得,DG垂直平分OC,∴∠OPD=∠OPG=90°,∴∠ODP=∠OGP,∴OD=OG,∴△ODG是等腰三角形,故选:C.点拨:本题主要考查了基本作图以及等腰三角形的判定,如果一个三角形有两个角相等,那么这两个角所对的边也相等.7.(4分)已知正比例函数y1的图象与反比例函数y2的图象相交于点A(﹣2,4),下列说法正确的是()A.正比例函数y1的解析式是y1=2xB.两个函数图象的另一交点坐标为(4,﹣2)C.正比例函数y1与反比例函数y2都随x的增大而增大D.当x<﹣2或0<x<2时,y2<y1解析:由题意可求正比例函数解析式和反比例函数解析式,根据正比例函数和反比例函数的性质可判断求解.参考答案:解:∵正比例函数y1的图象与反比例函数y2的图象相交于点A(﹣2,4),∴正比例函数y1=﹣2x,反比例函数y2=﹣,∴两个函数图象的另一个交点为(2,﹣4),∴A,B选项说法错误;∵正比例函数y1=﹣2x中,y随x的增大而减小,反比例函数y2=﹣中,在每个象限内y随x的增大而增大,∴C选项说法错误;∵当x<﹣2或0<x<2时,y2<y1,∴选项D说法正确.故选:D.点拨:本题考查了反比例函数与一次函数的交点问题,熟练运用反比例函数与一次函数的性质解决问题是本题的关键.8.(4分)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D.下列结论不一定成立的是()A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A、B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线解析:根据切线的性质即可求出答案.参考答案:解:(A)∵PA、PB为圆O的切线,∴PA=PB,∴△BPA是等腰三角形,故A选项不符合题意.(B)由圆的对称性可知:PD垂直平分AB,但AB不一定平分PD,故B选项符合题意.(C)连接OB、OA,∵PA、PB为圆O的切线,∴∠OBP=∠OAP=90°,∴点A、B、P在以OP为直径的圆上,故C选项不符合题意.(D)∵△BPA是等腰三角形,PD⊥AB,∴PC为△BPA的边AB上的中线,故D选项不符合题意.故选:B.点拨:本题考查切线的性质,解题的关键是熟练运用切线的性质,本题属于中等题型.9.(4分)如图,在平面直角坐标系xOy中,矩形ABCD的顶点A 在x轴的正半轴上,矩形的另一个顶点D在y轴的正半轴上,矩形的边AB=a,BC=b,∠DAO=x,则点C到x轴的距离等于()A.acosx+bsinx B.acosx+bcosxC.asinx+bcosx D.asinx+bsinx解析:作CE⊥y轴于E,由矩形的性质得出CD=AB=a,AD=BC=b,∠ADC=90°,证出∠CDE=∠DAO=x,由三角函数定义得出OD=bsinx,DE=acosx,进而得出答案.参考答案:解:作CE⊥y轴于E,如图:∵四边形ABCD是矩形,∴CD=AB=a,AD=BC=b,∠ADC=90°,∴∠CDE+∠ADO=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠CDE=∠DAO=x,∵sin∠DAO=,cos∠CDE=,∴OD=AD×sin∠DAO=bsinx,DE=CD×cos∠CDE=acosx,∴OE=DE+OD=acosx+bsinx,∴点C到x轴的距离等于acosx+bsinx;故选:A.点拨:本题考查了矩形的性质、坐标与图形性质、三角函数定义等知识;熟练掌握矩形的性质和三角函数定义是解题的关键.10.(4分)已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:①abc>0,②b﹣2a<0,③a﹣b+c>0,④a+b>n(an+b),(n≠1),⑤2c<3b.正确的是()A.①③B.②⑤C.③④D.④⑤解析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.参考答案:解:①由图象可知:a<0,b>0,c>0,abc<0,故①错误;②由于a<0,所以﹣2a>0.又b>0,所以b﹣2a>0,故②错误;③当x=﹣1时,y=a﹣b+c<0,故③错误;④当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故④正确;⑤当x=3时函数值小于0,y=9a+3b+c<0,且该抛物线对称轴是直线x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c <3b,故⑤正确;故④⑤正确.故选:D.点拨:本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点确定.二、填空题(本大题共8小题,每小题4分,共32分,请将正确答案填写在答题卡相应的横线上)11.(4分)﹣的绝对值是.解析:根据绝对值的意义,求出结果即可.参考答案:解:根据负数的绝对值等于它的相反数可得,|﹣|=,故答案为:.点拨:本题考查绝对值的意义,理解负数的绝对值等于它的相反数.12.(4分)分解因式:2x2﹣2=2(x+1)(x﹣1).解析:先提取公因式2,再根据平方差公式进行二次分解即可求得答案.参考答案:解:2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1).故答案为:2(x+1)(x﹣1).点拨:本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.13.(4分)若一个多边形的内角和是外角和的两倍,则该多边形的边数是6.解析:任何多边形的外角和是360°,内角和等于外角和的2倍则内角和是720°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.参考答案:解:设该多边形的边数为n,根据题意,得,(n﹣2)•180°=720°,解得:n=6.故这个多边形的边数为6.故答案为:6点拨:本题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题来解决,难度适中.14.(4分)不等式组的解集为x≥﹣1.解析:求出每个不等式的解集,最后求出不等式组的解集即可.参考答案:解:,∵解不等式①得:x≥﹣3,解不等式②得:x≥﹣1,∴不等式组的解集为x≥﹣1,故答案为:x≥﹣1.点拨:本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.15.(4分)如图,直线AE∥BC,BA⊥AC,若∠ABC=54°,则∠EAC =36度.解析:根据垂直的定义得到∠BAC=90°,根据三角形的内角和定理得到∠C=90°﹣54°=36°,根据平行线的性质即可得到结论.参考答案:解:∵BA⊥AC,∴∠BAC=90°,∵∠ABC=54°,∴∠C=90°﹣54°=36°,∵AE∥BC,∴∠EAC=∠C=36°,故答案为:36.点拨:本题考查了平行线的性质,三角形的内角和定理,熟练掌握平行线的性质是解题的关键.16.(4分)从甲、乙两种玉米种子中选择一种合适的推荐给某地.考虑到庄稼人对玉米的产量和产量的稳定性十分的关心.选择之前,为了解甲、乙两种玉米种子的情况,某单位各用了10块自然条件相同的试验田进行试验,得到各试验田每公顷产量(单位:t)的数据,这两组数据的平均数分别是甲≈7.5,乙≈7.5,方差分别是S甲2=0.010,S乙2=0.002,你认为应该选择的玉米种子是乙.解析:在平均数基本相等的前提下,方差越小产量越稳定,据此求解可得.参考答案:解:∵甲=乙≈7.5,S甲2=0.010,S乙2=0.002,∴S甲2>S乙2,∴乙玉米种子的产量比较稳定,∴应该选择的玉米种子是乙,故答案为:乙.点拨:本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.17.(4分)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°,矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.将矩形CODE沿x轴向右平移,当矩形CODE与△ABO重叠部分的面积为6时,则矩形CODE 向右平移的距离为2.解析:由已知得出AD=OA﹣OD=4,由矩形的性质得出∠AED=∠ABO=30°,在Rt△AED中,AE=2AD=8,由勾股定理得出ED =4,作出图形,根据三角形面积公式列出方程即可得出答案.参考答案:解:∵点A(6,0),∴OA=6,∵OD=2,∴AD=OA﹣OD=6﹣2=4,∵四边形CODE是矩形,∴DE∥OC,∴∠AED=∠ABO=30°,在Rt△AED中,AE=2AD=8,ED===4,∵OD=2,∴点E的坐标为(2,4);∴矩形CODE的面积为4×2=8,∵将矩形CODE沿x轴向右平移,矩形CODE与△ABO重叠部分的面积为6∴矩形CODE与△ABO不重叠部分的面积为2,如图,设ME′=x,则FE′=x,依题意有x×x÷2=2,解得x=±2(负值舍去).故矩形CODE向右平移的距离为2.故答案为:2.点拨:考查了矩形的性质、坐标与图形性质、勾股定理、平移的性质、直角三角形的性质等知识;本题综合性强,有一定难度,熟练掌握含30°角的直角三角形的性质是解题的关键.18.(4分)观察下列结论:(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC=60°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD=90°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE=108°;…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与A n M相交于O.也会有类似的结论,你的结论是A1N =A n M,∠NOA n=.解析:根据已知所给得到规律,进而可得在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程会有类似的结论.参考答案:解:∵(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC==60°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD==90°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE==108°;…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与A n M相交于O.也有类似的结论是A1N=A n M,∠NOA n=.故答案为:A1N=A n M,∠NOA n=.点拨:本题考查了正多边形和圆、规律型:图形的变化类、全等三角形的判定与性质,解决本题的关键是掌握正多边形的性质.三、解答题(本大題关8小题,共78分,每个题目都要求在答题卡的相应位置写出计算、解答或证明的主要步骤)19.(8分)计算:2cos45°+(π﹣2020)0+|2﹣|.解析:分别根据特殊角的三角函数值,任何非零数的零次幂定义以及绝对值的定义计算即可.参考答案:解:原式===3.点拨:本题主要考查了实数的运算,熟记相应定义以及特殊角的三角函数值是解答本题的关键.20.