新课程高中数学训练题组(必修2)全套含答案
- 格式:pdf
- 大小:337.69 KB
- 文档页数:24
⾼中数学必修⼆练习册答案数学(必修2)第⼀章空间⼏何体 [基础训练A 组]⼀、选择题1. A 从俯视图来看,上、下底⾯都是正⽅形,但是⼤⼩不⼀样,可以判断是棱台2.A 因为四个⾯是全等的正三⾓形,则34434S S ==?=表⾯积底⾯积 3.B 长⽅体的对⾓线是球的直径,22225234552,252,,4502l R R S R ππ=++===== 4.D 正⽅体的棱长是内切球的直径,正⽅体的对⾓线是外接球的直径,设棱长是a 32,32,1322a aa r r a r r r r =====内切球内切球外接球外接球内切球外接球,,:: 5.D 213(1 1.51)32V V V r ππ=-=+-=⼤圆锥⼩圆锥 6.D 设底⾯边长是a ,底⾯的两条对⾓线分别为12,l l ,⽽22222212155,95,l l =-=-⽽222124,l l a +=即22222155954,8,485160a a S ch -+-====??=侧⾯积⼆、填空题1.5,4,3 符合条件的⼏何体分别是:三棱柱,三棱锥,三棱台2.1:22:33 333333123123::1:2:3,::1:(2):(3)1:22:33r r r r r r === 3.316a 画出正⽅体,平⾯11AB D 与对⾓线1AC 的交点是对⾓线的三等分点,三棱锥11O AB D -的⾼23311331,2333436 h a V Sh a a ==== 或:三棱锥11O AB D -也可以看成三棱锥11A OB D -,显然它的⾼为AO ,等腰三⾓形11OB D 为底⾯。
4. 平⾏四边形或线段5.6 设2,3,6,ab bc ac ===则6,3,2,1abc c a c ====3216l =++=15 设3,5,15ab bc ac ===则2()225,15abc V abc ===三、解答题1.解:(1)如果按⽅案⼀,仓库的底⾯直径变成16M ,则仓库的体积23111162564()3323V Sh M ππ??===如果按⽅案⼆,仓库的⾼变成8M ,则仓库的体积23211122888()3323V Sh M ππ??===(2)如果按⽅案⼀,仓库的底⾯直径变成16M ,半径为8M .棱锥的母线长为228445l =+=则仓库的表⾯积21845325()S M ππ=??= 如果按⽅案⼆,仓库的⾼变成8M .棱锥的母线长为228610l =+= 则仓库的表⾯积2261060()S M ππ=??=(3)21V V > ,21S S < ∴⽅案⼆⽐⽅案⼀更加经济2. 解:设扇形的半径和圆锥的母线都为l ,圆锥的半径为r ,则21203,3360l l ππ==;232,13r r ππ?==; 24,S S S rl r πππ=+=+=侧⾯表⾯积底⾯ 21122122333V Sh ππ=== 第⼀章空间⼏何体 [综合训练B 组]⼀、选择题1.A 恢复后的原图形为⼀直⾓梯形1(121)2222++?=+ 2.A 233132,,,22324R R r R r h V r h R ππππ===== 3.B 正⽅体的顶点都在球⾯上,则球为正⽅体的外接球,则232R =, 23,412R S R ππ=== 4.A (3)84,7S r r l r ππ=+==侧⾯积 5.C 中截⾯的⾯积为4个单位,12124746919V V ++==++6.D 过点,E F 作底⾯的垂⾯,得两个体积相等的四棱锥和⼀个三棱柱,1313152323234222V =+???=⼆、填空题1.6π画出圆台,则12121,2,2,()6r r l S r r l ππ====+=圆台侧⾯2.16π旋转⼀周所成的⼏何体是以BC 为半径,以AB 为⾼的圆锥, 2211431633V r h πππ==??= 3.< 设333343,,34VV R a a V R ππ====, 333322222266216,436216S a V V S R V V ππ=====<正球4.74 从长⽅体的⼀条对⾓线的⼀个端点出发,沿表⾯运动到另⼀个端点,有两种⽅案22224(35)80,5(34)74++=++=或5.(1)4 (2)圆锥 6.233a设圆锥的底⾯的半径为r ,圆锥的母线为l ,则由2l r ππ=得2l r =,⽽22S r r r a ππ=+?=圆锥表,即233,33a a r a r ππππ===,即直径为233aππ三、解答题 1. 解:''''13(),3VV S SS S h h S SS S=++=++ 319000075360024001600h ?==++2. 解:2229(25)(25),7l l ππ+=+=空间⼏何体 [提⾼训练C 组]⼀、选择题1.A ⼏何体是圆台上加了个圆锥,分别由直⾓梯形和直⾓三⾓形旋转⽽得2.B 从此圆锥可以看出三个圆锥,123123::1:2:3,::1:2:3,r r r l l l == 12312132::1:4:9,:():()1:3:5S S S S S S S S =--=3.D 111115818322226V V -=-??=正⽅体三棱锥 4.D 121:():()3:13V V Sh Sh ==5.C 121212:8:27,:2:3,:4:9V V r r S S ===6.A 此⼏何体是个圆锥,23,5,4,33524r l h S πππ====?+??=表⾯2134123V ππ=??=⼆、填空题 1.2537π设圆锥的底⾯半径为r ,母线为l ,则123r l ππ=,得6l r =,226715S r r r r ππππ=+?==,得157r =,圆锥的⾼15357h =? 21115152533533777V r h πππ===2.109Q 22223,3QS R R R Q R ππππ=+===全 32222221010,,2233339V R R h h R S R R R R Q πππππ==?==+?== 3.8 21212,8r r V V == 4.12 2334,6427123V Sh r h R R ππ====?= 5.28 ''11()(441616)32833V S SS S h =++=?+?+?=三、解答题1.解:圆锥的⾼224223h =-=,圆柱的底⾯半径1r =,223(23)S S S πππ=+=+?=+侧⾯表⾯底⾯2. 解:S S S S =++表⾯圆台底⾯圆台侧⾯圆锥侧⾯25(25)32222πππ=?+?+?+?? 25(21)π=+V V V =-圆台圆锥222112211()331483r r r r h r h πππ=++-=第⼆章点、直线、平⾯之间的位置关系 [基础训练A 组]⼀、选择题1. A ⑴两条直线都和同⼀个平⾯平⾏,这两条直线三种位置关系都有可能⑵两条直线没有公共点,则这两条直线平⾏或异⾯⑶两条直线都和第三条直线垂直,则这两条直线三种位置关系都有可能⑷⼀条直线和⼀个平⾯内⽆数条直线没有公共点,则这条直线也可在这个平⾯内 2. D 对于前三个,可以想象出仅有⼀个直⾓的平⾯四边形沿着⾮直⾓所在的对⾓线翻折;对⾓为直⾓的平⾯四边形沿着⾮直⾓所在的对⾓线翻折;在翻折的过程中,某个瞬间出现了有三个直⾓的空间四边形3.D 垂直于同⼀条直线的两条直线有三种位置关系4.B 连接,VF BF ,则AC 垂直于平⾯VBF ,即A C P F ⊥,⽽//DE AC ,DE PF ∴⊥5.D ⼋卦图可以想象为两个平⾯垂直相交,第三个平⾯与它们的交线再垂直相交6.C 当三棱锥D ABC -体积最⼤时,平⾯DAC ABC ⊥,取AC 的中点O ,则△DBO 是等要直⾓三⾓形,即045DBO ∠= ⼆、填空题1.异⾯或相交就是不可能平⾏2.0030,90 直线l 与平⾯α所成的030的⾓为m 与l 所成⾓的最⼩值,当m 在α内适当旋转就可以得到l m ⊥,即m 与l 所成⾓的的最⼤值为0903.63 作等积变换:12341313(),3434d d d d h ??+++=??⽽63h = 4.060或0120 不妨固定AB ,则AC 有两种可能5.2 对于(1)、平⾏于同⼀直线的两个平⾯平⾏,反例为:把⼀⽀笔放在打开的课本之间;(2)是对的;(3)是错的;(4)是对的三、解答题1.证明://,////EH BCD FG BCD EH BCD BD BCD EH BD EH FG ??2.略第⼆章点、直线、平⾯之间的位置关系 [综合训练B 组]⼀、选择题1.C 正四棱柱的底⾯积为4,正四棱柱的底⾯的边长为2,正四棱柱的底⾯的对⾓线为22,正四棱柱的对⾓线为26,⽽球的直径等于正四棱柱的对⾓线,即226R =,26,424R S R ππ===球 2.D 取BC 的中点G ,则1,2,,E G F G E FF G ==⊥则EF 与CD 所成的⾓030EFG ∠=3.C 此时三个平⾯两两相交,且有三条平⾏的交线4.C 利⽤三棱锥111A AB D -的体积变换:111111A AB D A A B D V V --=,则1124633h ??=?? 5.B 11221133332212A A BD D A BAa a a V V Sh --===??=6. D ⼀组对边平⾏就决定了共⾯;同⼀平⾯的两条垂线互相平⾏,因⽽共⾯;这些直线都在同⼀个平⾯内即直线的垂⾯;把书本的书脊垂直放在桌上就明确了⼆、填空题1.27 分上、中、下三个部分,每个部分分空间为9个部分,共27部分2.异⾯直线;平⾏四边形;BD AC =;BD AC ⊥;BD AC =且BD AC ⊥ 3.0604.060 注意P 在底⾯的射影是斜边的中点5.32a 三、解答题1.证明://b c ,∴不妨设,b c 共⾯于平⾯α,设,a b A a c B == ,,,A a B a A B αα∴∈∈∈∈,即a α?,所以三线共⾯ 2.提⽰:反证法 3.略第⼆章点、直线、平⾯之间的位置关系 [提⾼训练C 组]⼀、选择题1. A ③若m //α,n //α,则m n //,⽽同平⾏同⼀个平⾯的两条直线有三种位置关系④若αγ⊥,βγ⊥,则//αβ,⽽同垂直于同⼀个平⾯的两个平⾯也可以相交 2.C 设同⼀顶点的三条棱分别为,,x y z ,则222222222,,x y a y z b x z c +=+=+=得2222221()2x y z a b c ++=++,则对⾓线长为22222212()22a b c a b c ++=++3.B 作等积变换A BCD C ABD V V --=4.B BD 垂直于CE 在平⾯ABCD 上的射影 5.C BC PA BC AH ⊥?⊥6.C 取AC 的中点E ,取CD 的中点F ,123,,222EF BE BF ===3cos 3EF BF θ==7.C 取SB 的中点G ,则2a GE GF ==,在△SFC 中,22EF a =,045EFG ∠= ⼆、填空题1.5cm 或1cm 分,A B 在平⾯的同侧和异侧两种情况2.48 每个表⾯有4个,共64?个;每个对⾓⾯有4个,共64?个3.090 垂直时最⼤ 4.030 底⾯边长为23,⾼为1,1tan 3θ=5.11 沿着PA 将正三棱锥P ABC -侧⾯展开,则',,,A D E A 共线,且'//AA BC 三、解答题:略第三章直线和⽅程 [基础训练A 组]⼀、选择题1.D tan 1,1,1,,0ak a b a b bα=-=--=-=-= 2.A 设20,x y c ++=⼜过点(1,3)P -,则230,1c c -++==-,即210x y +-= 3.B 42,82m k m m -= =-=-+ 4.C ,0,0a c a cy x k b b b b=-+=->< 5.C 1x =垂直于x 轴,倾斜⾓为090,⽽斜率不存在6.C 2223,m m m m +--不能同时为0 ⼆、填空题 1.322 1(1)13222d --+== 2. 234:23,:23,:23,l y x l y x l x y =-+=--=+ 3.250x y --= '101,2,(1)2(2)202k k y x --==-=--=--4.8 22x y +可看成原点到直线上的点的距离的平⽅,垂直时最短:4222d -==5. 23y x =平分平⾏四边形ABCD 的⾯积,则直线过BD 的中点(3,2) 三、解答题1. 解:(1)把原点(0,0)代⼊A x B yC ++=0,得0C =;(2)此时斜率存在且不为零即0A ≠且0B ≠;(3)此时斜率不存在,且不与y 轴重合,即0B =且0C ≠;(4)0,A C ==且0B ≠(5)证明:()00P x y ,在直线A x B yC ++=0上 00000,Ax By C C Ax By ∴++==-- ()()000A x x B y y ∴-+-=。
人教A版高中数学必修第二册全册课时练习6.1 平面向量的概念 .............................................................................................................. - 2 - 6.2.1 向量的加法运算........................................................................................................ - 5 - 6.2.2 向量的减法运算........................................................................................................ - 8 - 6.2.3 向量的数乘运算...................................................................................................... - 11 - 6.2.4 向量的数量积............................................................................................................ - 14 - 6.3.1 平面向量基本定理.................................................................................................... - 18 - 6.3.2 平面向量的正交分解及坐标表示............................................................................ - 21 - 6.3.3 平面向量加、减运算的坐标表示............................................................................ - 21 - 6.3.4 平面向量数乘运算的坐标表示.............................................................................. - 24 - 6.3.5 平面向量数量积的坐标表示.................................................................................. - 27 - 6.4 平面向量的应用........................................................................................................ - 30 -7.1.1 数系的扩充和复数的概念...................................................................................... - 34 - 7.1.2 复数的几何意义...................................................................................................... - 37 - 7.2.1 复数的加、减运算及其几何意义.......................................................................... - 39 -7.2.2 复数的乘、除运算.................................................................................................. - 43 -8.1.1 棱柱、棱锥、棱台的结构特征................................................................................ - 46 - 8.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征................................................ - 49 - 8.2 立体图形的直观图........................................................................................................ - 51 - 8.3.1 棱柱、棱锥、棱台的表面积和体积...................................................................... - 55 - 8.3.2 圆柱、圆锥、圆台、球的表面积和体积.............................................................. - 59 - 8.4.1 平面 ......................................................................................................................... - 62 - 8.4.2 空间点、直线、平面之间的位置关系.................................................................. - 66 - 8.5.1 直线与直线平行...................................................................................................... - 69 - 8.5.2 直线与平面平行...................................................................................................... - 73 - 8.5.3 平面与平面平行...................................................................................................... - 76 - 8.6.1 直线与直线垂直...................................................................................................... - 80 - 8.6.2 直线与平面垂直...................................................................................................... - 85 -8.6.3平面与平面垂直 ....................................................................................................... - 89 -9.1.1简单随机抽样 ........................................................................................................... - 94 - 9.1.2 分层随机抽样 ............................................................................................................. - 96 - 9.1.3 获取数据的途径 ......................................................................................................... - 96 - 9.2.1总体取值规律的估计 ............................................................................................. - 100 - 9.2.2 总体百分位数的估计 ............................................................................................... - 105 - 9.2.3 总体集中趋势的估计 ............................................................................................... - 105 -9.2.4 总体离散程度的估计 ............................................................................................... - 105 -10.1.1有限样本空间与随机事件.................................................................................... - 110 - 10.1.2事件的关系和运算 ............................................................................................... - 112 - 10.1.3古典概型 ............................................................................................................... - 115 - 10.1.4概率的基本性质 ................................................................................................... - 118 - 10.2事件的相互独立性 .................................................................................................. - 121 - 10.3频率与概率 .............................................................................................................. - 126 -6.1 平面向量的概念一、选择题1.