(8分)化简:(﹣a﹣1)÷.解析:先计算括号内分式的减法、将除式分母因式分解,再将除法转化为乘法,最后约分即可得.参考答案:解:原式=(﹣)÷=•=.点拨:本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.21.(8分)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:△BAE≌△CDE;(2)求∠AEB的度数.解析:(1)利用等边三角形的性质得到AD=AE=DE,∠EAD=∠EDA=60°,利用正方形的性质得到AB=AD=CD,∠BAD=∠CDA =90°,所以∠EAB=∠EDC=150°,然后根据“SAS”判定△BAE≌△CDE;(2)先证明AB=AE,然后根据等腰三角形的性质和三角形内角和计算∠AEB的度数.参考答案:(1)证明:∵△ADE为等边三角形,∴AD=AE=DE,∠EAD=∠EDA=60°,∵四边形ABCD为正方形,∴AB=AD=CD,∠BAD=∠CDA=90°,∴∠EAB=∠EDC=150°,在△BAE和△CDE中,∴△BAE≌△CDE(SAS);(2)∵AB=AD,AD=AE,∴AB=AE,∴∠ABE=∠AEB,∵∠EAB=150°,∴∠AEB=(180°﹣150°)=15°.点拨:本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.也考查了全等三角形的判定与性质和等边三角形的性质.22.(10分)为加强安全教育,某校开展了“防溺水”安全知识竞赛,想了解七年级学生对“防溺水”安全知识的掌握情况,现从七年级学生中随机抽取50名学生进行竞赛,并将他们的竞赛成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级参赛学生成绩频数分布直方图(数据分成五组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)如图所示b.七年级参赛学生成绩在70≤x<80这一组的具体得分是:70 71 73 75 76 76 76 77 77 78 79c.七年级参赛学生成绩的平均数、中位数、众数如下:年级平均数中位数众数七76.9m80d.七年级参赛学生甲的竞赛成绩得分为79分.根据以上信息,回答下列问题:(1)在这次测试中,七年级在75分以上(含75分)的有31人;(2)表中m的值为77.5;(3)在这次测试中,七年级参赛学生甲的竞赛成绩得分排名年级第24名;(4)该校七年级学生有500人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.解析:(1)将频数分布直方图中第3、4、5组数据相加可得答案;(2)根据中位数的定义求解可得;(3)由90≤x≤100的频数为8、80≤x<90的频数为15,据此可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数占被调查人数的比例即可得.参考答案:解:(1)在这次测试中,七年级在75分以上(含75分)的有8+15+8=31(人),故答案为:31.(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为77、78,∴m==77.5,故答案为:77.5;(3)在这次测试中,七年级参赛学生甲的竞赛成绩得分排名年级第24名,故答案为:24;(4)估计七年级成绩超过平均数76.9分的人数为500×=270(人).点拨:本题主要考查频数分布直方图、中位数及样本估计总体,解题的关键是根据直方图得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.23.(10分)某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?解析:(1)根据题意设口罩日产量的月平均增长率为x,根据题意列出方程即可求解;(2)结合(1)按照这个增长率,根据3月份平均日产量为24200个,即可预计4月份平均日产量.参考答案:解:(1)设口罩日产量的月平均增长率为x,根据题意,得20000(1+x)2=24200解得x1=﹣2.1(舍去),x2=0.1=10%,答:口罩日产量的月平均增长率为10%.(2)24200(1+0.1)=26620(个).答:预计4月份平均日产量为26620个.点拨:本题考查了一元二次方程的应用,解决本题的关键是掌握增长率问题应用题的等量关系.24.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O 于点E.(1)若D为AC的中点,证明:DE是⊙O的切线;(2)若CA=6,CE=3.6,求⊙O的半径OA的长.解析:(1)连接AE,OE,由AB是⊙O的直径,得到∠AEB=90°,根据直角三角形的性质得到AD=DE,求得∠DAE=∠AED,根据切线的性质得到∠CAE+∠EAO=∠CAB=90°,等量代换得到∠DEO=90°,于是得到结论;(2)证明△AEC∽△BAC,列比例式可得BC的长,最后根据勾股定理可得OA的长.参考答案:(1)证明:连接AE,OE,∵AB是⊙O的直径,且E在⊙O上,∴∠AEB=90°,∴∠AEC=90°,∵D为AC的中点,∴AD=DE,∴∠DAE=∠AED,∵AC是⊙O的切线,∴∠CAE+∠EAO=∠CAB=90°,∵OA=OE,∴∠OAE=∠OEA,∴∠DEA+∠OEA=90°,即∠DEO=90°,∴DE是⊙O的切线;(2)解:∵∠AEC=∠CAB=90°,∠C=∠C,∴△AEC∽△BAC,∴,∵CA=6,CE=3.6,∴,∴BC=10,∵∠CAB=90°,∴AB2+AC2=BC2,∴AB==8,∴OA=4,即⊙O的半径OA的长是4.点拨:本题考查了切线的判定和性质,直角三角形的性质,等腰三角形的性质,相似三角形的性质和判定,正确的识别图形是解题的关键.25.(12分)问题背景:如图1,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.小李同学探究此问题的方法是:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论,他的结论就是EF=AE+CF;探究延伸1:如图2,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F,上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由;探究延伸2:如图3,在四边形ABCD中,BA=BC,∠BAD+∠BCD =180°,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由;实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处.且指挥中心观测两舰艇视线之间的夹角为70°.试求此时两舰艇之间的距离.解析:问题背景:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,即可得出结论:EF=AE+CF;探究延伸1:延长FC到G,使CG=AE,连接BG,先证明△BCG ≌△BAE,再证明△BFG≌△BFE,可得出结论:EF=AE+CF;探究延伸2:延长DC到H,使得CH=AE,连接BH,先证明△BCH≌△BAE,即可得到BE=HB,∠ABE=∠HBC,再证明△HBF ≌△EBF,即可得出EF=HF=HC+CF=AE+CF;实际应用:连接EF,延长BF交AE的延长线于G,根据题意可转化为如下的数学问题:在四边形GAOB中,OA=OB,∠A+∠B =180°,∠AOB=2∠EOF,∠EOF的两边分别交AG,BG于E,F,求EF的长.再根据探究延伸2的结论:EF=AE+BF,即可得到两舰艇之间的距离.参考答案:解:问题背景:如图1,延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论:EF=AE+CF;故答案为:EF=AE+CF;探究延伸1:上述结论仍然成立,即EF=AE+CF,理由如下:如图2,延长FC到G,使CG=AE,连接BG,∵CG=AE,∠BCG=∠A=90°,BC=BA,∴△BCG≌△BAE(SAS),∴BG=BE,∠ABE=∠CBG,∵∠ABC=2∠EBF,∴∠ABE+∠CBF=∠EBF,即∠CBG+∠CBF=∠EBF,∴∠GBF=∠EBF,又∵BF=BF,∴△BFG≌△BFE(SAS),∴GF=EF,即GC+CF=EF,∴AE+CF=EF∴可得出结论:EF=AE+CF;探究延伸2:上述结论仍然成立,即EF=AE+CF,理由:如图3,延长DC到H,使得CH=AE,连接BH,∵∠BAD+∠BCD=180°,∠BCH+∠BCD=180°,∴∠BCH=∠BAE,∵BA=BC,CH=AE,∴△BCH≌△BAE(SAS),∴BE=HB,∠ABE=∠HBC,∴∠HBE=∠ABC,又∵∠ABC=2∠MBN,∴∠EBF=∠HBF,∵BF=BF,∴△HBF≌△EBF(SAS),∴EF=HF=HC+CF=AE+CF;实际应用:如图4,连接EF,延长BF交AE的延长线于G,因为舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70°的B处,所以∠AOB=140°,因为指挥中心观测两舰艇视线之间的夹角为70°,所以∠EOF=70°,所以∠AOB=2∠EOF.依题意得,OA=OB,∠A=60°,∠B=120°,所以∠A+∠B=180°,因此本题的实际的应用可转化为如下的数学问题:在四边形GAOB中,OA=OB,∠A+∠B=180°,∠AOB=2∠EOF,∠EOF的两边分别交AG,BG于E,F,求EF的长.根据探究延伸2的结论可得:EF=AE+BF,根据题意得,AE=75×1.2=90(海里),BF=100×1.2=120(海里),所以EF=90+120=210(海里).答:此时两舰艇之间的距离为210海里.点拨:本题属于四边形综合题,主要考查了全等三角形的判定和性质,解题的关键是正确作出辅助线构造全等三角形,解答时注意类比思想的灵活应用.26.(12分)已知直线y=kx﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的一个交点为A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(1)当直线y=kx﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的另一个交点为该抛物线的顶点E时,求k,b,c的值及抛物线顶点E的坐标;(2)在(1)的条件下,设该抛物线与y轴的交点为C,若点Q 在抛物线上,且点Q的横坐标为b,当S△EQM=S△ACE时,求m 的值;(3)点D在抛物线上,且点D的横坐标为b+,当AM+2DM 的最小值为时,求b的值.解析:(1)将A点坐标代入直线与抛物线的解析式中求得k的值和b与c的关系式,再将抛物线的顶点坐标代入求得的直线的解析式,便可求得b、c的值,进而求得E点的坐标;(2)先根据抛物线的解析式求得C、Q点坐标,用m表示△EQM 的面积,再根据S△EQM=S△ACE列出m的方程进行解答;(3)取点N(0,1),则∠OAN=45°,过D作直线AN的垂线,垂足为G,DG与x轴相交于点M,此时AM+2DM=2DG的值最小,由2DG=列出关于b的方程求解便可.参考答案:解:(1)∵直线y=kx﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的一个交点为A(﹣1,0),∴﹣k﹣2=0,1+b+c=0,∴k=﹣2,c=﹣b﹣1,∴直线y=kx﹣2的解析式为y=﹣2x﹣2,∵抛物线y=x2﹣bx+c的顶点坐标为E(,),∴E(,),∵直线y=﹣2x﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的另一个交点为该抛物线的顶点E,∴=﹣2×﹣2,解得,b=2,或b=﹣2(舍),当b=2时,c=﹣3,∴E(1,﹣4),故k=﹣2,b=2,c=﹣3,E(1,﹣4);(2)由(1)知,直线的解析式为y=﹣2x﹣2,抛物线的解析式为y=x2﹣2x﹣3,∴C(0,﹣3),Q(2,﹣3),如图1,设直线y=﹣2x﹣2与y轴交点为N,则N(0,﹣2),∴CN=1,∴,∴,设直线EQ与x轴的交点为D,显然点M不能与点D重合,设直线EQ的解析式为y=dx+n(d≠0),则,解得,,∴直线EQ的解析式为y=x﹣5,∴D(5,0),∴S△EQM=S△EDM﹣S△QDM==,解得,m=3,或m=7;(3)∵点D(b+,y D)在抛物线y=x2﹣bx﹣b﹣1上,∴,可知点D(b+,)在第四象限,且在直线x=b的右侧,∵,∴可取点N(0,1),则∠OAN=45°,如图2,过D作直线AN的垂线,垂足为G,DG与x轴相交于点M,∵∠GAM=90°﹣∠OAN=45°,得AM=GM,则此时点M满足题意,过D作DH⊥x轴于点H,则点H(b+,0),在Rt△MDH中,可知∠DMH=∠MDH=45°,∴DH=MH,DM=MH,∵点M(m,0),∴0﹣()=(b+)﹣m,解得,m=,∵,∴,解得,b=3,此时,m=,符合题意,∴b=3.点拨:本题是二次函数的综合题,主要考查了待定系数法,二次函数的图象与性质,三角形面积公式,等腰直角三角形的性质,第(2)小题关键是由面积关系列出m的方程,第(3)小题关键是确定AM+2DM的最小值为2DG的值.。
湖南省湘西州中考数学试卷、填空题(本大题8小题,每小题4分,共32分,将正确答案填在答题卡相应的横线上) 1. ______________________________ ( 4分)-2019的相反数是 . 2. ( 4分)要使二次根式 ________________ 「j 有意义,则x 的取值范围为.3. ________________________________ (4分)因式分解:ab - 7a = .4.(4分)从-3. - I , n , 0, 3这五个数中随机抽取一个数,恰好是负数的概率是 _________ .5.( 4分)黔张常铁路将于 2020年正式通车运营,这条铁路估算总投资36200 000 000元,数据36200 000 000用科学记数法表示为 __________ .6. ( 4分)若关于x 的方程3x - kx +2= 0的解为2,贝U k 的值为 __________ .7.( 4分)下面是一个简单的数值运算程序, ____ 当输入x 的值为16时,输出的数值为•(用科学计算器计算或笔算).[亠艺]=C> J=^> +2< ---- t> + 】1 O >_ 输出& (4分)阅读材料:设=(X 1, yj , = ( X 2, y 2),如果//,贝U X 1?y 2= X 2?y 1,根据该材料填空,已知=(4, 3), = ( 8, m ,且//,贝U m=选项的代号填涂在答题卡相应的位置上) 9. ( 4分)下列运算中,正确的是( 632B. a * a = a2 2 . 2C. (a - b ) = a - bA. 五边形B. 六边形C. 七边形D. 八边形10. (4分)已知一个多边形的内角和是 1080 ,则这个多边形是(11. (4分)下列立体图形中,主视图是圆的是 )B./ 1 = 50°, / 2 = 40°,则/ 3的度数为(二、选择题(本大题 10小题,每小题4分,共40分,将每个小题所给四个选项中唯一正确A. 2a +3a = 5aD .-+ 7=13. (4分)一兀二次方程X- 2x+3= 0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断14. (4分)在平面直角坐标系中,将点(2, l )向右平移3个单位长度,则所得的点的坐标是()A. (0, 5)B. (5, 1)C. (2, 4)D. (4, 2)15. (4分)下列四个图形中,不是轴对称图形的是()16. (4分)从甲、乙、丙、丁四人中选一人参加射击比赛,经过三轮初赛,他们的平均成2绩都是9环,方差分别是s甲=0.25克,谁去参赛更合适()A.甲B.乙17.(4分)下列命题是真命题的是()A. 同旁内角相等,两直线平行B. 对角线互相平分的四边形是平行四边形C. 相等的两个角是对顶角D. 圆内接四边形对角相等2 2 2s 乙=0.3 , S 丙=0.4 , s 丁= 0.35,你认为派C.丙D. 丁AC= 12, AB的垂直平分线EF交AC于点D,连)C. 4「;D. 2;汀三、解答题(本大题8小题,共78分,每个题目都要求在答题卡的相应位置写出计算或证明的主要步骤)I I m I II I I 、21. (8分)如图,在正方形ABCDL 点E, F分别在边CD AD上,且AF= CE(1) 求证:△ ABF^A CBE(2) 若AB= 4, AF= 1,求四边形BEDF的面积.R C22. (8分)“扫黑除恶”受到广大人民的关注,某中学对部分学生就“扫黑除恶”知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有______ 人,扇形统计图中“很了解”部分所对应扇形的圆心角为 _______ ;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对“扫黑除恶”知识达到“很了解”和“基本了解”程度的总人数.23. (8分)如图,一次函数y= kx+b的图象与反比例函数y=兰的图象在第一象限交于点Ax(3, 2),与y轴的负半轴交于点B,且OB= 4.19. (6 分)计算:亍+2sin30 (3.14 — n)20. (6分)解不等式组:|x-2<l[4x+5>x+2并把解集在数轴上表示出来.(1)求函数y =丄和y = kx +b 的解析式; (2)结合图象直接写出不等式组O v _!v kx +b 的解集片 8 7cEk.J* 43 -\Z 2 1Lli345678x -2I24. ( 8分)列方程解应用题:某列车平均提速 80km / h ,用相同的时间,该列车提速前行驶 300km ,提速后比提速前多行驶200km ,求该列车提速前的平均速度.25. (12分)如图,△ ABC 内接于O Q AG BC , CD 是O O 的直径,与AB 相交于点C,过点D 作EF//AB,分别交CA CB 的延长线于点 E 、F ,连接BD(1) 求证:EF 是O O 的切线; (2) 求证:B D =AC ?BF.26. (22分)如图,抛物线 y = ax 2+bx (a >0)过点E (8, 0),矩形ABCD 勺边AB 在线段0E 上(点A 在点B 的左侧),点C D 在抛物线上,/ BAD 勺平分线AM交 BC 于点M ,点N 是CD 的中点,已知 OA= 2,且OA AD= 1 : 3.(1) 求抛物线的解析式;(2) F 、G 分别为x 轴,y 轴上的动点,顺次连接 M N G F 构成四边形 MNG ,求四边 形MNG 周长的最小值;(3 )在x 轴下方且在抛物线上是否存在点 P,使厶ODP 中OD 边上的高为 --- ?若存在,5求出点P 的坐标;若不存在,请说明理由; (4)矩形ABCD5动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点KL,且直线KL平分矩形的面积时,求抛物线平移的距离.参考答案与试题解析一、填空题(本大题8小题,每小题4分,共32分,将正确答案填在答题卡相应的横线上)1. (4分)-2019的相反数是2019 .【分析】直接利用相反数的定义进而得出答案.【解答】解:-2019的相反数是:2019 .故答案为:2019.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2. (4分)要使二次根式好:;-2有意义,则x的取值范围为X》8 .【分析】直接利用二次根式的定义得出答案.【解答】解:要使二次根式「1有意义,则x - 8> 0,解得:x > 8.故答案为:x> &【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键. 3. (4 分)因式分解:ab - 7a = a (b - 7).【分析】直接提公因式a即可.【解答】解:原式=a (b- 7),故答案为:a (b-7).【点评】此题主要考查了提公因式法分解因式,关键是正确找出公因式.4. (4分)从-3. -I , n , 0, 3这五个数中随机抽取一个数,恰好是负数的概率是5【分析】五个数中有两个负数,根据概率公式求解可得.【解答】解:•••在-3. - l , n , 0, 3这五个数中,负数有-3和-1这2个,抽取一个数,恰好为负数的概率为丄5故答案为:.5【点评】此题考查了概率公式的应用•用到的知识点为:概率=所求情况数与总情况数之比.5. (4分)黔张常铁路将于2020年正式通车运营,这条铁路估算总投资36200 000 000元, 数据36200 000 000用科学记数法表示为 3.62 X 1010.【分析】科学记数法就是将一个数字表示成(a x 10的n次幕的形式),其中K | a| < 10, n表示整数,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幕.【解答】解:36200 000 000 = 3.62 X 1010.故答案为:3.62 X 1010.【点评】此题考查了对科学记数法的理解和运用和单位的换算.科学记数法的表示形式为a x 10n的形式,其中1w|a| < 10, n为整数,表示时关键要正确确定a的值以及n的值.6. (4分)若关于x的方程3x- kx+2= 0的解为2,贝U k的值为4 .【分析】直接把x = 2代入进而得出答案.【解答】解:•••关于x的方程3x- kx+2 = 0的解为2,••• 3 X 2- 2k+2 = 0,解得:k = 4.故答案为:4.【点评】此题主要考查了一元一次不等式的解,正确把已知数据代入是解题关键.7. (4分)下面是一个简单的数值运算程序,当输入x的值为16时,输出的数值为 3 .(用科学计算器计算或笔算).| 倫亠# ------ 「J+2 + 】兰出【分析】当输入x的值为16时,■'■= 4, 4-2 = 2, 2+1= 3 .【解答】解:解:由题图可得代数式为2' <当x = 16 时,原式=.2+1 = 4-2+1 = 2+1 = 3 .故答案为:3【点评】此题考查了代数式求值,此类题要能正确表示出代数式,然后代值计算,解答本题的关键就是弄清楚题目给出的计算程序.& ( 4分)阅读材料:设=(x i, y i), = ( X2, y2),如果//,贝U x i?y2= X2?y i,根据该材料填空,已知=(4,3), = ( 8, n),且/ 贝U m= 6 .【分析】根据材料可以得到等式4m= 3 x 8,即可求m【解答】解:•••=( 4, 3), = ( 8, m),且/,••• 4m= 3 x 8,••• m= 6;故答案为6;【点评】本题考查新定义,点的坐标;理解阅读材料的内容,转化为所学知识求解是关键.二、选择题(本大题10小题,每小题4分,共40分,将每个小题所给四个选项中唯一正确选项的代号填涂在答题卡相应的位置上)9. ( 4分)下列运算中,正确的是( )A. 2a+3a= 5aB. a6* a3= a2C. (a- b) 2= a2- b2D. ■+ 二【分析】直接利用合并同类项法则以及完全平方公式、同底数幕的乘除运算法则分别化简得出答案.【解答】解:A 2a+3a= 5a,故此选项正确;B a6* a3= a3,故此选项错误;2 2 2C (a- b) = a - 2ab+b,故此选项错误;D _+二,故此选项错误.故选:A.【点评】此题主要考查了合并同类项以及完全平方公式、同底数幕的乘除运算,正确掌握相关运算法则是解题关键.10. (4分)已知一个多边形的内角和是1080。