下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功.其中不是向量的有( )A .1个B .2个C .3个D .4个【解析】一个量是不是向量,就是看它是否同时具备向量的两个要素:大小和方向.由于速度、位移、力、加速度都是由大小和方向确定的,所以是向量;而质量、路程、密度、功只有大小而没有方向,所以不是向量. 【答案】D2.下列命题中,正确命题的个数是( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等;④与非零向量a 共线的单位向量是a|a |.A .3B .2C .1D .0【解析】根据单位向量的定义,可知①②③明显是错误的,对于④,与非零向量a 共线的单位向量是a |a |或-a|a |,故④也是错误的.【答案】D3.如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在两腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF →【解析】由平面几何知识知,AD →与BC →方向不同, 故AD →≠BC →;AC →与BD →方向不同,故AC →≠BD →; PE →与PF →的模相等而方向相反,故PE →≠PF →. EP →与PF →的模相等且方向相同,∴EP →=PF →.【答案】D4.若|AB →|=|AD →|且BA →=CD →,则四边形ABCD 的形状为( ) A .正方形 B .矩形 C .菱形 D .等腰梯形【解析】由BA →=CD →,知AB =CD 且AB ∥CD ,即四边形ABCD 为平行四边形.又因为|AB →|=|AD →|,所以四边形ABCD 为菱形. 【答案】C 二、填空题5.如图,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________.【解析】因为正方形的对角线长为22,所以|OA →|= 2. 【答案】 2 6.如图,四边形ABCD 是平行四边形,E ,F 分别是AD 与BC 的中点,则在以A 、B 、C 、D 四点中的任意两点为始点和终点的所有向量中,与向量EF →方向相反的向量为________.【解析】因为AB ∥EF ,CD ∥EF ,所以与EF →平行的向量为DC →,CD →,AB →,BA →,其中方向相反的向量为BA →,CD →. 【答案】BA →,CD →7.给出下列命题:①若AB →=DC →,则A 、B 、C 、D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →; ③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c .其中所有正确命题的序号为________.【解析】AB →=DC →,A 、B 、C 、D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 方向相同;b =c ,则|b |=|c |,且b 与c 方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确;对于④,当b =0时,a 与c 不一定平行,故④不正确. 【答案】②③ 三、解答题8.在如图的方格纸(每个小方格的边长为1)上,已知向量a . (1)试以B 为起点画一个向量b ,使b =a ;(2)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么.【解析】(1)根据相等向量的定义,所作向量b 应与a 同向,且长度相等,如下图所示. (2)由平面几何知识可作满足条件的向量c ,所有这样的向量c 的终点的轨迹是以点C 为圆心,2为半径的圆,如下图所示.9.一辆汽车从A 点出发向西行驶了100千米到达B 点,然后又改变了方向向北偏西40°走了200千米到达C 点,最后又改变方向,向东行驶了100千米到达D 点. (1)作出向量AB →,BC →,CD →; (2)求|AD →|.【解析】(1)如图所示.(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线,即AB ∥CD . 又|AB →|=|CD →|,所以四边形ABCD 为平行四边形. 所以|AD →|=|BC →|=200(千米).10.如图,在△ABC 中,已知向量AD →=DB →,DF →=EC →,求证:AE →=DF →.证明:由DF →=EC →,可得DF =EC 且DF ∥EC , 故四边形CEDF 是平行四边形,从而DE ∥FC . ∵AD →=DB →,∴D 为AB 的中点. ∴AE →=EC →,∴AE →=DF →.6.2.1 向量的加法运算一、选择题1.点O 是平行四边形ABCD 的两条对角线的交点,则AO →+OC →+CB →等于( )A.AB →B.BC →C.CD →D.DA →【解析】因为点O 是平行四边形ABCD 的两条对角线的交点,则AO →+OC →+CB →=AC →+CB →=AB →.故选A. 【答案】A2.设a 表示“向东走5 km”,b 表示“向南走5 km”,则a +b 表示( ) A .向东走10 km B .向南走10 km C .向东南走10 km D .向东南走5 2 km 【解析】如图所示,AC →=a +b ,|AB →|=5,|BC →|=5,且AB ⊥BC ,则|AC →|=52,∠BAC =45°. 【答案】D3.已知向量a ∥b ,且|a |>|b |>0,则向量a +b 的方向( ) A .与向量a 方向相同 B .与向量a 方向相反 C .与向量b 方向相同 D .不确定【解析】如果a 和b 方向相同,则它们的和的方向应该与a (或b )的方向相同;如果它们的方向相反,而a 的模大于b 的模,则它们的和的方向与a 的方向相同. 【答案】A4.如图所示的方格纸中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=( )A.OH →B.OG →C.FO →D.EO →【解析】设a =OP →+OQ →,以OP ,OQ 为邻边作平行四边形,则OP 与OQ 之间的对角线对应的向量即向量a =OP →+OQ →,由a 和FO →长度相等,方向相同,得a =FO →,即OP →+OQ →=FO →. 【答案】C 二、填空题5.在△ABC 中,AB →=a ,BC →=b ,CA →=c ,则a +b +c =________.【解析】由向量加法的三角形法则,得AB →+BC →=AC →,即a +b +c =AB →+BC →+CA →=0. 【答案】06.化简(AB →+MB →)+(BO →+BC →)+OM →=________.【解析】原式=(AB →+BO →)+(OM →+MB →)+BC →=AO →+OB →+BC →=AB →+BC →=AC →. 【答案】AC →7.在菱形ABCD 中,∠DAB =60°,|AB →|=1,则|BC →+CD →|=________. 【解析】在菱形ABCD 中,连接BD , ∵∠DAB =60°,∴△BAD 为等边三角形, 又∵|AB →|=1,∴|BD →|=1,|BC →+CD →|=|BD →|=1. 【答案】1 三、解答题8.如图,已知向量a 、b ,求作向量a +b .【解析】(1)作OA →=a ,AB →=b ,则OB →=a +b ,如图(1); (2)作OA →=a ,AB →=b ,则OB →=a +b ,如图(2); (3)作OA →=a ,AB →=b ,则OB →=a +b ,如图(3).9.如图所示,设O 为正六边形ABCDEF 的中心,作出下列向量: (1)OA →+OC →; (2)BC →+FE →.【解析】(1)由图可知,四边形OABC 为平行四边形,所以由向量加法的平行四边形法则,得OA →+OC →=OB →.(2)由图可知,BC →=FE →=OD →=AO →,所以BC →+FE →=AO →+OD →=AD →.10.如图,在重300 N 的物体上拴两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为30°,60°,当整个系统处于平衡状态时,求两根绳子的拉力.【解析】如图,作▱OACB ,使∠AOC =30°,∠BOC =60°, 则∠ACO =∠BOC =60°,∠OAC =90°.设向量OA →,OB →分别表示两根绳子的拉力,则CO →表示物体所受的重力,且|OC →|=300 N. 所以|OA →|=|OC →|cos 30°=1503(N), |OB →|=|OC →|cos 60°=150 (N).所以与铅垂线成30°角的绳子的拉力是150 3 N ,与铅垂线成60°角的绳子的拉力是150 N.6.2.2 向量的减法运算一、选择题1.下列运算中正确的是( ) A.OA →-OB →=AB → B.AB →-CD →=DB → C.OA →-OB →=BA → D.AB →-AB →=0【解析】根据向量减法的几何意义,知OA →-OB →=BA →,所以C 正确,A 错误;B 显然错误;对于D ,AB →-AB →应该等于0,而不是0.【答案】C2.下列四式中不能化简为PQ →的是( ) A.AB →+(PA →+BQ →) B .(AB →+PC →)+(BA →-QC →) C.QC →-QP →+CQ → D.PA →+AB →-BQ →【解析】D 中,PA →+AB →-BQ →=PB →-BQ →=PB →+QB →不能化简为PQ →,其余选项皆可. 【答案】D3.在△ABC 中,D 是BC 边上的一点,则AD →-AC →等于( ) A.CB → B.BC → C.CD → D.DC →【解析】在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD →-AC →=CD →. 【答案】C4.如图,在四边形ABCD 中,设AB →=a ,AD →=b ,BC →=c ,则DC →=( ) A .a -b +c B .b -(a +c ) C .a +b +c D .b -a +c【解析】DC →=DA →+AB →+BC →=a -b +c . 【答案】A 二、填空题5.EF →+DE →-DB →=________.【解析】EF →+DE →-DB →=EF →+BE →=BF →. 【答案】BF →6.若a ,b 为相反向量,且|a |=1,|b |=1,则|a +b |=________,|a -b |=________.【解析】若a ,b 为相反向量,则a +b =0,所以|a +b |=0,又a =-b ,所以|a |=|-b |=1,因为a 与-b 共线同向,所以|a -b |=2. 【答案】0 27.设点M 是线段BC 的中点,点A 在直线BC 外,且|BC →|=4,|AB →+AC →|=|AB →-AC →|,则|AM →|=________.【解析】以AB ,AC 为邻边作平行四边形ACDB ,由向量加减法几何意义可知,AD →=AB →+AC →,CB →=AB →-AC →,∵|AB →+AC →|=|AB →-AC →|,平行四边形ABCD 为矩形,∴|AD →|=|CB →|,又|BC →|=4,M 是线段BC 的中点, ∴|AM →|=12|AD →|=12|BC →|=2.【答案】2 三、解答题8.如图,已知向量a ,b ,c 不共线,求作向量a +b -c .【解析】方法一:如图①,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作OC →=c ,则CB →=a +b -c .方法二:如图②,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作CB →=c ,连接OC ,则OC →=a +b -c .9.化简下列各式:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →.【解析】(1)方法一 原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB →. 方法二 原式=AB →+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0=AB →. (2)方法一 原式=DB →-DC →=CB →.方法二 原式=AB →-(AD →+DC →)=AB →-AC →=CB →. 10.如图,解答下列各题:(1)用a ,d ,e 表示DB →; (2)用b ,c 表示DB →; (3)用a ,b ,e 表示EC →; (4)用d ,c 表示EC →.【解析】由题意知,AB →=a ,BC →=b ,CD →=c ,DE →=d ,EA →=e ,则 (1)DB →=DE →+EA →+AB →=a +d +e . (2)DB →=CB →-CD →=-BC →-CD →=-b -c . (3)EC →=EA →+AB →+BC →=a +b +e . (4)EC →=-CE →=-(CD →+DE →)=-c -d .6.2.3 向量的数乘运算一、选择题1.4(a -b )-3(a +b )-b 等于( ) A .a -2b B .a C .a -6b D .a -8b【解析】原式=4a -4b -3a -3b -b =a -8b .2.点C 在直线AB 上,且AC →=3AB →,则BC →等于( ) A .-2AB → B.13AB →C .-13AB →D .2AB →【解析】如图,AC →=3AB →,所以BC →=2AB →. 【答案】D3.已知向量a ,b 是两个不共线的向量,且向量m a -3b 与a +(2-m )b 共线,则实数m 的值为( )A .-1或3 B. 3 C .-1或4 D .3或4【解析】因为向量m a -3b 与a +(2-m )b 共线,且向量a ,b 是两个不共线的向量,所以m =-32-m ,解得m =-1或m =3. 【答案】A 4.如图,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=( ) A .a +34bB.34a +14bC.14a +14bD.14a +34b 【解析】AD →=AB →+BD →=AB →+34BC →=AB →+34(AC →-AB →)=14AB →+34AC →=14a +34b .【答案】D5.已知|a |=4,|b |=8,若两向量方向同向,则向量a 与向量b 的关系为b =________a . 【解析】由于|a |=4,b =8,则|b |=2|a |,又两向量同向,故b =2a . 【答案】26.点C 在线段AB 上,且AC CB =32,则AC →=________AB →,BC →=________AB →.【解析】因为C 在线段AB 上,且AC CB =32,所以AC →与AB →方向相同,BC →与AB →方向相反,且AC AB =35,BC AB =25,所以AC →=35AB →,BC →=-25AB →. 【答案】35 -257.已知向量a ,b 满足|a |=3,|b |=5,且a =λb ,则实数λ的值是________. 【解析】由a =λb ,得|a |=|λb |=|λ||b |.∵|a |=3,|b |=5, ∴|λ|=35,即λ=±35.【答案】±35三、解答题 8.计算(1)13(a +2b )+14(3a -2b )-12(a -b ); (2)12⎣⎢⎡⎦⎥⎤3a +2b-23a -b -76⎣⎢⎡⎦⎥⎤12a +37⎝ ⎛⎭⎪⎫b +76a . 【解析】(1)原式=⎝ ⎛⎭⎪⎫13+34-12a +⎝ ⎛⎭⎪⎫23-12+12b =712a +23b . (2)原式=12⎝ ⎛⎭⎪⎫73a +b -76⎝ ⎛⎭⎪⎫a +37b =76a +12b -76a -12b =0. 9.已知E ,F 分别为四边形ABCD 的对角线AC ,BD 的中点,设BC →=a ,DA →=b ,试用a ,b 表示EF →.【解析】如图所示,取AB 的中点P ,连接EP ,FP .在△ABC 中,EP 是中位线, 所以PE →=12BC →=12a .在△ABD 中,FP 是中位线,所以PF →=12AD →=-12DA →=-12b .在△EFP 中,EF →=EP →+PF →=-PE →+PF →=-12a -12b =-12(a +b ).10.已知e ,f 为两个不共线的向量,若四边形ABCD 满足AB →=e +2f ,BC →=-4e -f ,CD →=-5e -3f .(1)用e 、f 表示AD →;(2)证明:四边形ABCD 为梯形.【解析】(1)AD →=AB →+BC →+CD →=(e +2f )+(-4e -f )+(-5e -3f )=(1-4-5)e +(2-1-3)f =-8e -2f .(2)证明:因为AD →=-8e -2f =2(-4e -f )=2BC →, 所以AD →与BC →方向相同,且AD →的长度为BC →的长度的2倍, 即在四边形ABCD 中,AD ∥BC ,且AD ≠BC , 所以四边形ABCD 是梯形.6.2.4 向量的数量积一、选择题1.若|m |=4,|n |=6,m 与n 的夹角为45°,则m ·n =( ) A .12 B .12 2 C .-12 2 D .-12【解析】m ·n =|m ||n |cos θ=4×6×cos 45°=24×22=12 2. 【答案】B2.已知a ·b =-122,|a |=4,a 和b 的夹角为135°,则|b |=( ) A .12 B .3 C .6 D .3 3【解析】a ·b =|a ||b |cos 135°=-122,又|a |=4,解得|b |=6. 【答案】C3.已知向量a ,b 满足|a |=2,|b |=3,a ·(b -a )=-1,则a 与b 的夹角为( ) A.π6 B.π4 C.π3 D.π2【解析】因为|a |=2,a ·(b -a )=-1, 所以a ·(b -a )=a ·b -a 2=a ·b -22=-1, 所以a ·b =3.又因为|b |=3,设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=32×3=12.又θ∈[0,π],所以θ=π3. 【答案】C4.若a ·b >0,则a 与b 的夹角θ的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,π2B.⎣⎢⎡⎭⎪⎫π2,πC.⎝⎛⎦⎥⎤π2,π D.⎝ ⎛⎭⎪⎫π2,π 【解析】因为a ·b >0,所以cos θ>0,所以θ∈⎣⎢⎡⎭⎪⎫0,π2.【答案】A 二、填空题5.如图所示,在Rt△ABC 中,∠A =90°,AB =1,则AB →·BC →的值是________.【解析】方法一 AB →·BC →=|AB →||BC →|cos(180°-∠B )=-|AB →||BC →|cos∠B =-|AB →||BC→|·|AB →||BC →|=-|AB →|2=-1.方法二 |BA →|=1,即BA →为单位向量,AB →·BC →=-BA →·BC →=-|BA →||BC →|cos∠B ,而|BC →|·cos∠B =|BA →|,所以AB →·BC →=-|BA →|2=-1. 【答案】-16.已知向量a ,b 满足|a |=1,|b |=4,且a ·b =2,则a 与b 的夹角为________.【解析】设a 与b 的夹角为θ,cos θ=a ·b |a |·|b |=21×4=12,又因为θ∈[0,π],所以θ=π3. 【答案】π37.已知|a |=3,向量a 与b 的夹角为π3,则a 在b 方向上的投影为________.【解析】向量a 在b 方向上的投影为|a |cos θ=3×cos π3=32.【答案】32三、解答题8.已知|a |=3,|b |=4,a 与b 的夹角为120°,求: (1)a 2-b 2;(2)(2a -b )·(a +3b ).【解析】(1)a 2-b 2=|a |2-|b |2=32-42=-7.(2)(2a -b )·(a +3b )=2a 2+5a ·b -3b 2=2|a |2+5|a ||b |·cos 120°-3|b |2=2×32+5×3×4×⎝ ⎛⎭⎪⎫-12-3×42=-60. 9.(1)已知|a |=|b |=5,向量a 与b 的夹角为π3,求|a +b |,|a -b |,|3a +b |;(2)已知|a |=|b |=5,且|3a -2b |=5,求|3a +b |的值;(3)如图,已知在▱ABCD 中,AB =3,AD =1,∠DAB =π3,求对角线AC 和BD 的长.【解析】(1)a ·b =|a ||b |cos π3=5×5×12=252,∴|a +b |=a +b 2=|a |2+2a ·b +|b |2=25+2×252+25=53,|a -b |=a -b2=|a |2+|b |2-2a ·b =25=5, |3a +b |=3a +b2=9a 2+b 2+6a ·b =325=513.(2)∵|3a -2b |2=9|a |2-12a ·b +4|b |2=9×25-12a ·b +4×25=325-12a ·b ,又|3a -2b |=5,∴325-12a ·b =25,则a ·b =25.∴|3a +b |2=(3a +b )2=9a 2+6a ·b +b 2=9×25+6×25+25=400.故|3a +b |=20. (3)设AB →=a ,AD →=b ,则|a |=3,|b |=1,a 与b 的夹角θ=π3.∴a ·b =|a ||b |cos θ=32.又∵AC →=a +b ,DB →=a -b , ∴|AC →|=AC →2=a +b 2=a 2+2a ·b +b 2=13,|DB →|=DB →2=a -b2=a 2-2a ·b +b 2=7.∴AC =13,BD =7.10.已知|a |=2|b |=2,且向量a 在向量b 方向上的投影为-1. (1)求a 与b 的夹角θ; (2)求(a -2b )·b ;(3)当λ为何值时,向量λa +b 与向量a -3b 互相垂直? 【解析】(1)由题意知|a |=2,|b |=1. 又a 在b 方向上的投影为|a |cos θ=-1, ∴cos θ=-12,∴θ=2π3.(2)易知a ·b =-1,则(a -2b )·b =a ·b -2b 2=-1-2=-3. (3)∵λa +b 与a -3b 互相垂直,∴(λa +b )·(a -3b )=λa 2-3λa ·b +b ·a -3b 2 =4λ+3λ-1-3=7λ-4=0, ∴λ=47.6.3.1 平面向量基本定理一、选择题1.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( ) A .不共线 B .共线 C .相等 D .不确定 【解析】∵a +b =3e 1-e 2, ∴c =2(a +b ).∴a +b 与c 共线. 【答案】B2.已知AD 是△ABC 的中线,AB →=a ,AD →=b ,以a ,b 为基底表示AC →,则AC →=( ) A.12(a -b ) B .2b -a C.12(b -a ) D .2b +a【解析】如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从而AD →=12(AB →+AC →),则AC →=2AD→-AB →=2b -a . 【答案】B3.在正方形ABCD 中,AC →与CD →的夹角等于( ) A .45° B.90° C .120° D.135° 【解析】如图所示,将AC →平移到CE →,则CE →与CD →的夹角即为AC →与CD →的夹角,夹角为135°. 【答案】D4.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为( ) A.165 B.125 C.85 D.45【解析】∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.【答案】C 二、填空题5.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为________.【解析】因为a ,b 是一组基底,所以a 与b 不共线, 因为(3x -4y )a +(2x -3y )b =6a +3b ,所以⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.【答案】36.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,若OA →=a ,OB →=b ,用a ,b 表示向量OC →,则OC →=________.【解析】AC →=OC →-OA →,CB →=OB →-OC →,∵2AC →+CB →=0,∴2(OC →-OA →)+(OB →-OC →)=0,∴OC →=2OA →-OB →=2a -b . 【答案】2a -b7.在正方形ABCD 中,E 是DC 边上的中点,且AB →=a ,AD →=b ,则BE →=________.【解析】BE →=BC →+CE →=AD →-12AB →=b -12a .【答案】b -12a三、解答题8.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c .【解析】因为a ,b 不共线,所以可设c =x a +y b , 则x a +y b =x (3e 1-2e 2)+y (-2e 1+e 2) =(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2. 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .9.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB →=a ,AC→=b ,试用a ,b 将MN →、NP →、PM →表示出来. 【解析】NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).10.若点M 是△ABC 所在平面内一点,且满足:AM →=34AB →+14AC →.(1)求△ABM 与△ABC 的面积之比;(2)若N 为AB 中点,AM 与CN 交于点O ,设BO →=xBM →+yBN →,求x ,y 的值. 【解析】(1)由AM →=34AB →+14AC →可知M ,B ,C 三点共线,如图,令BM →=λBC →⇒AM →=AB →+BM →=AB →+λBC →=AB →+λ(AC →-AB →)=(1-λ)AB →+λAC →⇒λ=14,所以S △ABM S △ABC =14,即面积之比为1 4. (2)由BO →=xBM →+yBN →⇒BO →=xBM →+y 2BA →,BO →=x 4BC →+yBN ,由O ,M ,A 三点共线及O ,N ,C 三点共线⇒⎩⎪⎨⎪⎧ x +y2=1,x4+y =1⇒⎩⎪⎨⎪⎧x =47,y =67.6.3.2 平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示一、选择题1.设i ,j 是平面直角坐标系内分别与x 轴,y 轴正方向相同的两个单位向量,O 为坐标原点,若OA →=4i +2j ,OB →=3i +4j ,则2OA →+OB →的坐标是( ) A .(1,-2) B .(7,6) C .(5,0) D .(11,8)【解析】因为OA →=(4,2),OB →=(3,4), 所以2OA →+OB →=(8,4)+(3,4)=(11,8). 【答案】D2.已知向量a =(-1,2),b =(1,0),那么向量3b -a 的坐标是( ) A .(-4,2) B .(-4,-2) C .(4,2) D .(4,-2)【解析】3b -a =3(1,0)-(-1,2)=(4,-2).【答案】D3.已知向量a =(1,2),2a +b =(3,2),则b =( ) A .(1,-2) B .(1,2) C .(5,6) D .(2,0)【解析】b =(3,2)-2a =(3,2)-(2,4)=(1,-2). 【答案】A4.已知向量i =(1,0),j =(0,1),对坐标平面内的任一向量a ,给出下列四个结论: ①存在唯一的一对实数x ,y ,使得a =(x ,y );②若x 1,x 2,y 1,y 2∈R ,a =(x 1,y 1)≠(x 2,y 2),则x 1≠x 2,且y 1≠y 2; ③若x ,y ∈R ,a =(x ,y ),且a ≠0,则a 的起点是原点O ; ④若x ,y ∈R ,a ≠0,且a 的终点坐标是(x ,y ),则a =(x ,y ). 其中正确结论的个数是( ) A .1 B .2 C .3 D .4【解析】由平面向量基本定理知①正确;若a =(1,0)≠(1,3),但1=1,故②错误;因为向量可以平移,所以a =(x ,y )与a 的起点是不是原点无关,故③错误;当a 的终点坐标是(x ,y )时,a =(x ,y )是以a 的起点是原点为前提的,故④错误.【答案】A 二、填空题5.在平面直角坐标系内,已知i 、j 是两个互相垂直的单位向量,若a =i -2j ,则向量用坐标表示a =________.【解析】由于i ,j 是两个互相垂直的单位向量,所以a =(1,-2). 【答案】(1,-2)6.如右图所示,已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°,则向量OA →的坐标为________.【解析】设点A (x ,y ),则x =|OA →|·cos 60°=43cos 60°=23,y =|OA →|·sin 60°=43sin 60°=6,即A (23,6),所以OA →=(23,6). 【答案】(23,6)7.已知向量a =(x +3,x 2-3x -4)与AB →相等,其中A (1,2),B (3,2),则x =________.【解析】易得AB →=(2,0),由a =(x +3,x 2-3x -4)与AB →相等得⎩⎪⎨⎪⎧x +3=2,x 2-3x -4=0,解得x =-1.【答案】-1 三、解答题8.如图,取与x 轴、y 轴同向的两个单位向量i ,j 作为基底,分别用i ,j 表示OA →,OB →,AB →,并求出它们的坐标.【解析】由图形可知,OA →=6i +2j ,OB →=2i +4j ,AB →=-4i +2j ,它们的坐标表示为OA →=(6,2),OB →=(2,4),AB →=(-4,2).9.已知a =(2,-4),b =(-1,3),c =(6,5),p =a +2b -c . (1)求p 的坐标 ;(2)若以a ,b 为基底,求p 的表达式.【解析】(1)p =(2,-4)+2(-1,3)-(6,5)=(-6,-3). (2)设p =λa +μb (λ,μ∈R ),则(-6,-3)=λ(2,-4)+μ(-1,3)=(2λ-μ,-4λ+3μ),所以⎩⎪⎨⎪⎧2λ-μ=-6,-4λ+3μ=-3,所以⎩⎪⎨⎪⎧λ=-212,μ=-15,所以p =-212a -15b .10.已知O 是△ABC 内一点,∠AOB =150°,∠BOC =90°,设OA →a ,OB →=b ,OC →=c ,且|a |=2,|b|=1,|c |=3,试用a ,b 表示c .【解析】如图,以O 为原点,OA →为x 轴的非负半轴建立平面直角坐标系,由三角函数的定义,得B (cos 150°,sin 150°),C (3cos 240°,3sin 240°). 即B ⎝ ⎛⎭⎪⎫-32,12,C ⎝ ⎛⎭⎪⎫-32,-332,又∵A (2,0), 故a =(2,0),b =⎝ ⎛⎭⎪⎫-32,12,c =⎝ ⎛⎭⎪⎫-32,-332. 设c =λ1a +λ2b (λ1,λ2∈R ),∴⎝ ⎛⎭⎪⎫-32,-332=λ1(2,0)+λ2⎝ ⎛⎭⎪⎫-32,12=⎝⎛⎭⎪⎫2λ1-32λ2,12λ2,∴⎩⎪⎨⎪⎧2λ1-32λ2=-32,12λ2=-332,∴⎩⎨⎧λ1=-3,λ2=-33,∴c =-3a -33b .6.3.4 平面向量数乘运算的坐标表示一、选择题1.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ) A .(-2,-4) B .(-3,-6) C .(-4,-8) D .(-5,-10)【解析】由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2),解得m =-4,所以b =(-2,-4),所以2a +3b =2(1,2)+3(-2,-4)=(-4,-8). 【答案】C2.已知向量a =(1,2),b =(λ,1),若(a +2b )∥(2a -2b ),则λ的值等于( ) A.12 B.13 C .1 D .2【解析】a +2b =(1,2)+2(λ,1)=(1+2λ,4),2a -2b =2(1,2)-2(λ,1)=(2-2λ,2),由(a +2b )∥(2a -2b ),可得2(1+2λ)-4(2-2λ)=0,解得λ=12,故选A.【答案】A3.已知A (1,-3),B ⎝ ⎛⎭⎪⎫8,12,且A ,B ,C 三点共线,则点C 的坐标可以是( ) A .(-9,1) B .(9,-1) C .(9,1) D .(-9,-1) 【解析】设点C 的坐标是(x ,y ), 因为A ,B ,C 三点共线, 所以AB →∥AC →.因为AB →=⎝ ⎛⎭⎪⎫8,12-(1,-3)=⎝ ⎛⎭⎪⎫7,72,AC →=(x ,y )-(1,-3)=(x -1,y +3),所以7(y +3)-72(x -1)=0,整理得x -2y =7,经检验可知点(9,1)符合要求,故选C. 【答案】C4.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(2m ,m +1),若AB →∥OC →,则实数m 的值为( ) A.35 B .-35 C .3 D .-3【解析】向量OA →=(3,-4),OB →=(6,-3), ∴AB →=(3,1),∵OC →=(2m ,m +1),AB →∥OC →, ∴3m +3=2m ,解得m =-3,故选D.【答案】D 二、填空题5.已知向量a =(3x -1,4)与b =(1,2)共线,则实数x 的值为________.【解析】因为向量a =(3x -1,4)与b =(1,2)共线,所以2(3x -1)-4×1=0,解得x =1. 【答案】16.已知A (2,1),B (0,2),C (-2,1),O (0,0),给出下列结论: ①直线OC 与直线BA 平行; ②AB →+BC →=CA →; ③OA →+OC →=OB →; ④AC →=OB →-2OA →.其中,正确结论的序号为________.【解析】①因为OC →=(-2,1),BA →=(2,-1),所以OC →=-BA →,又直线OC ,BA 不重合,所以直线OC ∥BA ,所以①正确;②因为AB →+BC →=AC →≠CA →,所以②错误;③因为OA →+OC →=(0,2)=OB →,所以③正确;④因为AC →=(-4,0),OB →-2OA →=(0,2)-2(2,1)=(-4,0),所以④正确. 【答案】①③④7.已知向量a =(1,2),b =(1,λ),c =(3,4).若a +b 与c 共线,则实数λ=________. 【解析】因为a +b =(1,2)+(1,λ)=(2,2+λ),所以根据a +b 与c 共线得2×4-3×(2+λ)=0,解得λ=23.【答案】23三、解答题8.已知a =(x,1),b =(4,x ),a 与b 共线且方向相同,求x . 【解析】∵a =(x,1),b =(4,x ),a ∥b . ∴x 2-4=0,解得x 1=2,x 2=-2.当x =2时,a =(2,1),b =(4,2),a 与b 共线且方向相同; 当x =-2时,a =(-2,1),b =(4,-2),a 与b 共线且方向相反. ∴x =2.9.已知A ,B ,C 三点的坐标分别为(-1,0),(3,-1),(1,2),并且AE →=13AC →,BF →=13BC →,求证:EF →∥AB →.证明:设E (x 1,y 1),F (x 2,y 2),依题意有AC →=(2,2),BC →=(-2,3),AB →=(4,-1). ∵AE →=13AC →,∴AE →=⎝ ⎛⎭⎪⎫23,23,∵BF →=13BC →,∴BF →=⎝ ⎛⎭⎪⎫-23,1.∵AE →=(x 1+1,y 1)=⎝ ⎛⎭⎪⎫23,23,∴E ⎝ ⎛⎭⎪⎫-13,23,∵BF →=(x 2-3,y 2+1)=⎝ ⎛⎭⎪⎫-23,1,∴F ⎝ ⎛⎭⎪⎫73,0, ∴EF →=⎝ ⎛⎭⎪⎫83,-23.又∵4×⎝ ⎛⎭⎪⎫-23-83×(-1)=0,∴EF →∥AB →. 10.已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值. 【解析】(1)k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2).因为k a -b 与a +2b 共线,所以2(k -2)-(-1)×5=0,得k =-12.(2)因为A ,B ,C 三点共线, 所以AB →=λBC →,λ∈R , 即2a +3b =λ(a +m b ),所以⎩⎪⎨⎪⎧2=λ,3=mλ,解得m =32.6.3.5 平面向量数量积的坐标表示一、选择题1.若向量a =(3,m ),b =(2,-1),a ·b =0,则实数m 的值为( )A .-32 B.32C .2D .6【解析】依题意得6-m =0,m =6,选D. 【答案】D2.向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1 D .2【解析】a =(1,-1),b =(-1,2), ∴(2a +b )·a =(1,0)·(1,-1)=1. 【答案】C3.已知a ,b 为平面向量,且a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于( ) A.865 B .-865 C.1665 D .-1665【解析】∵a =(4,3),∴2a =(8,6).又2a +b =(3,18), ∴b =(-5,12),∴a ·b =-20+36=16. 又|a |=5,|b |=13, ∴cos〈a ,b 〉=165×13=1665.【答案】C4.已知向量a =(-1,2),b =(3,1),c =(k,4),且(a -b )⊥c ,则k =( ) A .-6 B .-1 C .1 D .6【解析】∵a =(-1,2),b =(3,1),∴a -b =(-4,1),∵(a -b )⊥c ,∴-4k +4=0,解得k =1. 【答案】C 二、填空题5.a =(-4,3),b =(1,2),则2|a |2-3a ·b =________. 【解析】因为a =(-4,3),所以2|a |2=2×(-42+32)2=50.a ·b =-4×1+3×2=2.