2020年湘西州中考数学试卷一、选择题(共10小题).1.下列各数中,比﹣2小的数是()A.0B.﹣1C.﹣3D.32.2019年中国与“一带一路”沿线国家货物贸易进出口总额达到92700亿元,用科学记数法表示92700是()A.0.927×105B.9.27×104C.92.7×103D.927×1023.下列运算正确的是()A.=﹣2B.(x﹣y)2=x2﹣y2C.+=D.(﹣3a)2=9a24.如图是由4个相同的小正方体组成的一个水平放置的立体图形,其箭头所指方向为主视方向,其俯视图是()A.B.C.D.5.从长度分别为1cm、3cm、5cm、6cm四条线段中随机取出三条,则能够组成三角形的概率为()A.B.C.D.6.已知∠AOB,作∠AOB的平分线OM,在射线OM上截取线段OC,分别以O、C为圆心,大于OC的长为半径画弧,两弧相交于E,F.画直线EF,分别交OA于D,交OB于G.那么△ODG一定是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形7.已知正比例函数y1的图象与反比例函数y2的图象相交于点A(﹣2,4),下列说法正确的是()A.正比例函数y1的解析式是y1=2xB.两个函数图象的另一交点坐标为(4,﹣2)C.正比例函数y1与反比例函数y2都随x的增大而增大D.当x<﹣2或0<x<2时,y2<y18.如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D.下列结论不一定成立的是()A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A、B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线9.如图,在平面直角坐标系xOy中,矩形ABCD的顶点A在x轴的正半轴上,矩形的另一个顶点D在y轴的正半轴上,矩形的边AB=a,BC=b,∠DAO=x,则点C到x轴的距离等于()A.a cos x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a sin x+b sin x10.已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:①abc>0,②b﹣2a<0,③a﹣b+c>0,④a+b>n(an+b),(n≠1),⑤2c<3b.正确的是()A.①③B.②⑤C.③④D.④⑤二、填空题(本大题共8小题,每小题4分,共32分,请将正确答案填写在答题卡相应的横线上)11.﹣的绝对值是.12.分解因式:2x2﹣2=.13.若一个多边形的内角和是外角和的两倍,则该多边形的边数是.14.不等式组的解集为.15.如图,直线AE∥BC,BA⊥AC,若∠ABC=54°,则∠EAC=度.16.从甲、乙两种玉米种子中选择一种合适的推荐给某地.考虑到庄稼人对玉米的产量和产量的稳定性十分的关心.选择之前,为了解甲、乙两种玉米种子的情况,某单位各用了10块自然条件相同的试验田进行试验,得到各试验田每公顷产量(单位:t)的数据,这两组数据的平均数分别是甲≈7.5,乙≈7.5,方差分别是S甲2=0.010,S乙2=0.002,你认为应该选择的玉米种子是.17.在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°,矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.将矩形CODE 沿x轴向右平移,当矩形CODE与△ABO重叠部分的面积为6时,则矩形CODE向右平移的距离为.18.观察下列结论:(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN =CM,∠NOC=60°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN =DM,∠NOD=90°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN =EM,∠NOE=108°;…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与A n M相交于O.也会有类似的结论,你的结论是.三、解答题(本大題关8小题,共78分,每个题目都要求在答题卡的相应位置写出计算、解答或证明的主要步骤)19.计算:2cos45°+(π﹣2020)0+|2﹣|.20.化简:(﹣a﹣1)÷.21.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:△BAE≌△CDE;(2)求∠AEB的度数.22.为加强安全教育,某校开展了“防溺水”安全知识竞赛,想了解七年级学生对“防溺水”安全知识的掌握情况,现从七年级学生中随机抽取50名学生进行竞赛,并将他们的竞赛成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级参赛学生成绩频数分布直方图(数据分成五组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)如图所示b.七年级参赛学生成绩在70≤x<80这一组的具体得分是:70 71 73 75 7676 76 77 77 78 79c.七年级参赛学生成绩的平均数、中位数、众数如下:年级平均数中位数众数七76.9m80d.七年级参赛学生甲的竞赛成绩得分为79分.根据以上信息,回答下列问题:(1)在这次测试中,七年级在75分以上(含75分)的有人;(2)表中m的值为;(3)在这次测试中,七年级参赛学生甲的竞赛成绩得分排名年级第名;(4)该校七年级学生有500人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.23.某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求.工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?24.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(1)若D为AC的中点,证明:DE是⊙O的切线;(2)若CA=6,CE=3.6,求⊙O的半径OA的长.25.问题背景:如图1,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.小李同学探究此问题的方法是:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论,他的结论就是;探究延伸1:如图2,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F,上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由;探究延伸2:如图3,在四边形ABCD中,BA=BC,∠BAD+∠BCD=180°,∠ABC =2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由;实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处.且指挥中心观测两舰艇视线之间的夹角为70°.试求此时两舰艇之间的距离.26.已知直线y=kx﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的一个交点为A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(1)当直线y=kx﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的另一个交点为该抛物线的顶点E时,求k,b,c的值及抛物线顶点E的坐标;(2)在(1)的条件下,设该抛物线与y轴的交点为C,若点Q在抛物线上,且点Q的横坐标为b,当S△EQM=S△ACE时,求m的值;(3)点D在抛物线上,且点D的横坐标为b+,当AM+2DM的最小值为时,求b的值.参考答案一、选择题(本大题共10小题,每小题4分,共40分.请将每个小题所给四个选项中唯一正确选项的代号填涂在答题卡相应的位置上)1.下列各数中,比﹣2小的数是()A.0B.﹣1C.﹣3D.3【分析】利用数轴表示这些数,从而比较大小.解:将这些数在数轴上表示出来:∴﹣3<﹣2<﹣1<0<3,∴比﹣2小的数是﹣3,故选:C.2.2019年中国与“一带一路”沿线国家货物贸易进出口总额达到92700亿元,用科学记数法表示92700是()A.0.927×105B.9.27×104C.92.7×103D.927×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.解:92700=9.27×104.故选:B.3.下列运算正确的是()A.=﹣2B.(x﹣y)2=x2﹣y2C.+=D.(﹣3a)2=9a2【分析】根据二次根式的加减法、幂的乘方与积的乘方、完全平方公式、二次根式的性质与化简,进行计算即可判断.解:A.=2,所以A选项错误;B.(x﹣y)2=x2﹣2xy+y2,所以B选项错误;C.+≠,所以C选项错误;D.(﹣3a)2=9a2.所以D选项正确.故选:D.4.如图是由4个相同的小正方体组成的一个水平放置的立体图形,其箭头所指方向为主视方向,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.解:从上边看有两层,底层右边是一个小正方形,上层是两个小正方形,故选:C.5.从长度分别为1cm、3cm、5cm、6cm四条线段中随机取出三条,则能够组成三角形的概率为()A.B.C.D.【分析】列举出所有可能出现的结果情况,进而求出能构成三角形的概率.解:从长度为1cm、3cm、5cm、6cm四条线段中随机取出三条,共有以下4种结果(不分先后):1cm 3cm 5cm,1cm 3cm 6cm,3cm 5cm 6cm,1cm 5cm 6cm,其中,能构成三角形的只有1种,∴P(构成三角形)=.故选:A.6.已知∠AOB,作∠AOB的平分线OM,在射线OM上截取线段OC,分别以O、C为圆心,大于OC的长为半径画弧,两弧相交于E,F.画直线EF,分别交OA于D,交OB于G.