所以2|a |2-3a ·b =50-3×2=44. 【答案】446.设向量a =(1,0),b =(-1,m ).若a ⊥(m a -b ),则m =________.【解析】由题意得,m a -b =(m +1,-m ),根据向量垂直的充要条件可得1×(m +1)+0×(-m )=0,所以m =-1.【答案】-17.已知平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________.【解析】c =(m +4,2m +2),|a |=5,|b |=25, 设c ,a 的夹角为α,c ,b 的夹角为θ,又因为cos α=c ·a |c ||a |,cos θ=c ·b |c ||b |,由题意知c ·a |a |=c ·b |b |,即5m +85=8m +2025. 解得m =2. 【答案】2 三、解答题8.已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R . (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |.【解析】(1)若a ⊥b ,则a ·b =(1,x )·(2x +3,-x )=1×(2x +3)+x (-x )=0,即x 2-2x -3=0,解得x =-1或x =3.(2)若a ∥b ,则1×(-x )-x (2x +3)=0, 即x (2x +4)=0,解得x =0或x =-2. 当x =0时,a =(1,0),b =(3,0), |a -b |=|(1,0)-(3,0)|=|(-2,0)|=2. 当x =-2时,a =(1,-2),b =(-1,2), |a -b |=|(1,-2)-(-1,2)|=|(2,-4)|=2 5.9.已知向量a ,b ,c 是同一平面内的三个向量,其中a =(1,-1). (1)若|c |=32,且c ∥a ,求向量c 的坐标;(2)若b 是单位向量,且a ⊥(a -2b ),求a 与b 的夹角θ.【解析】(1)设c =(x ,y ),由|c |=32,c ∥a 可得⎩⎪⎨⎪⎧y +x =0,x 2+y 2=18,所以⎩⎪⎨⎪⎧x =-3,y =3,或⎩⎪⎨⎪⎧x =3,y =-3,故c =(-3,3)或c =(3,-3).(2)因为|a |=2,且a ⊥(a -2b ),所以a ·(a -2b )=0,即a 2-2a ·b =0,∴a ·b =1,故cos θ=a ·b |a |·|b |=22,∵θ∈[0,π], ∴θ=π4.10.在△PQR 中,PQ →=(2,3),PR →=(1,k ),且△PQR 的一个内角为直角,求k 的值. 【解析】(1)当∠P 为直角时,PQ ⊥PR , ∴PQ →·PR →=0,即2+3k =0,∴k =-23.(2)当∠Q 为直角时,QP ⊥QR ,易知QP →=(-2,-3),QR →=PR →-PQ →=(-1,k -3). 由QP →·QR →=0,得2-3(k -3)=0,∴k =113.(3)当∠R 为直角时,RP ⊥RQ ,易知RP →=(-1,-k ),RQ →=PQ →-PR →=(1,3-k ). 由RP →·RQ →=0,得-1-k (3-k )=0,∴k =3±132.综上所述,k 的值为-23或113或3+132或3-132.6.4 平面向量的应用一、选择题1.已知三个力F 1=(-2,-1),F 2=(-3,2),F 3=(4,-3)同时作用于某物体上的一点,为使物体保持平衡,现加上一个力F 4,则F 4等于( ) A .(-1,-2) B .(1,-2) C .(-1,2) D .(1,2)【解析】F 4=-(F 1+F 2+F 3)=-[(-2,-1)+(-3,2)+(4,-3)]=(1,2). 【答案】D2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24 B .-24C.34 D .-34【解析】由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.【答案】B3.河水的流速为2 m/s ,一艘小船以垂直于河岸方向10 m/s 的速度驶向对岸,则小船在静水中的速度大小为( ) A .10 m/s B .226 m/s C .4 6 m/s D .12 m/s【解析】由题意知|v 水|=2 m/s ,|v 船|=10 m/s ,作出示意图如右图. ∴小船在静水中的速度大小|v |=102+22=104=226 (m/s). 【答案】B4.在△ABC 中,AB =3,AC 边上的中线BD =5,AC →·AB →=5,则AC 的长为( ) A .1 B .2 C .3 D .4【解析】因为BD →=AD →-AB →=12AC →-AB →,所以BD →2=⎝ ⎛⎭⎪⎫12AC →-AB →2=14AC →2-AC →·AB →+AB →2,即14AC →2=1,所以|AC →|=2,即AC =2. 【答案】B 二、填空题5.如图所示,一力作用在小车上,其中力F 的大小为10牛,方向与水平面成60°角,当小车向前运动10米时,力F 做的功为________焦耳. 【解析】设小车位移为s ,则|s |=10米,W F =F ·s =|F ||s |·cos 60°=10×10×12=50(焦耳).【答案】506.若AB →=3e ,DC →=5e ,且|AD →|=|BC →|,则四边形ABCD 的形状为________. 【解析】由AB →=3e ,DC →=5e ,得AB →∥DC →,AB →≠DC →,又因为ABCD 为四边形,所以AB ∥DC ,AB ≠DC . 又|AD →|=|BC →|,得AD =BC , 所以四边形ABCD 为等腰梯形. 【答案】等腰梯形7.某同学骑电动车以24 km/h 的速度沿正北方向的公路行驶,在点A 处测得电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处,测得电视塔S 在电动车的北偏东75°方向上,则点B 与电视塔的距离是________ km.【解析】如题图,由题意知AB =24×1560=6,在△ABS 中,∠BAS =30°,AB =6,∠ABS =180°-75°=105°,∴∠ASB =45°,由正弦定理知BS sin 30°=AB sin 45°,∴BS =AB ·sin 30°sin 45°=32(km). 【答案】3 2 三、解答题 8.如图所示,在正方形ABCD 中,P 为对角线AC 上任一点,PE ⊥AB ,PF ⊥BC ,垂足分别为E ,F ,连接DP ,EF ,求证:DP ⊥EF .证明:方法一 设正方形ABCD 的边长为1,。
高中数学必修2全册同步练习题目录1-1-1 棱柱、棱锥、棱台的结构特征1-1-2 圆柱、圆锥、圆台、球的结构特征、简单组合体的结构特征1-2-1、2 中心投影与平行投影空间几何体的三视图1-2-3 空间几何体的直观图1-3-1-1 柱体、锥体、台体的表面积1-3-1-2 柱体、锥体、台体的体积1-3-2 球的体积和表面积高中数学第一章综合素能检测2-1-1 平面2-1-2 空间中直线与直线之间的位置关系2-1-3、4 空间中直线与平面之间的位置关系平面与平面之间的位置关系2-2-1 直线与平面平行的判定2-2-2 平面与平面平行的判定2-2-3 直线与平面平行的性质2-2-4 平面与平面平行的性质2-3-1 直线与平面垂直的判定2-3-2 平面与平面垂直的判定2-3-3 直线与平面垂直的性质2-3-4 平面与平面垂直的性质高中数学第二章综合素能检测3-1-1 倾斜角与斜率3-1-2 两条直线平行与垂直的判定3-2-1 直线的点斜式方程3-2-2 直线的两点式方程3-2-3 直线方程的一般式3-3-1 两条直线的交点坐标3-3-2 两点间的距离公式3-3-3、4 点到直线的距离两条平行直线间的距离高中数学第三章综合检测4-1-1 圆的标准方程4-1-2 圆的一般方程4-2-1 直线与圆的位置关系4-2-2 圆与圆的位置关系4-2-3 直线与圆的方程的应用4-3-1、2 空间直角坐标系空间两点间的距离公式高中数学第四章综合检测一、选择题1.在棱柱中()A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行[答案] D2.下列几何体中,不属于多面体的是()A.立方体B.三棱柱C.长方体D.球[答案] D3.如图所示的几何体是()A.五棱锥B.五棱台C.五棱柱D.五面体[答案] C4.下列命题中,正确的是()A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱都相等,侧面是平行四边形[答案] D5.棱锥侧面是有公共顶点的三角形,若围成一个棱锥侧面的三角形都是正三角形,则这样侧面的个数最多有几个.() A.3B.4C.5D.6[答案] C[解析]由于顶角之和小于360°,故选C.6.下面描述中,不是棱锥的几何结构特征的为()A.三棱锥有四个面是三角形B.棱锥都是有两个面是互相平行的多边形C.棱锥的侧面都是三角形D.棱锥的侧棱交于一点[答案] B7.下列图形经过折叠不能围成一个棱柱的是()[答案] B8.(2012-2013·嘉兴高一检测)如下图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是()A.(1)(2) B.(2)(3)C.(3)(4) D.(1)(4)[答案] B[解析]在图(2)、(3)中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图(2)、(3)完全一样,而(1)、(4)则不同[解题提示]让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.二、填空题9.图(1)中的几何体叫做________,AA1、BB1等叫它的________,A、B、C1等叫它的________.[答案]棱柱侧棱顶点10.图(2)中的几何体叫做________,P A、PB叫它的________,平面PBC、PCD叫做它的________,平面ABCD叫它的________.[答案]棱锥侧棱侧面底面11.图(3)中的几何体叫做________,它是由棱锥________被平行于底面ABCD的平面________截得的.AA′,BB′叫它的__________,平面BCC′B′、平面DAA′D′叫它的________.[答案]棱台O-ABCD A′B′C′D′侧棱侧面12.如图,在透明塑料制成的长方体ABCD-A1B1C1D1容器中灌进一些水,将容器底面一边BC置于地面上,再将容器倾斜,随着倾斜程度的不同,以下命题:①水的形状成棱柱形;②水面EFGH的面积不变;③水面EFGH始终为矩形.其中正确的命题序号是________.[答案]①③[解析]根据棱柱的定义及结构特征来判断.在棱柱中因为有水的部分和无水的部分始终有两个面平行,而其余各面易证是平行四边形,故①正确;而随着倾斜程度的不同,水面EFGH的面积是会改变的,但仍为矩形故②错误;③正确.三、解答题13.判断下列语句的对错.(1)一个棱锥至少有四个面;(2)如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等;(3)五棱锥只有五条棱;(4)用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似.[解析](1)正确.(2)不正确.四棱锥的底面是正方形,它的侧棱可以相等,也可以不相等.(3)不正确,五棱锥除了五条侧棱外,还有五条底边,故共有10条棱.(4)正确.14.如右图所示的几何体中,所有棱长都相等,分析此几何体的构成?有几个面、几个顶点、几条棱?[解析]这个几何体是由两个同底面的四棱锥组合而成的正八面体.有8个面,都是全等的正三角形;有6个顶点;有12条棱.15.已知正方体ABCD-A1B1C1D1,图(1)中截去的是什么几何体?图(2)中截去一部分,其中HG∥AD∥EF,剩下的几何体是什么?若再用一个完全相同的正方体放在第一个正方体的左边,它们变成了一个什么几何体?[解析]三棱锥五棱柱A1B1BEH-D1C1CFG长方体16.一个几何体的表面展开平面图如图.(1)该几何体是哪种几何体;(2)该几何体中与“祝”字面相对的是哪个面?与“你”字面相对的是哪个面?[解析](1)该几何体是四棱台;(2)与“祝”相对的面是“前”,与“你”相对的面是“程”.一、选择题1.下列说法不正确的是()A.圆柱的侧面展开图是一个矩形B.圆锥过轴的截面是一个等腰三角形C.直角三角形绕它的一条边旋转一周形成的曲面围成的几何体是圆锥D.圆台平行于底面的截面是圆面[答案] C[解析]由圆锥的概念知,直角三角形绕它的一条直角边所在直线旋转一周所围成的几何体是圆锥.强调一定要绕着它的一条直角边,即旋转轴为直角三角形的一条直角边所在的直线,因而C错.2.正方形绕其一条对角线所在直线旋转一周,所得几何体是()A.圆柱B.圆锥C.圆台D.两个圆锥[答案] D3.下列说法正确的是()A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心[答案] D[解析]圆锥的母线长与底面直径的大小不确定,则A项不正确;圆柱的母线与轴平行,则B项不正确;圆台的母线与轴相交,则C项不正确;很明显D项正确.4.如右图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体[答案] B[解析]圆旋转一周形成球,圆中的矩形旋转一周形成一个圆柱,所以选B.5.一个圆柱的母线长为5,底面半径为2,则圆柱的轴截面的面积为()A.10 B.20C.40 D.15[答案] B[解析]圆柱的轴截面是矩形,其一边为圆柱的母线,另一边为圆柱的底面圆的直径.因而,轴截面的面积为5×4=20.6.在空间,到定点的距离等于定长的所有点的集合是()A.球B.正方体C.圆D.球面[答案] D7.(2012-2013·南京模拟)经过旋转可以得到图1中几何体的是图2中的()[答案] A[解析]观察图中几何体的形状,掌握其结构特征,其上部为一个圆锥,下部是一个与圆锥同底的圆台,圆锥可由一直角三角形以过一直角边的直线为轴旋转一周得到,圆台可由一直角梯形绕过垂直于两底的腰的直线为轴旋转而成,通过上述判断再对选项中的平面图形适当分割,只有A适合.故正确答案为A.8.图中最左边的几何体由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得.现用一个竖直的平面去截这个几何体,则截面图形可能是()A.(1)(2)B.(1)(3)C.(1)(4)D.(1)(5)[答案] D[解析]圆锥除过轴的截面外,其它截面截圆锥得到的都不是三角形.二、填空题9.图①中的几何体叫做________,O叫它的________,OA叫它的________,AB叫它的________.[答案]球球心半径直径10.图②中的几何体叫________,AB、CD都是它的________,⊙O和⊙O′及其内部是它的________.[答案] 圆柱 母线 底面11.图③中的几何体叫做________,SB 为叫它的________. [答案] 圆锥 母线12.图④中的几何体叫做________,AA ′叫它的________,⊙O ′及其内部叫它的________,⊙O 及其内部叫它的________,它还可以看作直角梯形OAA ′O ′绕它的________________旋转一周后,其他各边所形成的面所围成的旋转体.[答案] 圆台 母线 上底面 下底面 垂直于两底的腰OO ′ 三、解答题13.说出下列7种几何体的名称.[解析]a是圆柱,b是圆锥,c是球,d、e是棱柱,f是圆台,g 是棱锥.14.说出如图所示几何体的主要结构特征.[解析](1)是一个六棱柱中挖去一个圆柱;(2)是一个圆台与一个圆柱的组合体;(3)是两个四棱锥构成的组合体.15.如图所示,几何体可看作由什么图形旋转360°得到?画出平面图形和旋转轴.[解析]先出画几何体的轴,然后再观察寻找平面图形.旋转前的平面图形如下:16.如图所示,在长方体ABCD-A′B′C′D′中,AB=2 cm,AD=4 cm,AA′=3 cm.求在长方体表面上连接A、C′两点的诸曲线的长度的最小值.[解析]将长方体的表面展开为平面图,这就将原问题转化为平面问题.本题所求必在下图所示的三个图中,从而,连接AC′的诸曲线中长度最小的为41 cm(如图乙所示).一、选择题1.一个空间几何体的正视图与侧视图均为全等的等腰三角形,俯视图为一个圆及其圆心,那么这个几何体为()A.棱锥B.棱柱C.圆锥D.圆柱[答案] C2.已知某空间几何体的三视图如图所示,则此几何体为()A.圆台B.四棱锥C.四棱柱D.四棱台[答案] D3.下列几何体中,正视图、侧视图、俯视图都相同的几何体的序号是()A.(1)(2) B.(2)(3)C.(3)(4) D.(1)(4)[答案] D4.(2012-2013·安徽淮南高三模拟)下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④[答案] D[解析]①正方体,三视图均相同;②圆锥,正视图和侧视图相同;③三棱台,三视图各不相同;④圆台,正视图和侧视图相同.[点评]熟悉常见几何体的三视图特征,对于画几何体的直观图是基本的要求.下图是最基本的常见几何体的三视图.[答案] C[解析]结合俯视图的定义,仔细观察,易得答案C.6.一个几何体的三视图如图,则组成该组合体的简单几何体为()A.圆柱与圆台B.四棱柱与四棱台C.圆柱与四棱台D.四棱柱与圆台[答案] B[解析]该几何体形状如图.上部是一个四棱柱,下部是一个四棱台.7.如图所示几何体的正视图和侧视图都正确的是()[答案] B8.(2011·新课标全国高考)在一个几何体的三视图中,主视图和俯视图如右图所示,则相应的侧视图可以为()[答案] D[解析]此几何体为一个半圆锥和一个半三棱锥的组合体,只有D项符合题意.二、填空题9.下列图形:①三角形;②直线;③平行四边形;④四面体;⑤球.其中投影不可能是线段的是________.[答案]②④⑤[解析]三角形的投影是线段成三角形;直线的投影是点或直线;平行四边形的投影是线段或平行四边形;四面体的投影是三角形或四边形;球的投影是圆.10.由若干个小正方体组成的几何体的三视图如下图,则组成这个组合体的小正方体的个数是________.[答案] 5[解析]由三视图可作出直观图,由直观图易知共有5个小正方体.11.(2012~2013·烟台高一检测)已知某一几何体的正视图与侧视图如图所示,则下列图形中,可以是该几何体的俯视图的图形有________.[答案]①②③④12.(2012-2013·湖南高三“十二校联考”)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形,则用________个这样的几何体可以拼成一个棱长为4的正方体.[答案] 3[解析]该几何体是四棱锥,其底面是边长为4的正方形,高等于4,如图(1)所示的四棱锥A-A1B1C1D1,如图(2)所示,三个相同的四棱锥A-A1B1C1D1,A-BB1C1C,A -DD1C1C可以拼成一个棱长为4的正方体.三、解答题13.如图,四棱锥的底面是正方形,顶点在底面上的射影是底面正方形的中心,试画出其三视图.[解析]所给四棱锥的三视图如下图.[点评](1)画三视图时,务必做到正视图与侧视图的高度一致(即所谓的高平齐)、正视图与俯视图的长度一致(即所谓的“长对正”)、侧视图与俯视图的宽度一致(即所谓的“宽相等”).(2)习惯上将侧视图放在正视图的右侧,将俯视图放在正视图的下方.[拓展提高]1.三视图中各种数据的对应关系:(1)正视图中AB的长对应原四棱锥底面多边形的左右方向的长度,AC、BC的长则不对应侧棱的长,它们对应四棱锥的顶点到底面左、右两边的距离.(2)侧视图中,EF的长度对应原四棱锥底面的前后长度,GE、GF的长度则是四棱锥顶点与底面前后两边的距离.(3)俯视图中HIJK的大小与四棱锥底面的大小形状完全一致,而OK,OI,OJ,OH的大小,则为四棱锥的顶点在底面上的投影到底面各顶点的距离.2.误区警示:正视图、侧视图中三角形的腰长有的学生会误认为是棱锥的侧棱长,实则不然.弄清一些数据的对应关系,是后面进行相关计算的前提.14.依所给实物图的形状,画出所给组合体的三视图.[解析]图中所给几何体是一个圆柱和一个正六棱柱的组合体,在中心以中心轴为轴线挖去一个小圆柱,故其三视图如下:15.说出下列三视图表示的几何体:[解析]16.根据下列图中所给出的一个物体的三视图,试画出它的形状.[答案]所对应的空间几何体的图形为:一、选择题1.如果平面图形中的两条线段平行且相等,那么在它的直观图中对应的这两条线段()A.平行且相等B.平行不相等C.相等不平行D.既不平行也不相等[答案] A2.给出以下关于斜二测直观图的结论,其中正确的个数是()①角的水平放置的直观图一定是角.②相等的角在直观图中仍相等.③相等的线段在直观图中仍然相等.