那么△ODG一定是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形【分析】依据已知条件即可得到∠ODE=∠OGE,即可得到OD=OG,进而得出△ODG是等腰三角形.解:如图所示,∵OM平分∠AOB,∴∠AOC=∠BOC,由题可得,DG垂直平分OC,∴∠OED=∠OEG=90°,∴∠ODE=∠OGE,∴OD=OG,∴△ODG是等腰三角形,故选:C.7.已知正比例函数y1的图象与反比例函数y2的图象相交于点A(﹣2,4),下列说法正确的是()A.正比例函数y1的解析式是y1=2xB.两个函数图象的另一交点坐标为(4,﹣2)C.正比例函数y1与反比例函数y2都随x的增大而增大D.当x<﹣2或0<x<2时,y2<y1【分析】由题意可求正比例函数解析式和反比例函数解析式,根据正比例函数和反比例函数的性质可判断求解.解:∵正比例函数y1的图象与反比例函数y2的图象相交于点A(2,﹣4),∴正比例函数y1=﹣2x,反比例函数y2=﹣,∴两个函数图象的另一个交点为(﹣2,4),∴A,B选项说法错误;∵正比例函数y1=﹣2x中,y随x的增大而减小,反比例函数y2=﹣中,在每个象限内y随x的增大而增大,∴C选项说法错误;∵当x<﹣2或0<x<2时,y2<y1,∴选项D说法正确.故选:D.8.如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D.下列结论不一定成立的是()A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A、B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线【分析】根据切线的性质即可求出答案.解:(A)∵PA、PB为圆O的切线,∴PA=PB,∴△BPA是等腰三角形,故A正确.(B)由圆的对称性可知:AB⊥PD,但不一定平分,故B不一定正确.(C)连接OB、OA,∵PA、PB为圆O的切线,∴∠OBP=∠OAP=90°,∴点A、B、P在以OP为直径的圆上,故C正确.(D)∵△BPA是等腰三角形,PD⊥AB,∴PC为△BPA的边AB上的中线,故D正确.故选:B.9.如图,在平面直角坐标系xOy中,矩形ABCD的顶点A在x轴的正半轴上,矩形的另一个顶点D在y轴的正半轴上,矩形的边AB=a,BC=b,∠DAO=x,则点C到x轴的距离等于()A.a cos x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a sin x+b sin x【分析】作CE⊥y轴于E,由矩形的性质得出CD=AB=a,AD=BC=b,∠ADC=90°,证出∠CDE=∠DAO=x,由三角函数定义得出OD=b sin x,DE=a cos x,进而得出答案.解:作CE⊥y轴于E,如图:∵四边形ABCD是矩形,∴CD=AB=a,AD=BC=b,∠ADC=90°,∴∠CDE+∠ADO=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠CDE=∠DAO=x,∵sin∠DAO=,cos∠CDE=,∴OD=AD×sin∠DAO=b sin x,DE=D×cos∠CDE=a cos x,∴OE=DE+OD=a cos x+b sin x,∴点C到x轴的距离等于a cos x+b sin x;故选:A.10.已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:①abc>0,②b﹣2a<0,③a﹣b+c>0,④a+b>n(an+b),(n≠1),⑤2c<3b.正确的是()A.①③B.②⑤C.③④D.④⑤【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①由图象可知:a<0,b>0,c>0,abc<0,故此选项错误;②由于a<0,所以﹣2a>0.又b>0,所以b﹣2a>0,故此选项错误;③当x=﹣1时,y=a﹣b+c<0,故此选项错误;④当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此选项正确;⑤当x=3时函数值小于0,y=9a+3b+c<0,且该抛物线对称轴是直线x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;故④⑤正确.故选:D.二、填空题(本大题共8小题,每小题4分,共32分,请将正确答案填写在答题卡相应的横线上)11.﹣的绝对值是.【分析】根据绝对值的意义,求出结果即可.解:根据负数的绝对值等于它的相反数可得,|﹣|=,故答案为:.12.分解因式:2x2﹣2=2(x+1)(x﹣1).【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.解:2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1).故答案为:2(x+1)(x﹣1).13.若一个多边形的内角和是外角和的两倍,则该多边形的边数是6.【分析】任何多边形的外角和是360°,内角和等于外角和的2倍则内角和是720°.n 边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解:设该多边形的边数为n,根据题意,得,(n﹣2)•180°=720°,解得:n=6.故这个多边形的边数为6.故答案为:614.不等式组的解集为x≥﹣1.【分析】求出每个不等式的解集,最后求出不等式组的解集即可.解:,∵解不等式①得:x≥﹣3,解不等式②得:x≥﹣1,∴不等式组的解集为x≥﹣1,故答案为:x≥﹣1.15.如图,直线AE∥BC,BA⊥AC,若∠ABC=54°,则∠EAC=36度.【分析】根据垂直的定义得到∠BAC=90°,根据三角形的内角和定理得到∠C=90°﹣54°=36°,根据平行线的性质即可得到结论.解:∵BA⊥AC,∴∠BAC=90°,∵∠ABC=54°,∴∠C=90°﹣54°=36°,∵AE∥BC,∴∠EAC=∠C=36°,故答案为:36.16.从甲、乙两种玉米种子中选择一种合适的推荐给某地.考虑到庄稼人对玉米的产量和产量的稳定性十分的关心.选择之前,为了解甲、乙两种玉米种子的情况,某单位各用了10块自然条件相同的试验田进行试验,得到各试验田每公顷产量(单位:t)的数据,这两组数据的平均数分别是甲≈7.5,乙≈7.5,方差分别是S甲2=0.010,S乙2=0.002,你认为应该选择的玉米种子是乙.【分析】在平均数基本相等的前提下,方差越小产量越稳定,据此求解可得.解:∵甲=乙≈7.5,S甲2=0.010,S乙2=0.002,∴S甲2>S乙2,∴乙玉米种子的产量比较稳定,∴应该选择的玉米种子是乙,故答案为:乙.17.在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°,矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.将矩形CODE 沿x轴向右平移,当矩形CODE与△ABO重叠部分的面积为6时,则矩形CODE向右平移的距离为2.【分析】由已知得出AD=OA﹣OD=4,由矩形的性质得出∠AED=∠ABO=30°,在Rt△AED中,AE=2AD=8,由勾股定理得出ED=4,作出图形,根据三角形面积公式列出方程即可得出答案.解:∵点A(6,0),∴OA=6,∵OD=2,∴AD=OA﹣OD=6﹣2=4,∵四边形CODE是矩形,∴DE∥OC,∴∠AED=∠ABO=30°,在Rt△AED中,AE=2AD=8,ED===4,∵OD=2,∴点E的坐标为(2,4);∴矩形CODE的面积为4×2=8,∵将矩形CODE沿x轴向右平移,矩形CODE与△ABO重叠部分的面积为6∴矩形CODE与△ABO不重叠部分的面积为2,如图,设ME′=x,则FE′=x,依题意有x×x÷2=2,解得x=±2(负值舍去).故矩形CODE向右平移的距离为2.故答案为:2.18.观察下列结论:(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN =CM,∠NOC=60°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN =DM,∠NOD=90°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN =EM,∠NOE=108°;…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与A n M相交于O.也会有类似的结论,你的结论是A1N=A n M,∠NOA n=.【分析】根据已知所给得到规律,进而可得在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程会有类似的结论.解:∵(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC==60°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN =DM,∠NOD==90°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN =EM,∠NOE==108°;…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与A n M相交于O.也有类似的结论是A1N=A n M,∠NOA n=.故答案为:A1N=A n M,∠NOA n=.三、解答题(本大題关8小题,共78分,每个题目都要求在答题卡的相应位置写出计算、解答或证明的主要步骤)19.计算:2cos45°+(π﹣2020)0+|2﹣|.【分析】分别根据特殊角的三角函数值,任何非零数的零次幂定义1以及绝对值的定义计算即可.解:原式===3.20.化简:(﹣a﹣1)÷.【分析】先计算括号内分式的减法、将除式分母因式分解,再将除法转化为乘法,最后约分即可得.解:原式=(﹣)÷=•=.21.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:△BAE≌△CDE;(2)求∠AEB的度数.【分析】(1)利用等边三角形的性质得到∠AD=AE=DE,∠EAD=∠EDA=60°,利用正方形的性质得到AB=AD=CD,∠BAD=∠CDA=90°,所以∠EAB=∠EDC =150°,然后根据“SAS”判定△BAE≌△CDE;(2)先证明AB=AE,然后根据等腰三角形的性质和三角形内角和计算∠ABE的度数.【解答】(1)证明:∵△ADE为等边三角形,∴∠AD=AE=DE,∠EAD=∠EDA=60°,∵四边形ABCD为正方形,∴AB=AD=CD,∠BAD=∠CDA=90°,∴∠EAB=∠EDC=150°,在△BAE和△CDE中,∴△BAE≌△CDE(SAS);(2)∵AB=AD,AD=AE,∴AB=AE,∴∠ABE=∠AEB,∵∠EAB=150°,∴∠ABE=(180°﹣150°)=15°.22.为加强安全教育,某校开展了“防溺水”安全知识竞赛,想了解七年级学生对“防溺水”安全知识的掌握情况,现从七年级学生中随机抽取50名学生进行竞赛,并将他们的竞赛成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级参赛学生成绩频数分布直方图(数据分成五组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)如图所示b.