④若两条线段平行,则在直观图中对应的两条线段仍然平行.A.0 B.1C.2 D.3[答案] C[解析]由斜二测画法规则可知,直观图保持线段的平行性,∴④对,①对;而线段的长度,角的大小在直观图中都会发生改变,∴②③错.3.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上说法正确的是()A.①B.①②C.③④D.①②③④[答案] B[解析]根据画法规则,平行性保持不变,与y轴平行的线段长度减半.4.如图所示的直观图是将正方体模型放置在你的水平视线的左上角而绘制的,其中正确的是()[答案] A[解析]由几何体直观图画法及立体图形中虚线的使用可知A正确.5.如图所示,△A′B′C′是水平放置的△ABC的直观图,则在△ABC的三边及中线AD中,最长的线段是()A.AB B.ADC.BC D.AC[答案] D[解析]△ABC是直角三角形,且∠ABC=90°,则AC>AB,AC >AD,AC>BC.6.一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,已知长方体的长、宽、高分别为20 m,5 m,10 m,四棱锥的高为8 m,若按的比例画出它的直观图,那么直观图中,长方体的长、宽、高和棱锥的高应分别为() A.4 cm,1 cm, 2 cm,1.6 cmB.4 cm,0.5 cm,2 cm,0.8 cmC.4 cm,0.5 cm,2 cm,1.6 cmD.2 cm,0.5 cm,1 cm,0.8 cm[答案] C[解析]由比例尺可知长方体的长、宽、高和四棱锥的高分别为4 cm,1 cm,2 cm和1.6 cm,再结合斜二测画法,可知直观图的相应尺寸应分别为4 cm,0.5 cm,2 cm,1.6 cm.7.如图为一平面图形的直观图,则此平面图形可能是选项中的()[答案] C[解析]由直观图一边在x′轴上,一边与y′轴平行,知原图为直角梯形.8.在下列选项中,利用斜二测画法,边长为1的正三角形ABC的直观图不是全等三角形的一组是( )[答案] C[解析] C 中前者画成斜二测直观图时,底AB 不变,原来高h 变为h 2,后者画成斜二测直观图时,高不变,边AB 变为原来的12.二、填空题9.斜二测画法中,位于平面直角坐标系中的点M (4,4)在直观图中的对应点是M ′,则点M ′的坐标为________,点M ′的找法是________.[答案] M ′(4,2) 在坐标系x ′O ′y ′中,过点(4,0)和y ′轴平行的直线与过点(0,2)和x ′轴平行的直线的交点即是点M ′.[解析] 在x ′轴的正方向上取点M 1,使O 1M 1=4,在y ′轴上取点M 2,使O ′M 2=2,过M 1和M 2分别作平行于y ′轴和x ′轴的直线,则交点就是M ′.10.如右图,水平放置的△ABC 的斜二测直观图是图中的△A ′B ′C ′,已知A ′C ′=6,B ′C ′=4,则AB 边的实际长度是________.[答案] 10[解析] 由斜二测画法,可知△ABC 是直角三角形,且∠BCA =90°,AC =6,BC =4×2=8,则AB =AC 2+BC 2=10.11.如图,是△AOB 用斜二测画法画出的直观图,则△AOB 的面积是________.[答案] 16[解析] 由图易知△AOB 中,底边OB =4, 又∵底边OB 的高为8, ∴面积S =12×4×8=16.12.如图所示,正方形O′A′B′C′的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是________?[答案]8[解析]原图形为OABC为平行四边形,OA=1,AB=OA2+OB2=3,∴四边形OABC周长为8.三、解答题13.用斜二测画法画出下列图形的直观图(不写画法).[解析]14.如图所示,四边形ABCD 是一个梯形,CD ∥AB ,CD =AO =1,三角形AOD 为等腰直角三角形,O 为AB 的中点,试求梯形ABCD 水平放置的直观图的面积.[解析] 在梯形ABCD 中,AB =2,高OD =1,由于梯形ABCD 水平放置的直观图仍为梯形,且上底CD 和下底AB 的长度都不变,如图所示,在直观图中,O ′D ′=12OD ,梯形的高D ′E ′=24,于是梯形A ′B ′C ′D ′的面积为12×(1+2)×24=328.15.已知几何体的三视图如下,用斜二测画法,画出它的直观图(直接画出图形,尺寸不作要求).[解析]如图.16.如图所示,直角梯形ABCD中,AD∥BC,且AD>BC,该梯形绕边AD所在直线EF旋转一周得一几何体,画出该几何体的直观图和三视图.[分析]该几何体是一个圆锥和一个圆柱拼接成的简单组合体.[解析]直观图如图a所示,三视图如图b所示.一、选择题1.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的( )A .4倍B .3倍 C.2倍 D .2倍[答案] D[解析] 由已知得l =2r ,S 侧S 底=πrl πr 2=lr =2,故选D.2.长方体的高为1,底面积为2,垂直于底的对角面的面积是5,则长方体的侧面积等于( )A .27B .4 3C .6D .3[答案] C[解析] 设长方体的长、宽、高分别为a 、b 、c , 则c =1,ab =2,a 2+b 2·c =5, ∴a =2,b =1,故S 侧=2(ac +bc )=6.3.已知一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )A.1+2π2πB.1+4π4πC.1+2ππD.1+4π2π[答案] A[解析] 设圆柱的底面半径为r ,高为h ,则由题设知h =2πr ,∴S 全=2πr 2+2πr ·h =2πr 2(1+2π)又S 侧=h 2=4π2r 2,∴S 全S 侧=1+2π2π.[点评] 圆柱的侧面展开图是一个矩形,矩形两边长分别为圆柱底面周长和高;圆锥侧面展开图是一个扇形,半径为圆锥的母线,弧长为圆锥底面周长;圆台侧面展开图是一个扇环,其两段弧长为圆台两底周长,扇形两半径的差为圆台的母线长,对于柱、锥、台的有关问题,有时要通过侧面展开图来求解.4.将一个棱长为a 的正方体,切成27个全等的小正方体,则表面积增加了( )A .6a 2B .12a 2C .18a 2D .24a 2[答案] B[解析] 原来正方体表面积为S 1=6a 2,切割成27个全等的小正方体后,每个小正方体的棱长为13a ,其表面积为6×⎝ ⎛⎭⎪⎫13a 2=23a 2,总表面积S 2=27×23a 2=18a 2,∴增加了S 2-S 1=12a 2.5.如图所示,圆台的上、下底半径和高的比为,母线长为10,则圆台的侧面积为( )A .81πB .100πC .14πD .169π[答案] B[解析] 圆台的轴截面如图,设上底半径为r ,则下底半径为4r ,高为4r .因为母线长为10,所以在轴截面等腰梯形中,有102=(4r )2+(4r -r )2.解得r =2.所以S 圆台侧=π(r +4r )·10=100π,故选B.6.如图,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的全面积为( )A.3π2 B .2π C .πD .4π[答案] A[解析] 由三视图可知,该几何体是底半径为12,高为1的圆柱,故其全面积S =2π×⎝ ⎛⎭⎪⎫122+2π×12×1=3π2.7.(2012-2013·安徽合肥一模)如图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为2和4,腰长为4的等腰梯形,则该几何体的侧面积是( )A .6πB .12πC .18πD .24π[答案] B[解析] 该几何体是两底面半径分别为1、2,母线长为4的圆台,则其侧面积是π(1+2)×4=12π.8.(2011·海南、宁夏高考)一个棱锥的三视图如图所示,则该棱锥的全面积(单位:cm 2)为( )A .48+12 2B .48+24 2C .36+12 2D .36+24 2[答案] A[解析] 由三视图可得:底面为等腰直角三角形,腰长为6,面积为18;垂直于底面的面为等腰三角形,面积为12×62×4=122;其余两个面为全等的三角形,每个三角形的面积都为12×6×5=15.所以全面积为48+12 2.二、填空题9.已知圆柱OO ′的母线l =4 cm ,全面积为42π cm 2,则圆柱OO ′的底面半径r = ________cm.[答案] 3[解析] 圆柱OO ′的侧面积为2πrl =8πr (cm 2),两底面积为2×πr 2=2πr 2(cm 2),∴2πr 2+8πr =42π, 解得r =3或r =-7(舍去),∴圆柱的底面半径为3 cm.10.一个几何体的三视图如图所示,其中俯视图为正三角形,则该几何体的表面积为________.[答案] 24+2 3[解析] 该几何体是三棱柱,且两个底面是边长为2的正三角形,侧面是全等的矩形,且矩形的长是4,宽是2,所以该几何体的表面积为2×(12×2×3)+3×(4×2)=24+2 3.11.如图所示,一圆柱内挖去一个圆锥,圆锥的顶点是圆柱底面的圆心,圆锥的底面是圆柱的另一个底面.圆柱的母线长为6,底面半径为2,则该组合体的表面积等于________.[答案] (410+28)π[解析] 挖去的圆锥的母线长为62+22=210,则圆锥的侧面积等于410π.圆柱的侧面积为2π×2×6=24π,圆柱的一个底面面积为π×22=4π,所以组合体的表面积为410π+24π+4π=(410+28)π.12.下图中,有两个相同的直三棱柱,高为2a ,底面三角形的三边长分别为3a 、4a 、5a (a >0).用它们拼成一个三棱柱或四棱柱,在所有可能的情况中表面积最小的是一个四棱柱,则a 的取值范围是________.[答案] 0<a <153[解析] 底面积为6a 2,侧面面积分别为6、8、10,拼成三棱柱时,有三种情况:S 1=2×6a 2+2(10+8+6)=12a 2+48, S 2=24a 2+2(10+8)=24a 2+36, S 3=24a 2+2(10+6)=24a 2+32. 拼成四棱柱时只有一种情况:表面积为(8+6)×2+4×6a 2=24a 2+28.由题意得24a 2+28<12a 2+48,解得0<a <153. 三、解答题13.已知各棱长为5,底面为正方形,各侧面均为正三角形的四棱锥S -ABCD ,如图所示,求它的表面积.[分析] 求各侧面的面积→ 求侧面积→求底面积→求表面积[解析] ∵四棱锥S -ABCD 的各棱长均为5, 各侧面都是全等的正三角形, 设E 为AB 的中点, 则SE ⊥AB ,∴S 侧=4S △SAB =4×12×5×532=253, S 底=52=25,∴S 表面积=S 侧+S 底=253+25=25(3+1). 14.正四棱台两底面边长分别为a 和b (a <b ).(1)若侧棱所在直线与上、下底面正方形中心的连线所成的角为45°,求棱台的侧面积;(2)若棱台的侧面积等于两底面面积之和,求它的高.[解析] (1)如图,设O 1、O 分别为上、下底面的中心,过C 1作C 1E ⊥AC 于E ,过E 作EF ⊥BC ,连接C 1F ,则C 1F 为正四棱台的斜高.由题意知∠C 1CO =45°,CE =CO -EO =CO -C 1O 1=22(b -a ), 在Rt △C 1CE 中,C 1E =CE =22(b -a ), 又EF =CE ·sin45°=12(b -a ), ∴C 1F =C 1E 2+EF 2 =[22(b -a )]2+[12(b -a )]2=32(b -a ).∴S 侧=12(4a +4b )×32(b -a )=3(b 2-a 2). (2)由S 侧=a 2+b 2,∴12(4a +4b )·h 斜=a 2+b 2, ∴h 斜=a 2+b 22(a +b ).又EF =b -a 2,∴h =h 2斜-EF 2=aba +b.15.(2012-2013·嘉兴高一检测)如图在底面半径为2,母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.[解析] 设圆锥的底面半径为R ,圆柱的底面半径为r ,表面积为S .则R =OC =2,AC =4, AO =42-22=2 3.如图所示易知△AEB ∽△AOC ,∴AE AO =EB OC ,即323=r 2,∴r =1S 底=2πr 2=2π,S 侧=2πr ·h =23π. ∴S =S 底+S 侧=2π+23π=(2+23)π.16.已知某几何体的三视图如图,求该几何体的表面积.(单位:cm)[解析] 几何体的直观图如图.这是底面边长为4,高为2的同底的正四棱柱与正四棱锥的组合体,易求棱锥的斜高h ′=22,其表面积S =42+4×4×2+⎝ ⎛⎭⎪⎫12×4×22×4=48+16 2 cm 2.一、选择题1.长方体三个面的面积分别为2、6和9,则长方体的体积是( ) A .6 3 B .3 6 C .11 D .12[答案] A[解析] 设长方体长、宽、高分别为a 、b 、c ,则ab =2,ac =6,bc =9,相乘得(abc )2=108,∴V =abc =6 3.2.已知正六棱台的上、下底面边长分别为2和4,高为2,则体积为( )A .32 3B .28 3C .24 3D .20 3 [答案] B[解析] 上底面积S 1=6×34×22=63, 下底面积S 2=6×34×42=243, 体积V =13(S 1+S 2+S 1S 2)·h=13(63+243+63·243)×2=28 3.3.(2012~2013学年枣庄模拟)一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,直角边长为1,则这个几何体的体积为( )。
人教B版高中数学必修第二册全册学案第四章指数函数、对数函数与幂函数................................................................................ - 2 -4.1指数与指数函数..................................................................................................... - 2 -4.1.1实数指数幂及其运算.................................................................................. - 2 -4.1.2指数函数的性质与图像.............................................................................. - 7 -第1课时指数函数的性质与图像.............................................................. - 7 -第2课时指数函数的性质与图像的应用................................................ - 13 -4.2对数与对数函数................................................................................................... - 19 -4.2.1对数运算 ................................................................................................... - 19 -4.2.2对数运算法则........................................................................................ - 23 -4.2.3对数函数的性质与图像............................................................................ - 28 -第1课时对数函数的性质与图像............................................................ - 28 -第2课时对数函数的性质与图像的应用................................................ - 33 -4.3指数函数与对数函数的关系............................................................................... - 39 -4.4幂函数 .................................................................................................................. - 44 -4.5增长速度的比较................................................................................................... - 49 -4.6函数的应用(二) .................................................................................................... - 54 - 第五章统计与概率.............................................................................................................. - 59 -5.1统计 ...................................................................................................................... - 59 -5.1.1数据的收集................................................................................................ - 59 -第1课时总体与样本、简单随机抽样.................................................... - 59 -第2课时分层抽样.................................................................................... - 65 -5.1.2数据的数字特征........................................................................................ - 70 -5.1.3数据的直观表示........................................................................................ - 78 -5.1.4用样本估计总体........................................................................................ - 86 -5.3概率 ...................................................................................................................... - 92 -5.3.1样本空间与事件........................................................................................ - 92 -5.3.2事件之间的关系与运算............................................................................ - 96 -5.3.3古典概型 ................................................................................................. - 102 -5.3.4频率与概率.............................................................................................. - 107 -5.3.5随机事件的独立性.................................................................................. - 110 -5.4统计与概率的应用............................................................................................. - 116 - 第六章平面向量初步........................................................................................................ - 121 -6.1平面向量及其线性运算..................................................................................... - 121 -6.1.1向量的概念.............................................................................................. - 121 -6.1.2向量的加法.............................................................................................. - 126 -6.1.3向量的减法.............................................................................................. - 132 -6.1.4数乘向量 ................................................................................................. - 137 -6.1.5向量的线性运算...................................................................................... - 141 -6.2向量基本定理与向量的坐标............................................................................. - 146 -6.2.1向量基本定理.......................................................................................... - 146 -6.2.2直线上向量的坐标及其运算.................................................................. - 151 -6.2.3平面向量的坐标及其运算...................................................................... - 154 -6.3平面向量线性运算的应用................................................................................. - 161 - 第四章指数函数、对数函数与幂函数4.1指数与指数函数4.1.1实数指数幂及其运算素养目标·定方向课程标准学法解读1.理解n次方根、n次根式的概念,能正确运用根式运算性质化简求值.2.理解有理数指数幂的含义,能正确运用其运算法则进行化简、计算.3.理解无理数指数幂,了解指数幂的拓展过程.4.掌握实数指数幂的运算法则.1.通过学习n次方根、n次根式概念及有理数指数幂含义,提升数学抽象素养.2.通过根式运算性质、有理数指数幂运算法则的应用,提升数学运算素养.3.通过学习无理数指数幂,了解无限逼近思想,提升数学抽象素养.4.通过实数指数幂运算法则的应用,提升数学运算素养.必备知识·探新知知识点n次方根(1)定义:给定大于1的正整数n和实数a,如果存在实数x,使得__x n=a__,则x称为a的n次方根.(2)表示:n为奇数n为偶数a∈R a>0a=0a<0 x=__n a__x=__±n a__0不存在思考:对于式子n a中a一定是非负数吗?如不是,其范围是什么?提示:不一定是非负数,其范围由n的奇偶决定;当n为奇数时,a∈R;当n为偶数时,a≥0.知识点根式(1)当na 有意义时,na 称为根式,n 称为__根指数__,a 称为被开方数. (2)性质:①(na )n=__a __;②na n=⎩⎪⎨⎪⎧__a __,n 为奇数,__|a |__,n 为偶数.思考:(n a )n 与na n 中的字母a 的取值范围是否一样?提示:取值范围不同.式子(na )n 中隐含a 是有意义的,若n 为偶数,则a ≥0,若n 为奇数,a ∈R ;式子na n 中,a ∈R .分数指数幂的意义 知识点正分数 指数幂 n 为正整数,na 有意义,且a ≠0时,规定a 1n=__na __ 正分数m n,a m n =__(n a )m __=na m负分数 指数幂s 是正分数,a s 有意义且a ≠0时,规定a -s =__1as __思考:分数指数幂中的mn有什么规定?提示:mn 为既约分数,如果没有特殊说明,一般总认为分数指数中的分数都是既约分数.知识点无理数指数幂当a >0且t 是无理数时,a t 是一个确定的__实数__. 思考:当a >0时,式子a x 中的x 的范围是什么? 提示:x ∈R . 知识点实数指数幂的运算法则(a >0,b >0,r ,s ∈R )(1)a r a s =__a r +s __. (2)(a r )s =__a rs __. (3)(ab )r =__a r b r __.关键能力·攻重难题型探究题型n 次方根的概念及相关问题典例剖析典例1 (1)求使等式(a -3)(a 2-9)=(3-a )a +3成立的实数a 的取值范围;(2)设-3<x <3,求x 2-2x +1-x 2+6x +9的值. [分析] (1)利用a 2=|a |进行讨论化简. (2)利用限制条件去绝对值号.[解析] (1)(a -3)(a 2-9)=(a -3)2(a +3) =|a -3|a +3,要使|a -3|a +3=(3-a )a +3成立,需⎩⎪⎨⎪⎧a -3≤0,a +3≥0,解得-3≤a ≤3,即实数a 的取值范围为[-3,3]. (2)原式=(x -1)2-(x +3)2=|x -1|-|x +3|,∵-3<x <3,∴当-3<x <1时,原式=-(x -1)-(x +3)=-2x -2;当1≤x <3时,原式=(x -1)-(x +3)=-4.∴原式=⎩⎪⎨⎪⎧-2x -2,-3<x <1,-4,1≤x <3.规律方法:1.对于n a ,当n 为偶数时,要注意两点:(1)只有a ≥0时才有意义;(2)只要na 有意义,na 必不为负.2.当n 为偶数时,na n 先化为|a |,再根据a 的正负去绝对值符号. 对点训练1.(1)若4a -2+(a -3)0有意义,则a 的 取值范围是__[2,3)∪(3,+∞)__; (2)已知x ∈[1,2],化简(4x -1)4+6(x -2)6=__1__.[解析] (1)由⎩⎪⎨⎪⎧a -2≥0,a -3≠0,得a ≥2,且a ≠3.(2)∵x ∈[1,2],∴x -1≥0,x -2≤0,∴(4x -1)4+6(x -2)6=x -1+|x -2|=x -1-(x -2)=1.题型根式与分数指数幂的互化典例剖析典例2 (1)用根式表示下列各式:a 15;a 34;a -23; (2)用分数指数幂表示下列各式:3a 5;3a 6;13a 2.[分析] 利用分数指数幂的定义求解. [解析] (1)a 15=5a ;a 34=4a 3;a -23=1a 23=13a 2.(2)3a 5=a 53 ;3a 6=a 63=a 2;13a 2=1a 23=a -23.规律方法:根式与分数指数幂互化的规律(1)根指数化为,分数指数的分母,被开方数(式)的指数――→化为分数指数的分子.(2)在具体计算时,通常会把根式转化成分数指数幂的形式,然后利用有理数指数幂的运算法则解题.对点训练2.(1)用根式表示下列各式:x 35;x -13; (2)用分数指数幂表示下列各式: ①b 3a 2·a 2b 6(a >0,b >0); ②a -4b 23ab 2(a >0,b >0).[解析] (1)x 35=5x 3;x -13=13x. (2)①b 3a 2·a 2b6=b 3a 2·a b 3=a -12. ②a-4b 23ab 2=a -4b 2·(ab 2)13 =a-4b 2a 13 b 23 =a-113b 83=a-116b 43.题型有理(实数)指数幂的运算法则的应用典例剖析典例3 化简:(1)(5x -23y 12)·⎝⎛⎭⎫-14x -1y 12 ·⎝⎛⎭⎫-56x 13 y -16 (其中x >0,y >0); (2)0.064-13-⎝⎛⎭⎫-780+[(-2)3] -43 +16-0.75; (3)32+3×27-33; (4)(1+2)[(-2-1)-2(2)12 ]12+(2)1-3×(2)1+3.[分析] 利用幂的运算法则计算.[解析] (1)原式=⎣⎡⎦⎤5×(-14)×(-56)·x -23 +(-1)+13·y 12 +12 -16=2524x -43 y 56 . (2)原式=0.4-1-1+(-2)-4+2-3 =52-1+116+18=2716. (3)32+3×27-33=32+3×(33)-33=32+3×3-3=32+3-3=32=9.(4)(1+2)[(-2-1)-2(2)12]12+(2)1-3×(2)1+3=(1+2)[(2+1)-2·(2)12 ]12+(2)1-3+1+3=(1+2)[(2+1)-2×12(2)12 ×12 ]+(2)2 =(1+2)·[(2+1)-1·(2)14]+2 =(2)14+2=2+218.规律方法:指数幂的一般运算步骤是:有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数幂的运算性质.对点训练 3.化简与求值(1)⎝⎛⎭⎫-338 -23 +(0.002)-12 -10(5-2)-1+(2-3)0; (2)3a 32·a -3·(a -5)-12 ·(a -12 )13. [解析] (1)原式=(-1) -23⎝⎛⎭⎫338-23 +⎝⎛⎭⎫1500-12-105-2+1=⎝⎛⎭⎫278-23 +(500) 12 -10(5+2)+1=49+105-105-20+1=-1679. (2)原式=(a 32·a -23 )13·[(a -5)-12·(a -12)13] 12=(a 0) 13·(a 52·a -23)12=(a -4) 12=a -2.易错警示典例剖析典例4 化简(1-a )[(a -1)-2·(-a ) 12 ] 12.[错解] 原式=(1-a )(a -1)-1·(-a ) 14 =-(-a ) 14.[辨析] 误解中忽略了题中有(-a ) 12 ,即-a ≥0,a ≤0,则[(a -1)-2] 12 ≠(a -1)-1. [正解] ∵(-a ) 12存在,∴-a ≥0,故a -1<0,原式=(1-a )·(1-a )-1(-a ) 14=(-a )14.4.1.2 指数函数的性质与图像第1课时 指数函数的性质与图像素养目标·定方向课程标准学法解读1.了解指数函数的实际背景,理解指数函数的概念.2.掌握指数函数的性质与图像. 3.初步学会运用指数函数来解决问题.1.通过理解指数函数的概念和意义,发展数学抽象素养.2.通过利用计算机软件作指数函数的图像,发展直观想象素养.3.通过指数函数的实际应用,提升数学建模素养.必备知识·探新知知识点指数函数函数__y =a x __称为指数函数,其中a 是常数,a >0且a ≠1. 思考:(1)为什么指数函数的底数a >0,且a ≠1? (2)指数函数的解析式有什么特征?提示:(1)①如果a =0,当x >0时,a x 恒等于0,没有研究的必要;当x ≤0时,a x 无意义. ②如果a <0,例如f (x )=(-4)x ,这时对于x =12,14,…,该函数无意义.③如果a =1,则y =1x 是一个常量,没有研究的价值. 为了避免上述各种情况,所以规定a >0,且a ≠1.(2)①a >0,且a ≠1,②a x 的系数为1;③自变量x 的系数为1. 指数函数的图像和性质知识点0<a <1a >1图像定义域 实数集R 值域 __(0,+∞)__ 性质过定点__(0,1)__是__减__函数是__增__函数思考:(1)对于指数函数y =2x ,y =3x ,y =⎝⎛⎭⎫12x,y =⎝⎛⎭⎫13x ,…,为什么一定过点(0,1)? (2)对于指数函数y =a x (a >0且a ≠1),在下表中,?处y 的范围是什么?底数 x 的范围 y 的范围 a >1x >0 ? x <0 ? 0<a <1x >0 ? x <0?提示:(1)当x =0时,a 0=1恒成立,即指数函数的图像一定过点(0,1). (2)底数 x 的范围 y 的范围 a >1x >0 y >1 x <0 0<y <1 0<a <1x >0 0<y <1 x <0y >1关键能力·攻重难题型探究题型指数函数的概念典例剖析典例1 (1)函数y =(a 2-3a +3)·a x 是指数函数,则a 的值为__2__. (2)指数函数y =f (x )的图像经过点(π,e),则f (-π)=__1e __.[分析] (1)根据指数函数解析式的特征列方程求解. (2)设出指数函数的解析式,代入点的坐标求f (-π). [解析] (1)由题意得a 2-3a +3=1, 即(a -2)(a -1)=0, 解得a =2或a =1(舍).(2)设指数函数为y =a x (a >0且a ≠1), 则e =a π,所以f (-π)=a -π=(a π)-1=e -1=1e .规律方法:1.判断一个函数是指数函数的方法(1)把握指数函数解析式的特征:①底数a >0,且a ≠1; ②a x 的系数为1;③自变量x 的系数为1.(2)有些函数需要对解析式变形后判断,如y =13x =⎝⎛⎭⎫13x 是指数函数.2.求指数函数解析式的步骤(1)设指数函数的解析式f (x )=a x (a >0且a ≠1). (2)利用已知条件求底数A . (3)写出指数函数的解析式. 对点训练1.(1)函数f (x )=(2a -3)a x 是指数函数,则f (1)=( D ) A .8 B .32C .4D .2(2)指数函数y =f (x )的图像经过点⎝⎛⎭⎫-2,14,那么f (4)·f (2)=__64__. [解析] (1)因为f (x )=(2a -3)a x 为指数函数,所以2a -3=1,解得a =2,所以f (1)=21=2.(2)设指数函数的解析式为y =a x (a >0且a ≠1), 因为函数的图像经过点⎝⎛⎭⎫-2,14,所以 14=a -2,所以a =2, 所以指数函数的解析式为y =2x , 所以f (4)·f (2)=24×22=26=64. 题型指数函数的图像问题典例剖析典例2 (1)函数y =a x ,y =x +a 在同一坐标系中的图像可能是( D )(2)要得到函数y =23-x 的图像,只需将函数y =⎝⎛⎭⎫12x 的图像( A ) A .向右平移3个单位 B .向左平移3个单位 C .向右平移8个单位D .向左平移8个单位[分析] (1)要注意对a 进行讨论,分0<a <1和a >1两种情况讨论判断. (2)先对解析式变形,再进行判断. [解析] (1)函数y =x +a 单调递增. 由题意知a >0且a ≠1.当0<a <1时,y =a x 单调递减,直线y =x +a 在y 轴上的截距大于0且小于1; 当a >1时,y =a x 单调递增,直线y =x +a 在y 轴上的截距大于1.故选D . (2)因为y =23-x =⎝⎛⎭⎫12 x -3,所以y =⎝⎛⎭⎫12x的图像向右平移3个单位得到y =⎝⎛⎭⎫12x -3 , 即y =23-x 的图像.规律方法:1.函数图像问题的处理技巧(1)抓住图像上的特殊点,如指数函数的图像过定点.(2)利用图像变换,如函数图像的平移变换(左右平移、上下平移).(3)利用函数的奇偶性与单调性,奇偶性确定函数的对称情况,单调性决定函数图像的走势.2.指数型函数图像过定点问题的处理策略求指数型函数图像所过的定点时,只需令指数为0,求出对应的x 与y 的值,即为函数图像所过的定点.对点训练2.(1)图中曲线C 1,C 2,C 3,C 4分别是指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像,则a ,b ,c ,d 与1之间的大小关系是( D )A .a <b <1<c <dB .a <b <1<d <cC .b <a <1<c <dD .b <a <1<d <c(2)若函数y =a x +m -1(a >0)的图像经过第一、三和第四象限,则( B ) A .a >1B .a >1,且m <0C .0<a <1,且m >0D .0<a <1[解析] (1)过点(1,0)作直线x =1,在第一象限内分别与各曲线相交,可知1<d <c ,b <a <1,故b <a <1<d <C .(2)y =a x (a >0)的图像在第一、二象限内,欲使y =a x +m -1的图像经过第一、三、四象限,必须将y =a x 向下移动.当0<a <1时,图像向下移动,只能经过第一、二、四象限或第二、三、四象限,故只有当a >1时,图像向下移动才可能经过第一、三、四象限.当a >1时,图像向下移动不超过一个单位时,图像经过第一、二、三象限,向下移动一个单位时,图像恰好经过原点和第一、三象限,欲使图像经过第一、三、四象限,则必须向下平移超过一个单位,故m -1<-1,所以m <0,故选B .题型指数函数的定义域、值域问题典例剖析典例3 (1)当x >0时,函数f (x )=(a 2-1)x 的值域为(1,+∞),则实数a 的取值范围是( D )A .(-2,-1)∪(1,2)B .(-1,1)C .(-∞,-1)∪(1,+∞)D .(-∞,-2)∪(2,+∞)(2)函数y =52x -1的定义域为__⎩⎨⎧⎭⎬⎫x⎪⎪x ≥12__. [分析] (1)根据指数函数的图像,函数值恒大于1,底数应该大于1可得. (2)根据根式的性质,被开方数大于或等于0求解.[解析] (1)当x >0时,函数f (x )=(a 2-1)x 的值总大于1,则底数a 2-1>1,a 2>2,所以|a |>2,所以实数a 的取值范围是(-∞,-2)∪(2,+∞).(2)要使函数y =52x -1有意义,则2x -1≥0,所以x ≥12.所以函数y = 52x -1的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥12.规律方法:函数y =a f (x )定义域、值域的求法(1)定义域:形如y =a f (x )形式的函数的定义域是使得f (x )有意义的x 的取值集合. (2)值域:①换元,令t =f (x ); ②求t =f (x )的定义域x ∈D ; ③求t =f (x )的值域t ∈M ;④利用y =a t 的单调性求y =a t ,t ∈M 的值域.提醒:(1)通过建立不等关系求定义域时,要注意解集为各不等关系解集的交集. (2)当指数型函数的底数含字母时,在求定义域、值域时要注意分类讨论. 对点训练3.(1)已知集合A ={x |y =21x -4},B ={0,2,4},A ∩B =____________;(2)求函数y =312x -4的定义域和值域.[解析] (1)要使y =21x -4有意义需x -4≠0,则x ≠4,即A ={x |x ≠4,x ∈R },所以A ∩B ={0,2}.(2)要使函数y =312x -4有意义,只需2x -4>0,解得x >2;令t =12x -4,则t >0,由于函数y =3t在t ∈(0,+∞)上是增函数,故3t>1.故函数y =312x -4的定义域为{x |x >2},值域为{y |y >1}.误区警示:此题易忽略2x -4≠0,而误认为2x -4≥0从而造成错误.易错警示典例剖析典例4 若函数f (x )=a x -1(a >0,a ≠1)的定义域和值域都是[0,2],求实数a 的值.[错解] ∵函数f (x )=a x -1(a >0,a ≠1)的定义域和值域都是[0,2],∴⎩⎪⎨⎪⎧a 0-1=2a 2-1=0,∴a =3.故实数a 的值为3.[辨析] 误解中没有对a 进行分类讨论.[正解] 当a >1时,函数f (x )=a x -1在[0,2]上是增函数,由题意可知,⎩⎪⎨⎪⎧ a 0-1=0a 2-1=2,解得a = 3.当0<a <1时,函数f (x )=a x -1在[0,2]上是减函数,由题意可知,⎩⎪⎨⎪⎧a 0-1=2a 2-1=0,此时a 无解.综上所述,a =3.第2课时 指数函数的性质与图像的应用素养目标·定方向课程标准学法解读1.进一步熟练掌握指数函数的图像、性质.2.会求指数型函数的定义域、值域、最值,以及能判断与证明单调性.3.能够利用指数函数的图像和性质比较数的大小、解不等式.1.通过例题进一步深入理解指数函数的单调性及其应用,提升学生的逻辑推理素养. 