七年级参赛学生成绩在70≤x<80这一组的具体得分是:70 71 73 75 7676 76 77 77 78 79c.七年级参赛学生成绩的平均数、中位数、众数如下:年级平均数中位数众数七76.9m80d.七年级参赛学生甲的竞赛成绩得分为79分.根据以上信息,回答下列问题:(1)在这次测试中,七年级在75分以上(含75分)的有31人;(2)表中m的值为77.5;(3)在这次测试中,七年级参赛学生甲的竞赛成绩得分排名年级第24名;(4)该校七年级学生有500人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.【分析】(1)将频数分布直方图中第3、4、5组数据相加可得答案;(2)根据中位数的定义求解可得;(3)由90≤x≤100的频数为8、80≤x<90的频数为15,据此可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数占被调查人数的比例即可得.解:(1)在这次测试中,七年级在75分以上(含75分)的有8+15+8=31(人),故答案为:31.(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为77、78,∴m==77.5,故答案为:77.5;(3)在这次测试中,七年级参赛学生甲的竞赛成绩得分排名年级第24名,故答案为:24;(4)估计七年级成绩超过平均数76.9分的人数为500×=270(人).23.某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求.工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?【分析】(1)根据题意设口罩日产量的月平均增长率为x,根据题意列出方程即可求解;(2)结合(1)按照这个增长率,根据3月份平均日产量为24200个,即可预计4月份平均日产量.解:(1)设口罩日产量的月平均增长率为x,根据题意,得20000(1+x)2=24200解得x1=﹣2(舍去),x2=0.1=10%,答:口罩日产量的月平均增长率为10%.(2)24200(1+0.1)=26620(个).答:预计4月份平均日产量为26620个.24.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(1)若D为AC的中点,证明:DE是⊙O的切线;(2)若CA=6,CE=3.6,求⊙O的半径OA的长.【分析】(1)连接AE,OE,由AB是⊙O的直径,得到∠AEB=90°,根据直角三角形的性质得到AD=DE,求得∠DAE=∠AED,根据切线的性质得到∠CAE+∠EAO=∠CAB=90°,等量代换得到∠DEO=90°,于是得到结论;(2)证明△AEC∽△BAC,列比例式可得BC的长,最后根据勾股定理可得OA的长.【解答】(1)证明:连接AE,OE,∵AB是⊙O的直径,且E在⊙O上,∴∠AEB=90°,∴∠AEC=90°,∵D为AC的中点,∴AD=DE,∴∠DAE=∠AED,∵AC是⊙O的切线,∴∠CAE+∠EAO=∠CAB=90°,∵OA=OE,∴∠OAE=∠OEA,∴∠DEA+∠OEA=90°,即∠DEO=90°,∴DE是⊙O的切线;(2)解:∵∠AEC=∠CAB=90°,∠C=∠C,∴△AEC∽△BAC,∴,∵CA=6,CE=3.6,∴,∴BC=10,∵∠CAB=90°,∴AB2+AC2=BC2,∴AB==8,∴OA=4,即⊙O的半径OA的长是4.25.问题背景:如图1,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.小李同学探究此问题的方法是:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论,他的结论就是EF=AE+CF;探究延伸1:如图2,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F,上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由;探究延伸2:如图3,在四边形ABCD中,BA=BC,∠BAD+∠BCD=180°,∠ABC =2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由;实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处.且指挥中心观测两舰艇视线之间的夹角为70°.试求此时两舰艇之间的距离.【分析】问题背景:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,即可得出结论:EF=AE+CF;探究延伸1:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论:EF=AE+CF;探究延伸2:延长DC到H,使得CH=AE,连接BH,先证明△BCH≌△BAE,即可得到BE=HB,∠ABE=∠HBC,再证明△HBF≌△EBF,即可得出EF=HF=HC+CF =AE+CF;实际应用:连接EF,延长BF交AE的延长线于G,根据题意可转化为如下的数学问题:在四边形GAOB中,OA=OB,∠A+∠B=180°,∠AOB=2∠EOF,∠EOF的两边分别交AG,BG于E,F,求EF的长.再根据探究延伸2的结论:EF=AE+BF,即可得到两舰艇之间的距离.解:问题背景:如图1,延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG ≌△BFE,可得出结论:EF=AE+CF;故答案为:EF=AE+CF;探究延伸1:如图2,延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG ≌△BFE,可得出结论:EF=AE+CF;探究延伸2:上述结论仍然成立,即EF=AE+CF,理由:如图3,延长DC到H,使得CH=AE,连接BH,∵∠BAD+∠BCD=180°,∠BCH+∠BCD=180°,∴∠BCH=∠BAE,∵BA=BC,CH=AE,∴△BCH≌△BAE(SAS),∴BE=HB,∠ABE=∠HBC,∴∠HBE=∠ABC,又∵∠ABC=2∠MBN,∴∠EBF=∠HBF,∵BF=BF,∴△HBF≌△EBF(SAS),∴EF=HF=HC+CF=AE+CF;实际应用:如图4,连接EF,延长BF交AE的延长线于G,因为舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70°的B 处,所以∠AOB=140°,因为指挥中心观测两舰艇视线之间的夹角为70°,所以∠EOF=70°,所以∠AOB=2∠EOF.依题意得,OA=OB,∠A=60°,∠B=120°,所以∠A+∠B=180°,因此本题的实际的应用可转化为如下的数学问题:在四边形GAOB中,OA=OB,∠A+∠B=180°,∠AOB=2∠EOF,∠EOF的两边分别交AG,BG于E,F,求EF的长.根据探究延伸2的结论可得:EF=AE+BF,根据题意得,AE=75×1.2=90(海里),BF=100×1.2=120(海里),所以EF=90+120=210(海里).答:此时两舰艇之间的距离为210海里.26.已知直线y=kx﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的一个交点为A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(1)当直线y=kx﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的另一个交点为该抛物线的顶点E时,求k,b,c的值及抛物线顶点E的坐标;(2)在(1)的条件下,设该抛物线与y轴的交点为C,若点Q在抛物线上,且点Q的横坐标为b,当S△EQM=S△ACE时,求m的值;(3)点D在抛物线上,且点D的横坐标为b+,当AM+2DM的最小值为时,求b的值.【分析】(1)将A点坐标代入直线与抛物线的解析式中求得k的值和b与c的关系式,再将抛物线的顶点坐标代入求得的直线的解析式,便可求得b、c的值,进而求得E点的坐标;(2)先根据抛物线的解析式求得C、Q点坐标,用m表示△EQM的面积,再根据S△EQM =S△ACE列出m的方程进行解答;(3)取点N(0,1),则∠OAN=45°,过D作直线AN的垂线,垂足为G,DG与x 轴相交于点M,此时AM+2DM=2DG的值最小,由2DG=列出关于b的方程求解便可.解:(1)∵直线y=kx﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的一个交点为A (﹣1,0),∴﹣k﹣2=0,1+b+c=0,∴k=﹣2,c=﹣b﹣1,∴直线y=kx﹣2的解析式为y=﹣2x﹣2,∵抛物线y=x2﹣bx+c的顶点坐标为E(,),∴E(,),∵直线y=﹣2x﹣2与抛物线y=x2﹣bx+c(b,c为常数,b>0)的另一个交点为该抛物线的顶点E,∴=﹣2×﹣2,解得,b=2,或B=﹣2(舍),当b=2时,c=﹣3,∴E(1,﹣4),故k=﹣2,b=2,c=﹣3,E(1,﹣4);(2)由(1)知,直线的解析式为y=﹣2x﹣2,抛物线的解析式为y=x2﹣2x﹣3,∴C(0,﹣3),Q(2,﹣3),如图1,设直线y=﹣2x﹣2与y轴交点为N,则N(0,﹣2),∴CN=1,∴,∴,设直线EQ与x轴的交点为D,显然点M不能与点D重合,设直线EQ的解析式为y=dx+n(d≠0),则,解得,,∴直线EQ的解析式为y=x﹣5,∴D(5,0),∴=,解得,m=4,或m=6;(3)∵点D(b+,y D)在抛物线y=x2﹣bx﹣b﹣1上,∴,可知点D(b+,)在第四象限,且在直线x=b的右侧,∵,∴可取点N(0,1),则∠OAN=45°,如图2,过D作直线AN的垂线,垂足为G,DG与x轴相交于点M,∵∠GAM=90°﹣∠OAN=45°,得AM=GM,则此时点M满足题意,过D作DH⊥x轴于点H,则点H(b+,0),在Rt△MDH中,可知∠DMH=∠MDH=45°,∴DH=MH,DM=MH,∵点M(m,0),∴0=()=(b+)﹣m,解得,m=,∵,∴,解得,Bb=3,此时,m=,符合题意,∴b=3.。
·2018·湖南省湘西州中考数学试卷一、填空题(本大题8小题,每小题4分,共32分)1.(4.00分)﹣2018绝对值是.2.(4.00分)分解因式:a2﹣9=.3.(4.00分)要使分式有意义,则x取值范围为.4.(4.00分)“可燃冰”作为新型能源,有着巨大开发使用潜力,1千克“可燃冰”完全燃烧放出热量约为420000000焦耳,数据420000000用科学记数法表示为.5.(4.00分)农历五月初五为端午节,端午节吃粽子是中华民族传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了一个,则吃到腊肉棕概率为.6.(4.00分)按照如图操作步骤,若输入x值为2,则输出值是.(用科学计算器计算或笔算)7.(4.00分)如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=.8.(4.00分)对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述定义解决问题:若不等式3※x<2,则不等式正整数解是.二、选择题(本大题10小题,每小题4分,共40分,每个小题所给四个选项只有一个正确选项)9.(4.00分)下列运算中,正确是()A.a2•a3=a5 B.2a﹣a=2 C.(a+b)2=a2+b2D.2a+3b=5ab10.(4.00分)如图所示几何体主视图是()A.B.C.D.11.(4.00分)在某次体育测试中,九年级(1)班5位同学立定跳远成绩(单位:m)分别为:1.8l,1.98,2.10,2.30,2.10.这组数据众数为()A.2.30 B.2.10 C.1.98 D.1.8112.(4.00分)不等式组解集在数轴上表示正确是()A.B.C.D.13.(4.00分)一次函数y=x+2图象与y轴交点坐标为()A.(0,2) B.(0,﹣2)C.(2,0) D.(﹣2,0)14.(4.00分)下列四个图形中,是轴对称图形是()A.B.C.D.15.(4.00分)已知⊙O半径为5cm,圆心O到直线l距离为5cm,则直线l与⊙O位置关系为()A.相交B.相切C.相离D.无法确定16.(4.00分)若关于x一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为()A.1 B.﹣3 C.3 D.417.(4.00分)下列说法中,正确个数有()①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直四边形为菱形;④对角线互相垂直平分且相等四边形为正方形.A.1个 B.2个 C.3个 D.4个18.(4.00分)如图,直线AB与⊙O相切于点A,AC、CD是⊙O两条弦,且CD ∥AB,若⊙O半径为5,CD=8,则弦AC长为()A.10 B.8 C.4 D.4三、解答题(本大题8小题,共78分,每个题目都要求写出计算或证明主要步骤)19.(6.00分)计算:+(π﹣2018)0﹣2tan45°20.(6.00分)解方程组:21.(8.00分)如图,在矩形ABCD中,E是AB中点,连接DE、CE.(1)求证:△ADE≌△BCE;(2)若AB=6,AD=4,求△CDE周长.22.(8.00分)中华文化源远流长,在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著阅读情况,就“四大古典名著你读完了几部”问题在全校学生中抽取n名学生进行调查.根据调查结果绘制成如图所示两个不完整统计图,请结合图中信息解决下列问题:(1)求n值;(2)请将条形统计图补充完整;(3)若该校共有2000名学生,请估计该校四大古典名著均已读完人数.23.(8.00分)如图,某市郊外景区内一条笔直公路l经过A、B两个景点,景区管委会又开发了风景优美景点C.经测量,C位于A北偏东60°方向上,C位于B 北偏东30°方向上,且AB=10km.(1)求景点B与C距离;(2)为了方便游客到景点C游玩,景区管委会准备由景点C向公路l修一条距离最短公路,不考虑其他因素,求出这条最短公路长.(结果保留根号)24.(8.00分)反比例函数y=(k为常数,且k≠0)图象经过点A(1,3)、B (3,m).(1)求反比例函数解析式及B点坐标;(2)在x轴上找一点P,使PA+PB值最小,求满足条件点P坐标.25.(12.00分)某商店销售A型和B型两种电脑,其中A型电脑每台利润为400元,B型电脑每台利润为500元.该商店计划再一次性购进两种型号电脑共100台,其中B型电脑进货量不超过A型电脑2倍,设购进A型电脑x台,这100台电脑销售总利润为y元.(1)求y关于x函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大进货方案.26.(22.00分)如图1,经过原点O抛物线y=ax2+bx(a、b为常数,a≠0)与x 轴相交于另一点A(3,0).直线l:y=x在第一象限内和此抛物线相交于点B(5,t),与抛物线对称轴相交于点C.(1)求抛物线解析式;(2)在x轴上找一点P,使以点P、O、C为顶点三角形与以点A、O、B为顶点三角形相似,求满足条件点P坐标;(3)直线l沿着x轴向右平移得到直线l′,l′与线段OA相交于点M,与x轴下方抛物线相交于点N,过点N作NE⊥x轴于点E.把△MEN沿直线l′折叠,当点E 恰好落在抛物线上时(图2),求直线l′解析式;(4)在(3)问条件下(图3),直线l′与y轴相交于点K,把△MOK绕点O顺时针旋转90°得到△M′OK′,点F为直线l′上动点.当△M'FK′为等腰三角形时,求满足条件点F坐标.·2018·湖南省湘西州中考数学试卷参考答案与试题解析一、填空题(本大题8小题,每小题4分,共32分)1.(4.00分)﹣2018绝对值是2018.【分析】根据绝对值定义即可求得.【解答】解:﹣2018绝对值是2018.故答案为:2018【点评】本题主要考查是绝对值定义,熟练掌握相关知识是解题关键.2.(4.00分)分解因式:a2﹣9=(a+3)(a﹣3).【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.3.(4.00分)要使分式有意义,则x取值范围为x≠﹣2.【分析】根据根式有意义条件即可求出答案.【解答】解:由题意可知:x+2≠0,∴x≠﹣2故答案为:x≠﹣2【点评】本题考查分式有意义条件,解题关键是正确理解分式有意义条件,本题属于基础题型.4.(4.00分)“可燃冰”作为新型能源,有着巨大开发使用潜力,1千克“可燃冰”完全燃烧放出热量约为420000000焦耳,数据420000000用科学记数法表示为4.2×108.【分析】科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数.确定n值时,要看把原数变成a时,小数点移动了多少位,n绝对值与小数点移动位数相同.当原数绝对值大于10时,n是正数;当原数绝对值小于1时,n是负数.【解答】解:420000000=4.2×108.故答案为:4.2×108【点评】此题考查科学记数法表示方法.科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a值以及n值.5.(4.00分)农历五月初五为端午节,端午节吃粽子是中华民族传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了一个,则吃到腊肉棕概率为.【分析】根据题意和题目中数据可以求得小明随意吃了一个,则吃到腊肉棕概率.【解答】解:由题意可得,小明随意吃了一个,则吃到腊肉棕概率为:,故答案为:.【点评】本题考查概率公式,解答本题关键是明确题意,利用概率知识解答.6.(4.00分)按照如图操作步骤,若输入x值为2,则输出值是2.(用科学计算器计算或笔算)【分析】将x=2代入程序框图中计算即可得到结果.【解答】解:将x=2代入得:3×(2)2﹣10=12﹣10=2.故答案为:2.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题关键.7.(4.00分)如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=60°.【分析】先根据垂直定义,得出∠BAD=60°,再根据平行线性质,即可得出∠D 度数.【解答】解:∵DA⊥CE,∴∠DAE=90°,∵∠EAB=30°,∴∠BAD=60°,又∵AB∥CD,∴∠D=∠BAD=60°,故答案为:60°.【点评】本题主要考查了平行线性质以及垂线定义,解题时注意:两直线平行,内错角相等.8.(4.00分)对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述定义解决问题:若不等式3※x<2,则不等式正整数解是1.【分析】根据新定义可得出关于x一元一次不等式,解之取其中正整数即可得出结论.【解答】解:∵3※x=3x﹣3+x﹣2<2,∴x<,∵x为正整数,∴x=1.故答案为:1.【点评】本题考查一元一次不等式整数解以及实数运算,通过解不等式找出x<是解题关键.二、选择题(本大题10小题,每小题4分,共40分,每个小题所给四个选项只有一个正确选项)9.(4.00分)下列运算中,正确是()A.a2•a3=a5 B.2a﹣a=2 C.(a+b)2=a2+b2D.2a+3b=5ab【分析】根据合并同类项法则,完全平方公式,同底数幂乘法性质,对各选项分析判断后利用排除法求解.【解答】解:A、a2•a3=a5,正确;B、2a﹣a=a,错误;C、(a+b)2=a2+2ab+b2,错误;D、2a+3b=2a+3b,错误;故选:A.【点评】此题主要考查了整式运算能力,对于相关整式运算法则要求学生很熟练,才能正确求出结果.10.(4.00分)如图所示几何体主视图是()A.B.C.D.【分析】根据圆锥体三视图即可得.【解答】解:圆锥体主视图是等腰三角形,故选:C.【点评】本题主要考查简单几何体三视图,解题关键是掌握常见几何体三视图.11.(4.00分)在某次体育测试中,九年级(1)班5位同学立定跳远成绩(单位:m)分别为:1.8l,1.98,2.10,2.30,2.10.这组数据众数为()A.2.30 B.2.10 C.1.98 D.1.81【分析】根据众数概念解答.【解答】解:在数据1.8l,1.98,2.10,2.30,2.10中,2.10出现2次,出现次数最多,∴这组数据众数是2.10,故选:B.【点评】本题考查是众数确定,掌握一组数据中出现次数最多数据叫做众数是解题关键.12.(4.00分)不等式组解集在数轴上表示正确是()A.B.C.D.【分析】先定界点,再定方向即可得.【解答】解:不等式组解集在数轴上表示如下:故选:C.【点评】本题考查了在数轴上表示不等式解集,用数轴表示不等式解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向原则是:“小于向左,大于向右”.13.(4.00分)一次函数y=x+2图象与y轴交点坐标为()A.(0,2) B.(0,﹣2)C.(2,0) D.(﹣2,0)【分析】代入x=0求出y值,进而即可得出发一次函数y=x+2图象与y轴交点坐标.【解答】解:当x=0时,y=x+2=0+2=2,∴一次函数y=x+2图象与y轴交点坐标为(0,2).故选:A.【点评】本题考查了一次函数图象上点坐标特征,代入x=0求出y值是解题关键.14.(4.00分)下列四个图形中,是轴对称图形是()A.B.C.D.【分析】根据轴对称图形概念求解.【解答】解:D选项图形是轴对称图形,A,B,C选项图形不是轴对称图形.故选:D.【点评】本题考查了轴对称图形概念:轴对称图形关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.15.(4.00分)已知⊙O半径为5cm,圆心O到直线l距离为5cm,则直线l与⊙O位置关系为()A.相交B.相切C.相离D.无法确定【分析】根据圆心到直线距离5等于圆半径5,则直线和圆相切.【解答】解:∵圆心到直线距离5cm=5cm,∴直线和圆相切.故选:B.【点评】此题考查直线与圆关系,能够熟练根据数量之间关系判断直线和圆位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.16.(4.00分)若关于x一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为()A.1 B.