2.借助指数函数的性质,研究指数型函数的相关问题,提升学生的数学运算及数学抽象素养.必备知识·探新知知识点底数与指数函数图像的关系(1)由指数函数y =a x (a >0且a ≠1)的图像与直线x =1相交于点(1,a )可知,在y 轴右侧,图像从__下__到__上__相应的底数由小变大.(2)由指数函数y =a x (a >0且a ≠1)的图像与直线x =-1相交于点⎝⎛⎭⎫-1,1a 可知,在y 轴左侧,图像从下到上相应的底数__由大变小__.如图所示,指数函数底数的大小关系为0<a 4<a 3<1<a 2<a 1. 知识点 解指数型不等式(1)形如a f (x )>a g (x )的不等式,可借助y =a x (a >0且a ≠1)的__单调性__求解;(2)形如a f(x)>b的不等式,可将b化为以a为底数的指数幂的形式,再借助y=a x(a>0且a≠1)的__单调性__求解;(3)形如a x>b x的不等式,可借助两函数y=a x(a>0且a≠1),y=b x(b>0且b≠1)的图像求解.知识点与指数函数复合的函数单调性一般地,形如y=a f(x)(a>0且a≠1)函数的性质有:(1)函数y=a f(x)与函数y=f(x)有__相同__的定义域.(2)当a>1时,函数y=a f(x)与y=f(x)具有__相同__的单调性;当0<a<1时,函数y=a f(x)与y=f(x)具有__相反__的单调性.思考:(1)指数函数y=a x(a>0且a≠1)的单调性取决于哪个量?(2)如何判断形如y=f(a x)(a>0且a≠1)的函数的单调性?提示:(1)指数函数y=a x(a>0且a≠1)的单调性与其底数a有关,当a>1时,y=a x(a>0且a≠1)在定义域上是增函数,当0<a<1时,y=a x(a>0且a≠1)在定义域上是减函数.(2)①定义法,即“取值—作差—变形—定号”.其中,在定号过程中需要用到指数函数的单调性;②利用复合函数的单调性“同增异减”的规律.关键能力·攻重难题型探究题型指数函数性质的简单应用典例剖析典例1比较下列各组数的大小:(1)1.72.5,1.73;(2)0.8-0.1,0.8-0.2;(3)1.70.3,0.93.1;(4)55,33,2.[分析]底数相同的幂值a b与a c比较大小,一般用y=a x的单调性;指数相同的幂值a c 与b c比较大小,可在同一坐标系中,画出y=a x与y=b x的图像考察x=c时,函数值的大小;底数与指数均不同的一般考虑先化同底.不方便化时,常借助中间量0、1等过渡.[解析](1)考查指数函数y=1.7x,由于底数1.7>1,所以指数函数y=1.7x在(-∞,+∞)上是增函数.∵2.5<3,∴1.72.5<1.73.(2)考查函数y =0.8x ,由于0<0.8<1,所以指数函数y =0.8x 在(-∞,+∞)上为减函数. ∵-0.1>-0.2,∴0.8-0.1<0.8-0.2.(3)由指数函数的性质得 1.70.3>1.70=1, 0.93.1<0.90=1, ∴1.70.3>0.93.1.(4)底数不同、根指数也不同的两个数比较其大小,要化为同底数的或化为同指数的再作比较.∵2=212=(23) 16 =816,33=313 =(32) 16 =916 而8<9.∴816 <916,即2<33, 又2=212=(25) 110 =32110,55=515=(52) 110,而25<32,∴55<2.总之,55<2<33.规律方法:利用指数函数的性质比较大小的方法:1.把这两个数看作指数函数的两个函数值,再利用指数函数的单调性比较.2.若两个数不是同一个函数的两个函数值,则寻求一个中间量,中间量常选1,两个数都与这个中间量进行比较.对点训练1.比较下列各题中两个值的大小. (1)0.3x 与0.3x +1; (2)⎝⎛⎭⎫12-2与212 .[解析] (1)∵y =0.3x 为减函数, 又x <x +1,∴0.3x >0.3x +1.(2)化同底为:(12)-2=22,与212 ,∵函数y =2x 为增函数,2>12.∴22>212,即(12)-2>212 .题型形如y =a f (x )类型函数的单调性与值域典例剖析典例2 求函数y =⎝⎛⎭⎫12-x 2+x +2的单调递增区间、值域. [分析] 利用复合函数单调性的原则“同增异减”求解 [解析] 令t =-x 2+x +2, 则y =⎝⎛⎭⎫12t ,因为t =-⎝⎛⎭⎫x -122+94,可得t 的减区间为⎣⎡⎭⎫12,+∞,因为函数y =⎝⎛⎭⎫12t 在R 上是减函数, 所以函数y =⎝⎛⎭⎫12-x 2+x +2的单调递增区间⎣⎡⎭⎫12,+∞; 又t ≤94,所以⎝⎛⎭⎫12t ≥⎝⎛⎭⎫1294, 所以函数y =⎝⎛⎭⎫12-x 2+x +2值域为⎣⎡⎭⎫⎝⎛⎭⎫1294,+∞. 规律方法:复合函数的单调性、值域 (1)分层:一般分为外层y =a t ,内层t =f (x ).(2)单调性复合:复合法则“同增异减”,即内外层的单调性相同则为增函数,单调性相反则为减函数.(3)值域复合:先求内层t 的值域,再利用单调性求y =a t 的值域. 对点训练2.函数f (x )=⎝⎛⎭⎫23x 2-2x 的单调递减区间是__[1,+∞)__,值域是__⎝⎛⎦⎤-∞,32__. [解析] 令t =x 2-2x =(x -1)2-1,则f (x )=⎝⎛⎭⎫23t ,利用二次函数的性质可得函数t 的增区间为[1,+∞),所以函数f (x )=⎝⎛⎭⎫23x 2-2x 的减区间是[1,+∞);因为t ≥-1,所以f (x )≤32,所以函数f (x )=⎝⎛⎭⎫23x 2-2x 的值域为⎝⎛⎦⎤-∞,32. 题型指数函数性质的综合应用典例剖析典例3 (1)已知函数f (x )=⎩⎪⎨⎪⎧a x,x ≥1,⎝⎛⎭⎫4-a 2x +2,x <1,对任意x 1≠x 2 ,都有f (x 1)-f (x 2)x 1-x 2>0成立,则实数a 的取值范围是( B )A .(4,8)B .[4,8)C .(1,+∞)D .(1, 8)(2)已知函数f (x )=a ·2x -11+2x 是R 上的奇函数.①判断并证明f (x )的单调性;②若对任意实数,不等式f [f (x )]+f (3-m )>0恒成立,求m 的取值范围. [解析] (1)因为分段函数为增函数,所以满足⎩⎪⎨⎪⎧a >1,4-a 2>0,a ≥6-a 2,解得4≤a <8.(2)①因为f (x )为R 上的奇函数, 所以f (0)=0,即a -12=0,由此得a =1,所以f (x )=2x -12x +1=1-22x +1,所以f (x )为R 上的增函数.证明:设x 1<x 2,则f (x 1)-f (x 2)=1-22x 1+1-⎝⎛⎭⎫1-22x 2+1=22x 2+1-22x 1+1, 因为x 1<x 2,所以22x 2+1-22x 1+1<0,所以f (x 1)<f (x 2),所以f (x )为R 上的增函数. ②因为f (x )为R 上的奇函数.所以原不等式可化为f [f (x )]>-f (3-m ), 即f [f (x )]>f (m -3),又因为f (x )为R 上的增函数,所以f (x )>m -3, 由此可得不等式m <f (x )+3=4-22x +1对任意实数x 恒成立,由2x >0⇒2x +1>1⇒0<22x +1<2⇒-2<-22x +1<0⇒2<4-22x +1<4,所以m ≤2.规律方法:1.关于分段函数y =⎩⎪⎨⎪⎧f (x ),x ≤x 0,g (x ),x >x 0的单调性(1)增函数:f (x ),g (x )均为增函数,且f (x 0)≤g (x 0). (2)减函数:f (x ),g (x )均为减函数,且f (x 0)≥g (x 0). 2.含参数恒成立问题的一种处理方法将参数分离到左侧,根据不等号恒成立的方向,求出右侧函数的最大值或最小值,即可得到参数的范围.特别提醒:已知分段函数的单调性求参数的范围时,容易忽视判断分界点处取值的大小. 对点训练3.(1)若将本例(1)中的函数改为f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1,其他条件不变,试求a 的范围;(2)已知f (x )是定义在[-2,2]上的奇函数,当x ∈(0,2]时,f (x )=2x -1,函数g (x )=x 2-2x +m .如果对于任意的x 1∈[-2,2],总存在 x 2∈[-2,2],使得f (x 1)≤g (x 2),则实数m 的取值范围是__m ≥-5__.[解析] (1)因为函数f (x )满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,所以函数f (x )在定义域上是增函数, 则满足⎩⎪⎨⎪⎧2-a >0,a >1,2-a +1≤a , 即⎩⎪⎨⎪⎧a <2a >1,a ≥32.得32≤a <2. (2)因为f (x )是定义在[-2,2]上的奇函数, 所以f (0)=0,当x ∈(0,2]时,f (x )=2x -1∈(0,3], 则当x ∈[-2,2]时,f (x )∈[-3,3], 若对于∀x 1∈[-2,2],∃x 2∈[-2,2], 使得g (x 2)≥f (x 1), 则等价为g (x )max ≥3,因为g (x )=x 2-2x +m =(x -1)2+m -1, x ∈[-2,2],所以g (x )max =g (-2)=8+m , 则满足8+m ≥3解得m ≥-5.易错警示典例剖析典例4 求函数y =⎝⎛⎭⎫14x +⎝⎛⎭⎫12x+1的值域.[错解] 令t =⎝⎛⎭⎫12x,则y =t 2+t +1=⎝⎛⎭⎫t +122+34,所以t =-12时,y min =34, 所以函数的值域为⎣⎡⎭⎫34,+∞.[辨析] 在换元时,令t =⎝⎛⎭⎫12x,所以⎝⎛⎭⎫12x >0,在误解中忽略了这一点. [正解] 令t =⎝⎛⎭⎫12x ,则y =t 2+t +1=⎝⎛⎭⎫t +122+34. 因为t >0,y =⎝⎛⎭⎫t +122+34在(0,+∞)上是增函数, 所以y >1,即函数的值域为(1,+∞).4.2 对数与对数函数4.2.1 对数运算素养目标·定方向课程标准学法解读1.理解对数的概念.2.知道自然对数和常用对数.3.通过阅读材料,了解对数的发现历史以及对简化运算的作用.1.会用对数的定义进行对数式与指数式的互化.2.理解和掌握对数的性质,会求简单的对数值,发展数学抽象及数学运算素养.必备知识·探新知知识点对数的概念(1)定义:在代数式a b =N (a >0且a ≠1),N ∈(0,+∞)中,幂指数b 称为以a 为底N 的对数.(2)记法:b =__log a N __,a 称为对数的__底数__,N 称为对数的__真数__. (3)范围:N >0,即__负数和零没有对数__. 思考:(1)为什么负数和零没有对数? (2)对数式log a N 是不是log a 与N 的乘积?提示:(1)因为b =log a N 的充要条件是a b =N ,当a >0且a ≠1时,由指数函数的值域可知N >0,故负数和零没有对数.(2)不是,log a N 是一个整体,是求幂指数的一种运算,其运算结果是一个实数. 知识点对数恒等式(1)a log a N =N . (2)log a a b =B . 知识点常用对数与自然对数(1)常用对数:log 10N ,简写为lg N .(2)自然对数:log e N ,简写为ln N ,e =2.718 28….关键能力·攻重难题型探究题型对数的概念典例剖析典例1 若a 2 020=b (a >0,且a ≠1),则( A ) A .log a b =2 020 B .log b a =2 020 C .log 2 020a =bD .log 2 020b =a(2)对数式log (a -2)(5-a )中实数a 的取值范围是( C ) A .(-∞,5) B .(2,5) C .(2,3)∪(3,5)D .(2,+∞)(3)下列指数式与对数式互化不正确的一组是( B ) A .e 0=1与ln 1=0 B .log 39=2与912=3 C .8-13=12与log 812=-13D .log 77=1与71=7[分析] (1)根据对数的定义转化.(2)对数式中底数大于0且不等于1,真数大于0. (3)根据对数式的定义判断.[解析] (1)若a 2020=b (a >0,且a ≠1)则log a b =2 020.(2)由题意得⎩⎪⎨⎪⎧a -2>0,a -2≠1,5-a >0,解得2<a <3或3<a <5.(3)由指、对数式的互化可知,A 、C 、D 正确;对于B 选项log 39=2可化为32=9,所以B 选项错误.规律方法:指数式与对数式互化的思路 (1)指数式化为对数式:将指数式的幂作为真数,指数作为对数,底数不变,写出对数式. (2)对数式化为指数式:将对数式的真数作为幂,对数作为指数,底数不变,写出指数式. 对点训练1.(1)如果a 5=b (a >0且a ≠1,b >0),则( A ) A .log a b =5 B .log a 5=b C .log 5a =bD .log 5b =a(2)若对数式log (t -2)3有意义,则实数t 的取值范围是( B ) A .[2,+∞) B .(2,3)∪(3,+∞) C .(-∞,2)D .(2,+∞)[解析] (1)如果a 5=b (a >0,且a ≠1,b >0)则化为对数式为log a b =5.(2)由题意得⎩⎪⎨⎪⎧t -2>0t -2≠1,解得t >2且t ≠3.所以t 的取值范围是(2,3)∪(3,+∞) 题型利用指数式与对数式关系求值角度1 利用指数式与对数式的互化求值 典例剖析典例2 求下列各式的值: (1)log 381; (2)log 4116;(3)log 128;(4)lg 0.1.[解析] (1)因为34=81,所以log 381=4. (2)因为4-2=116,所以log 4116=-2.(3)因为⎝⎛⎭⎫12-3=8,所以log 128=-3.(4)因为10-1=0.1,所以lg 0.1=-1. 角度2 两个特殊对数值的应用 典例3 已知log 2[log 3(log 4x )]= log 3[log 4(log 2y )]=0,求x +y 的值. [解析] 因为log 2[log 3(log 4x )]=0, 所以log 3(log 4x )=1,所以log 4x =3,所以x =43=64,同理求得y =16,所以x +y =80. 规律方法:对数性质在求值中的应用1.对数运算时的常用性质:log a a =1,log a 1=0.2.使用对数的性质时,有时需要将底数或真数进行变形后才能运用;对于有多重对数符号的,可以先把内层视为整体,逐层使用对数的性质.对点训练2.(1)log 5[log 3(log 2x )]=0,则x -12等于( C ) A .36 B .39C .24D .23(2)log 3127=__-3__;log 5 625=__4__.[解析] (1)因为log 5[log 3(log 2x )]=0, 所以log 3(log 2x )=1,所以log 2x =3,所以x =23=8,所以x -12=8-12=18=24. (2)因为3-3=127,所以log 3127=-3;因为54=625, 所以log 5 625=4. 题型对数恒等式的应用典例剖析 典例4 计算: (1)71-log 75; (2)412(log 29-log 25);(3)a log a b ·log b c (a 、b 均为不等于1的正数,c >0).[解析] (1)原式=77log 75=75.(2)原式=2(log 29-log 25)=2log 292log 25=95.(3)原式=(a log a b )log b c =b log b c =C .规律方法:对于指数中含有对数值的式子进行化简,应充分考虑对数恒等式的应用.这就要求首先要牢记对数恒等式,对于对数恒等式a log a N =N 要注意格式:(1)它们是同底的;(2)指数中含有对数形式:(3)其值为对数的真数.对点训练3.求31+log 36-24+log 23+103lg 3+(19)log 34的值.[解析] 原式=3·3log 36-24·2log 23+(10lg3)3+(3log 34)-2 =3×6-16×3+33+4-2 =18-48+27+116=-4716.易错警示典例剖析典例5 求满足等式log (x +3)(x 2+3x )=1中x 的值. [错解] ∵log (x +3)(x 2+3x )=1,∴x 2+3x =x +3, 即x 2+2x -3=0,解得x =-3或x =1.故满足等式log (x +3)(x 2+3x )=1中x 的值为-3和1. [辨析] 误解中忽略了对数的真数与底数都必须为正数,且底数不能等于1.[正解] 由对数性质,得⎩⎪⎨⎪⎧x 2+3x >0x +3>0x +3≠1x 2+3x =x +3,解得x =1.故满足等式log (x +3)(x 2+3x )=1的x 的值为1.4.2.2 对数运算法则素养目标·定方向2.知道对数的换底公式,能将一般对数转化为自然对数和常用对数,并能进行简单的化简、计算.值,进一步提升数学抽象与数学运算素养.必备知识·探新知知识点 积、商、幂的对数若a >0,且a ≠1,M >0,N >0,则有 (1)积的对数:__log a (MN )=log a M +log a N __. (2)商的对数:__log a MN =log a M -log a N __.(3)幂的对数:__log a M n =n log a M __.思考:在积的对数运算性质中,三项的乘积式log a (MNQ )是否适用?你可以得到一个什么样的结论?提示:适用,log a (MNQ )=log a M +log a N +log a Q ,积的对数运算性质可以推广到n 项的乘积.知识点 换底公式若a >0,且a ≠1,c >0,且c ≠1,b >0,则有__log a b =log c blog c a __.思考:(1)对数的换底公式用常用对数、自然对数表示是什么形式? (2)你能用换底公式推导出结论log Nn M m =mn log N M 吗?提示:(1)log a b =lg b lg a ,log a b =ln bln a.(2)log Nn M m=lg M m lg N n =m lg M n lg N =m n ·lg M lg N =mn log NM .关键能力·攻重难题型探究题型利用对数的运算法则求值典例剖析 典例1 计算:(1)log a 2+log a 12(a >0且a ≠1);(2)log 318-log 32;(3)2log 510+log 50.25; (4)2log 525+3log 264; (5)log 2(log 216); (6)62log 63-20log 71+log 4116. [解析] (1)log a 2+log a 12=log a (2×12)=log a 1=0.(2)log 318-log 32=log 3(18÷2)=log 39=2. (3)2log 510+log 50.25=log 5100+log 50.25 =log 5(100×0.25)=log 525=2.(4)2log 525+3log 264=2log 552+3log 226=4+18=22. (5)log 2(log 216)=log 24=2.(6)原式=6log 69-20×0+log 44-2=9-2=7. 规律方法:对于同底的对数的化简,常用的方法: (1)“收”,将同底的两对数的和(差)收成积(商)的对数. (2)“拆”,将积(商)的对数拆成对数的和(差). 对点训练1.计算log 535+2log 22-log 5150-log 514的值. [解析] log 535+2log 22-log 5150-log 514=log 535+2×12+log 550-log 514=log 535×5014+1=3+1=4.题型利用对数的运算法则化简典例剖析典例2 用lg x ,lg y ,lg z 表示下列各式: (1)lg (xyz );(2)lg xy 2z ;(3)lg xy 3z ;(4)lg xy 2z .[解析] (1)lg (xyz )=lg x +lg y +lg z . (2)lg xy 2z =lg (xy 2)-lg z =lg x +2lg y -lg z .(3)lg xy 3z =lg (xy 3)-lg z =lg x +3lg y -12lg z .(4)lg x y 2z =lg x -lg (y 2z )=12lg x -2lg y -lg z .规律方法:关于对数式的化简首先观察式子的结构、层次特征,确定化简的顺序,其次利用积、商、幂的对数运算法则依次展开.对点训练2.lg 2=a ,lg 3=b ,试用a 、b 表示lg 108,lg 1825.[解析] lg 108=lg(27×4)=lg(33×22)=lg 33+lg 22=3lg 3+2lg 2=2a +3B .lg 1825=lg 18-lg 25=lg (2×32)-lg 10222=lg 2+lg 32-lg 102+lg 22=lg 2+2lg 3-2+2lg 2=3a +2b -2.