﹣3 C.3 D.4【分析】设方程另一个解为x1,根据两根之和等于﹣,即可得出关于x1一元一次方程,解之即可得出结论.【解答】解:设方程另一个解为x1,根据题意得:﹣1+x1=2,解得:x1=3.【点评】本题考查了根与系数关系以及一元二次方程解,牢记两根之和等于﹣、两根之积等于是解题关键.17.(4.00分)下列说法中,正确个数有()①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直四边形为菱形;④对角线互相垂直平分且相等四边形为正方形.A.1个 B.2个 C.3个 D.4个【分析】根据对顶角性质,菱形判定,正方形判定,平行线性质,可得答案.【解答】解:①对顶角相等,故①正确;②两直线平行,同旁内角互补,故②错误;③对角线互相垂直且平分四边形为菱形,故③错误;④对角线互相垂直平分且相等四边形为正方形,故④正确,故选:B.【点评】本题考查了正方形判定、菱形判定、平行线性质、对顶角性质,熟记对顶角性质,菱形判定,正方形判定,平行线性质是解题关键.18.(4.00分)如图,直线AB与⊙O相切于点A,AC、CD是⊙O两条弦,且CD ∥AB,若⊙O半径为5,CD=8,则弦AC长为()A.10 B.8 C.4 D.4【分析】由AB是圆切线知AO⊥AB,结合CD∥AB知AO⊥CD,从而得出CE=4,Rt△COE中求得OE=3及AE=8,在Rt△ACE中利用勾股定理可得答案.【解答】解:∵直线AB与⊙O相切于点A,又∵CD∥AB,∴AO⊥CD,记垂足为E,∵CD=8,∴CE=DE=CD=4,连接OC,则OC=OA=5,在Rt△OCE中,OE===3,∴AE=AO+OE=8,则AC===4,故选:D.【点评】本题主要考查切线性质,解题关键是掌握切线性质:圆切线垂直于经过切点半径及垂径定理.三、解答题(本大题8小题,共78分,每个题目都要求写出计算或证明主要步骤)19.(6.00分)计算:+(π﹣2018)0﹣2tan45°【分析】原式利用算术平方根定义,零指数幂法则,以及特殊角三角函数值计算即可求出值.【解答】解:原式=2+1﹣2=1.【点评】此题考查了实数运算,熟练掌握运算法则是解本题关键.20.(6.00分)解方程组:【分析】①+②求出x,把x=2代入①求出y即可.【解答】解:①+②得:4x=8,解得:x=2,把x=2代入①得:2+y=3,解得:y=1,所以原方程组解为.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题关键.21.(8.00分)如图,在矩形ABCD中,E是AB中点,连接DE、CE.(1)求证:△ADE≌△BCE;(2)若AB=6,AD=4,求△CDE周长.【分析】(1)由全等三角形判定定理SAS证得结论;(2)由(1)中全等三角形对应边相等和勾股定理求得线段DE长度,结合三角形周长公式解答.【解答】(1)证明:在矩形ABCD中,AD=BC,∠A=∠B=90°.∵E是AB中点,∴AE=BE.在△ADE与△BCE中,,∴△ADE≌△BCE(SAS);(2)由(1)知:△ADE≌△BCE,则DE=EC.在直角△ADE中,AE=4,AE=AB=3,由勾股定理知,DE===5,∴△CDE周长=2DE+AD=2DE+AB=2×5+6=16.【点评】本题主要考查了全等三角形判定和性质,矩形性质,全等三角形判定是结合全等三角形性质证明线段和角相等重要工具.在判定三角形全等时,关键是选择恰当判定条件.22.(8.00分)中华文化源远流长,在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著阅读情况,就“四大古典名著你读完了几部”问题在全校学生中抽取n名学生进行调查.根据调查结果绘制成如图所示两个不完整统计图,请结合图中信息解决下列问题:(1)求n值;(2)请将条形统计图补充完整;(3)若该校共有2000名学生,请估计该校四大古典名著均已读完人数.【分析】(1)由读完3部人数乘以占百分比求出n值即可;(2)求出读完2部人数,补全条形统计图即可;(3)求出读完4部百分比,乘以2000即可得到结果.【解答】解:(1)根据题意得:30÷30%=100(人),则n值为100;(2)四大古典名著你读完了2部人数为100﹣(5+15+30+25)=25(人),补全条形统计图,如图所示:(3)根据题意得:25%×2000=500(人),则该校四大古典名著均已读完人数为500人.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题中数据是解本题关键.23.(8.00分)如图,某市郊外景区内一条笔直公路l经过A、B两个景点,景区管委会又开发了风景优美景点C.经测量,C位于A北偏东60°方向上,C位于B 北偏东30°方向上,且AB=10km.(1)求景点B与C距离;(2)为了方便游客到景点C游玩,景区管委会准备由景点C向公路l修一条距离最短公路,不考虑其他因素,求出这条最短公路长.(结果保留根号)【分析】(1)先根据方向角定义得出∠CAB=30°,∠ABC=120°,由三角形内角和定理求出∠C=180°﹣∠CAB﹣∠ABC=30°,则∠CAB=∠C=30°,根据等角对等边求出BC=AB=10km.;(2)首先过点C作CE⊥AB于点E,然后在Rt△CBE中,求得答案.【解答】解:(1)如图,由题意得∠CAB=30°,∠ABC=90°+30°=120°,∴∠C=180°﹣∠CAB﹣∠ABC=30°,∴∠CAB=∠C=30°,∴BC=AB=10km,即景点B、C相距路程为10km.(2)过点C作CE⊥AB于点E,∵BC=10km,C位于B北偏东30°方向上,∴∠CBE=60°,在Rt△CBE中,CE=km.【点评】本题考查解直角三角形应用﹣方向角问题,比较简单.涉及到三角形内角和定理,等腰三角形判定等知识.根据条件得出∠CAB=∠C是解题关键.24.(8.00分)反比例函数y=(k为常数,且k≠0)图象经过点A(1,3)、B (3,m).(1)求反比例函数解析式及B点坐标;(2)在x轴上找一点P,使PA+PB值最小,求满足条件点P坐标.【分析】(1)先把A点坐标代入y=求出k得到反比例函数解析式;然后把B(3,m)代入反比例函数解析式求出m得到B点坐标;(2)作A点关于x轴对称点A′,连接BA′交x轴于P点,则A′(1,﹣3),利用两点之间线段最短可判断此时此时PA+PB值最小,再利用待定系数法求出直线BA′解析式,然后求出直线与x轴交点坐标即可得到P点坐标.【解答】解:(1)把A(1,3)代入y=得k=1×3=3,∴反比例函数解析式为y=;把B(3,m)代入y=得3m=3,解得m=1,∴B点坐标为(3,1);(2)作A点关于x轴对称点A′,连接BA′交x轴于P点,则A′(1,﹣3),∵PA+PB=PA′+PB=BA′,∴此时此时PA+PB值最小,设直线BA′解析式为y=mx+n,把A′(1,﹣3),B(3,1)代入得,解得,∴直线BA′解析式为y=2x﹣5,当y=0时,2x﹣5=0,解得x=,∴P点坐标为(,0).【点评】本题考查了用待定系数法求反比例函数解析式:先设出含有待定系数反比例函数解析式y=(k为常数,k≠0);再把已知条件(自变量与函数对应值)带入解析式,得到待定系数方程;接着解方程,求出待定系数;然后写出解析式.也考查了最短路径问题.25.(12.00分)某商店销售A型和B型两种电脑,其中A型电脑每台利润为400元,B型电脑每台利润为500元.该商店计划再一次性购进两种型号电脑共100台,其中B型电脑进货量不超过A型电脑2倍,设购进A型电脑x台,这100台电脑销售总利润为y元.(1)求y关于x函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大进货方案.【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑进货量不超过A型电脑2倍且电脑数量为整数”求得x范围,再结合(1)所求函数解析式及一次函数性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x增大而增大,分别进行求解.【解答】解:(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y随x增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,33≤x≤60①当0<a<100时,y随x增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足33≤x≤60整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑销售利润最大.【点评】题主要考查了一次函数应用及一元一次不等式应用,解题关键是根据一次函数x值增大而确定y值增减情况.26.(22.00分)如图1,经过原点O抛物线y=ax2+bx(a、b为常数,a≠0)与x 轴相交于另一点A(3,0).直线l:y=x在第一象限内和此抛物线相交于点B(5,t),与抛物线对称轴相交于点C.(1)求抛物线解析式;(2)在x轴上找一点P,使以点P、O、C为顶点三角形与以点A、O、B为顶点三角形相似,求满足条件点P坐标;(3)直线l沿着x轴向右平移得到直线l′,l′与线段OA相交于点M,与x轴下方抛物线相交于点N,过点N作NE⊥x轴于点E.把△MEN沿直线l′折叠,当点E 恰好落在抛物线上时(图2),求直线l′解析式;(4)在(3)问条件下(图3),直线l′与y轴相交于点K,把△MOK绕点O顺时针旋转90°得到△M′OK′,点F为直线l′上动点.当△M'FK′为等腰三角形时,求满足条件点F坐标.【分析】(1)应用待定系数法;(2)利用相似三角形性质分类讨论求解;(3)由已知直线l′与x轴所夹锐角为45°,△EMN为等腰直角三角形,当沿直线l′折叠时,四边形ENE′M为正方形,表示点N、E′坐标带入抛物线解析式,可解;(4)由(3)图形旋转可知,M′K′⊥直线l′,△M'FK′只能为等腰直角三角形,则分类讨论可求解.【解答】解:(1)由已知点B坐标为(5,5)把点B(5,5),A(3,0)代入y=ax2+bx,得解得∴抛物线解析式为:y=(2)由(1)抛物线对称轴为直线x=,则点C坐标为(,)∴OC=,OB=5当△OBA∽△OCP时,∴∴OP=当△OBA∽△OPC时,∴∴OP=5∴点P坐标为(5,0)或(,0)(3)设点N坐标为(a,b),直线l′解析式为:y=x+c∵直线l′y=x+c与x轴夹角为45°∴△MEN为等腰直角三角形.当把△MEN沿直线l′折叠时,四边形ENE′M为正方形∴点′E坐标为(a﹣b,b)∵EE′平行于x轴∴E、E′关于抛物线对称轴对称∵∴b=2a﹣3则点N坐标可化为(a,2a﹣3)把点N坐标带入y=得:2a﹣3=解得a1=1,a2=6∵a=6时,b=2a﹣3=﹣9<0∴a=6舍去则点N坐标为(1,﹣1)把N坐标带入y=x+c则c=﹣2∴直线l′解析式为:y=x﹣2(4)由(3)K点坐标为(0,﹣2)则△MOK为等腰直角三角形∴△M′OK′为等腰直角三角形,M′K′⊥直线l′∴当M′K′=M′F时,△M'FK′为等腰直角三角形∴F坐标为(1,0)或(﹣1,﹣2)【点评】本题时代数几何综合题,考查了二次函数待定系数法及其轴对称性、三角形相似以及等腰三角形判定.解答过程中注意应用直线y=x与x轴正向夹角为45°这个条件.。