题型换底公式及其应用典例剖析典例3 (1)已知log 189=a,18b =5,用a 、b 表示log 3645的值; (2)设3x =4y =6z >1,求证:1z -1x =12y.[分析] 在(1)中把所求的换成与已知同底的对数,在(2)中可用整体代换法求出x ,y ,z ,并结合换底公式与对数的运算性质证明.[解析] (1)由18b =5,得log 185=b , ∴log 3645=log 1845log 1836=log 185+log 1891+log 182=b +a 1+1-log 189=a +b 2-a.(2)设3x =4y =6z =t ,∵3x =4y =6z >1, ∴t >1,∴x =lg t lg 3,y =lg t lg 4,z =lg tlg 6,∴1z -1x =lg 6lg t -lg 3lg t =lg 2lg t =lg 42lg t =12y . ∴1z -1x =12y. 规律方法:换底公式的应用(1)一般利用常用对数或自然对数进行化简求值. (2)注意指数式与对数式的互化在求值中的应用.(3)注意一些常见结论的应用,如对数的倒数公式1log a b =log b A .对点训练3.(1)若3a =7b =21,求1a +1b的值;(2)设4a =5b =m ,且1a +2b =1,求m 的值.[解析] (1)∵3a =7b =21, ∴a =log 321,b =log 721, ∴1a +1b =1log 321+1log 721 =1lg 21lg 3+1lg 21lg 7=lg 3+lg 7lg 21=lg 2112lg 21=2.(2)∵4a =5b =m ,∴a =log 4m ,b =log 5m , 又1a +2b =1,∴1log 4m +2log 5m =1, 即log m 4+2log m 5=1, ∴log m 100=1,∴m =100.易错警示典例剖析典例4 已知lg x +lg y =2lg (x -2y ),求log 2xy的值.[错解] ∵lg x +lg y =2lg (x -2y ),∴xy =(x -2y )2,即x 2-5xy +4y 2=0. ∴(x -y )(x -4y )=0,解得x =y 或x =4y . ∵xy =1或4, ∴log2xy=log 21=0或log 2xy=log 24=4. [辨析] 误解中忽视了对数的真数大于0这一条件.[正解] ∵lg x +lg y =2lg (x -2y ),∴xy =(x -2y )2,即x 2-5xy +4y 2=0. ∴(x -y )(x -4y )=0,解得x =y 或x =4y . ∵x >0,y >0,x -2y >0,∴x =y 应舍去. ∴xy=4,∴log 2xy=log 24=4.4.2.3对数函数的性质与图像第1课时对数函数的性质与图像素养目标·定方向课程标准学法解读1.理解对数函数的概念.2.初步掌握对数函数的性质与图像.理解对数函数的概念及对数函数的性质与图像,发展学生的数学抽象素养、直观想象素养及数学运算素养.必备知识·探新知知识点对数函数函数y=__log a x__称为对数函数,其中a是常数,a>0且a≠1.思考:(1)对数函数的定义域是什么?为什么?(2)对数函数的解析式有何特征?提示:(1)定义域为x>0,因为负数和零没有对数.(2)①a>0,且a≠1;②log a x的系数为1;③自变量x的系数为1.对数函数的性质与图像知识点0<a<1a>1 图像定义域__(0,+∞)__值域__R__性质过__定点(1,0)____是减函数____是增函数__思考:(1)对于对数函数y=log2x,y=log3x,y=log12x,y=log13x,…,为什么一定过点(1,0)?(2)对于对数函数y=log a x(a>0且a≠1),在表中,?处y的范围是什么?底数x的范围y的范围a>1x>1?0<x<1?0<a<1x>1?0<x<1?提示:(1)当x=1时,log a1=0恒成立,即对数函数的图像一定过点(1,0).(2)底数x的范围y的范围a>1x>1y>0 0<x<1y<00<a<1x>1y<0 0<x<1y>0关键能力·攻重难题型探究题型对数函数的概念典例剖析典例1指出下列函数哪些是对数函数?(1)y=2log3x;(2)y=log5x;(3)y=log x2;(4)y=log2x+1.[解析](1)log3x的系数是2,不是1,不是对数函数.(2)是对数函数.(3)自变量在底数位置,不是对数函数.(4)对数式log2x后又加1,不是对数函数.规律方法:判断一个函数是对数函数必须是形如y=log a x(a>0且a≠1)的形式,即必须满足以下条件:(1)系数为1.(2)底数为大于0且不等于1的常数.(3)对数的真数仅有自变量x.对点训练1.(1)下列函数是对数函数的是(D)A.y=log a(2x) B.y=lg 10x。
高中新课标数学必修②测试卷(4)班别 _____ 姓名 ____________ 座号 ____ 分数______一. 选择题 (每小题4分,共48分)1. 直线0x a ++=(a 为实常数)的倾斜角的大小是( D ).A.030 B. 060 C. 0120 D. 0150 2. 到直线3410x y --=的距离为2的直线方程是( B ).A. 34110x y --=B. 34110x y --=或3490x y -+=C. 3490x y -+=D. 34110x y -+= 或 3490x y --= 3. 下列说法正确的是( C ).A. 经过定点0P (0x ,0y )的直线都可以用方程00()y y k x x -=-表示.B. 经过不同两点1P (1x ,1y ),2P (2x ,2y )的直线都可以用方程112121y y x x y y x x --=--表示.C. 经过定点0P (0,b )且斜率存在的直线都可以用方程y kx b =+表示.D. 不过原点的直线都可以用方程1x ya b+=表示. 4. 无论m 为何值,直线1(2)y m x +=-总过一个定点,其中m R ∈,该定点坐标为( D ). A.(1,2-) B.(1-,2) C.(2-,1-) D.(2,1-) 5. 若直线1l :()34350m x y m +++-=与2l :()2580x m y ++-=平行,则m 的值为( A ).A. 7-B. 17--或C. 6-D. 133-6. 一条直线与一个平面内的( D )都垂直,则该直线与此平面垂直.A. 无数条直线B. 两条直线C. 两条平行直线D.两条相交直线 7. 下列四个命题中错误的个数是( B ). ① 垂直于同一条直线的两条直线相互平行 ② 垂直于同一个平面的两条直线相互平行③ 垂直于同一条直线的两个平面相互平行 ④ 垂直于同一个平面的两个平面相互垂直A. 1B. 2C. 3D. 48. 半径为R 的球内接一个正方体,则该正方体的体积是( C ).A. 3B.343R π3D. 39R 9. 下列命题中错误的是( B ). A. 若//,,m n n m βα⊥⊂,则αβ⊥B. 若α⊥β,a ⊂α,则a ⊥βC. 若α⊥γ,β⊥γ,l αβ=,则l ⊥γD. 若α⊥β,aβ=AB ,a //α,a⊥AB ,则a ⊥β10. P 为ABC 所在平面外一点,PB PC =,P 在平面ABC 上的射影必在ABC 的( A ).A. BC 边的垂直平分线上B. BC 边的高线上C. BC 边的中线上D. BAC ∠的角平分线上11. 圆1C :222880x y x y +++-=与圆2C 224420x y x y +-+-=的位置关系是( A ). A. 相交 B. 外切 C. 内切 D. 相离 12. 直线()110a x y +++=与圆2220x y x +-=相切,则a 的值为( C ).A. 1,1-B. 2-C. 1-D. 1 二. 填空题(每小题4分,共20分)1. 圆224460x y x y +-++=截直线50x y --=所得的弦长为, 2. 过点(1,2)且与直线210x y +-=平行的直线的方程是 250x y +-= 3. 过点A (0,1),B (2,0)的直线的方程为 220x y +-= .4. 已知各面均为等边三角形的四面体的棱长 为2,则它的表面积是5. 如图,在正方体111ABCD A B C D -中,异面 直线1A D 与1D C 所成的角为 060 度;直线1A D 与平面11AB C D 所成的角为 030 度.三. 解答题(第1、2题各9分,第3题14分,共1. 求经过两条直线1l :3420x y +-=与2l :220x y ++=的交点P ,且垂直于直线3l :210x y --=直线l 的方程.1解:由3420220x y x y +-=⎧⎨++=⎩ 解得22x y =-⎧⎨=⎩∴ 点P 的坐标是(2-,2) ∵ 所求直线l 与3l 垂直,∴ 设直线l 的方程为 20x y C ++= 把点P 的坐标代入得 ()2220C ⨯-++= ,得2C =∴ 所求直线l 的方程为 220x y ++= 2. 已知圆心为C 的圆经过点A (0,6-),B (1,5-),且圆心在直线l :10x y -+=上,求圆心为C的圆的标准方程. 解:因为A (0,6-),B (1,5-),所以线段AB 的中点D 的坐标为111,22⎛⎫- ⎪⎝⎭,直线AB 的斜率 ()56110AB k ---==-,因此线段AB 的垂直平分线'l 的方程是11122y x ⎛⎫+=-- ⎪⎝⎭, 即 50x y ++=圆心C 的坐标是方程组 5010x y x y ++=⎧⎨-+=⎩,的解.解此方程组,得 32x y =-⎧⎨=-⎩,所以圆心C 的坐标是(3-,2-). 圆心为C 的圆的半径长所以,圆心为C 的圆的标准方程是3. 如图:在三棱锥S ABC -中,已知点D 、E 、F 分别为棱AC 、SA 、SC 的中点. ①求证:EF ∥平面ABC .②若SA SC =,BA BC =,求证:平面SBD ⊥平面ABC . 解:①证明:∵EF 是SAC 的中位线,∴EF ∥AC ,B又∵EF ⊄平面ABC ,AC ⊂平面ABC ,∴EF ∥平面ABC .②证明:∵SA SC =,AD DC = ∴SD ⊥AC , ∵BA BC =,AD DC = ∴BD ⊥AC ,又∵SD ⊂平面SBD ,BD ⊂平面SBD ,SD DB D =,∴AC ⊥平面SBD , 又∵AC ⊂平面ABC , ∴平面SBD ⊥平面ABC .。
第一章空间几何体课时作业(一)棱柱、棱锥、棱台的结构特征姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.从长方体的一个顶点出发的三条棱上各取一点E,F,G,过此三点作长方体的截面,那么截去的几何体是()A.三棱柱B.三棱锥C.四棱柱D.四棱锥答案: B2.下列说法中正确的是()①一个棱柱至少有五个面;②用一个平面去截棱锥,底面和截面之间的部分叫棱台;③棱台的侧面是等腰梯形;④棱柱的侧面是平行四边形.A.①④B.②③C.①③D.②④解析:因为棱柱有两个底面,因此棱柱的面数由侧面个数决定,而侧面个数与底面多边形的边数相等,故面数最少的棱柱为三棱柱,有五个面,①正确;②中的截面与底面不一定平行,故②不正确;由于棱台是由棱锥截来的,而棱锥的所有侧棱不一定相等,所以棱台的侧棱不一定都相等,即不一定是等腰梯形,③不正确;由棱柱的定义知④正确,故选A.答案: A3.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20 B.15C.12 D.10解析:正五棱柱任意不相邻的两条侧棱可确定一个平面,每个平面可得到正五棱柱的两条对角线,五个平面共可得到10条对角线,故选D.答案: D4.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到右侧的平面图形,则标“△”的面的方位是()A.南B.北C.西D.下解析:将所给图形还原为正方体,如图所示,最上面为△,最左面为东,最里面为上,将正方体旋转后让东面指向东,让“上”面向上可知“△”的方位为北.故选B.答案: B二、填空题(每小题5分,共10分)5.如图,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是________.解析:此多面体由四个面构成,故为三棱锥,也叫四面体.答案:三棱锥(也可答四面体)6.下列命题中,真命题有________.①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个公共点;③棱台的侧面有的是平行四边形,有的是梯形;④棱台的侧棱所在直线均相交于同一点;⑤多面体至少有四个面.解析:棱柱是由一个平面多边形沿某一方向平移而形成的几何体,因而侧面是平行四边形,故①对.棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故②对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故③错④对.⑤显然正确.因而真命题有①②④⑤.答案:①②④⑤三、解答题(每小题10分,共20分)7.(1)如图所示的几何体是不是棱台?为什么?(2)如图所示的几何体是不是锥体?为什么?解析:(1)①②③都不是棱台.因为①和③都不是由棱锥所截得的,故①③都不是棱台;虽然②是由棱锥所截得的,但截面不和底面平行,故不是棱台.只有用平行于棱锥底面的平面去截棱锥,底面与截面之间的部分才是棱台.(2)都不是.棱锥定义中要求各侧面有一个公共顶点.图①中侧面ABC与CDE没有公共顶点,故该几何体不是锥体;图②中侧面ABE与面CDF没有公共点,故该几何体不是锥体.8.判断下列语句的对错.(1)一个棱锥至少有四个面;(2)如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等;(3)五棱锥只有五条棱;(4)用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似.解析:(1)正确.(2)不正确.四棱锥的底面是正方形,它的侧棱可以相等,也可以不相等.(3)不正确.五棱锥除了五条侧棱外,还有五条底边,故共有10条棱.(4)正确.尖子生题库☆☆☆9.(10分)在如图所示的三棱柱ABC-A1B1C1中,请连接三条线,把它分成三部分,使每一部分都是一个三棱锥.解析:如图,连接A1B,BC1,A1C,则三棱柱ABC-A1B1C1被分成三部分,形成三个三棱锥,分别是A1-ABC,A1-BB1C1,A1-BCC1.课时作业(二)圆柱、圆锥、圆台、球的结构特征简单组合体的结构特征姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.下列四种说法①在圆柱的上、下两底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下两底面的圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线相互平行.其中正确的是()A.①②B.②③C.①③D.②④解析:①所取的两点与圆柱的轴OO′的连线所构成的四边形不一定是矩形,若不是矩形,则与圆柱母线定义不符.③所取两点连线的延长线不一定与轴交于一点,不符合圆台母线的定义.②④符合圆锥、圆柱母线的定义及性质.故选D.答案: D2.下图是由选项中的哪个图形旋转得到的()解析:该组合体上部是圆锥,下部是圆台,由旋转体定义知,上部由直角三角形的直角边为轴旋转形成,下部由直角梯形垂直于底边的腰为轴旋转形成.故选A.答案: A3.如图所示为一个空间几何体的竖直截面图形,那么这个空间几何体自上而下可能是()A.梯形、正方形B.圆台、正方形C.圆台、圆柱D.梯形、圆柱解析:空间几何体不是平面几何图形,所以应该排除A、B、D.答案: C4.如图所示的几何体,关于其结构特征,下列说法不正确的是()A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形解析:该几何体用平面ABCD可分割成两个四棱锥,因此它是这两个四棱锥的组合体,因而四边形ABCD是它的一个截面而不是一个面.故选D.答案: D二、填空题(每小题5分,共10分)5.有下列说法:①与定点的距离等于定长的点的集合是球面;②球面上三个不同的点,一定都能确定一个圆;③一个平面与球相交,其截面是一个圆面.其中正确说法的个数为________.解析:命题①②都对,命题③中一个平面与球相交,其截面是一个圆面,③对.答案: 36.下面几何体的截面一定是圆面的是________.(填正确序号)①圆柱②圆锥③球④圆台答案:③三、解答题(每小题10分,共20分)7.如图所示几何体可看作由什么图形旋转360°得到?画出平面图形和旋转轴.解析:先画出几何体的轴,然后再观察寻找平面图形.旋转前的平面图形如下:8.如图所示的几何体是否为台体?为什么?尖子生题库☆☆☆9.(10分)一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2,求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.解析:(1)圆台的轴截面是等腰梯形ABCD(如图所示).由已知可得上底一半O1A=2 cm,下底一半OB=5 cm.又因为腰长为12 cm,所以高AM=122-(5-2)2=315(cm).(2)如图所示,延长BA ,OO 1,CD ,交于点S ,设截得此圆台的圆锥的母线长为l ,则由△SAO 1∽△SBO 可得l -12l =25,解得l =20 cm.即截得此圆台的圆锥的母线长为20 cm.课时作业(三) 中心投影与平行投影空间几何体的三视图姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分) 1.下列说法正确的是( ) A .矩形的平行投影一定是矩形 B .梯形的平行投影一定是梯形C .两条相交直线的平行投影可能平行D .若一条线段的平行投影是一条线段,则中点的平行投影仍为这条线段投影的中点 解析: 对于A ,矩形的平行投影可以是线段、矩形、平行四边形,主要与矩形的放置及投影面的位置有关;同理,对于B ,梯形的平行投影可以是梯形或线段;对于C ,平行投影把两条相交直线投射成两条相交直线或一条直线;D 正确。
高中数学必修2全册课时同步练习题及答案第一章空间几何体§1.1空间几何体的结构1.1.1柱、锥、台、球的结构特征【课时目标】认识柱、锥、台、球的结构特征,并能运用这些特征描述现实生活中简单物体的结构.1.一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都________________,由这些面所围成的多面体叫做棱柱.2.一般地,有一个面是多边形,其余各面都是________________________________,由这些面所围成的多面体叫做棱锥.3.以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫________.4.以直角三角形的一条________所在直线为旋转轴,其余两边旋转形成的面围成的旋转体叫做圆锥.5.(1)用一个________________________的平面去截棱锥,底面与截面之间的部分叫做棱台.(2)用一个________于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台.6.以半圆的________所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球.一、选择题1.棱台不具备的性质是()A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点2.下列命题中正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱D.用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台3.下列说法正确的是()A.直角三角形绕一边旋转得到的旋转体是圆锥B.夹在圆柱的两个截面间的几何体还是一个旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线4.下列说法正确的是()A.直线绕定直线旋转形成柱面B.半圆绕定直线旋转形成球体C.有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台D.圆柱的任意两条母线所在的直线是相互平行的5.观察下图所示几何体,其中判断正确的是()A.①是棱台B.②是圆台C.③是棱锥D.④不是棱柱6.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到右侧的平面图形,则标“△”的面的方位是()A.南B.北C.西D.下二、填空题7.由若干个平面图形围成的几何体称为多面体,多面体最少有________个面.8.将等边三角形绕它的一条中线旋转180°,形成的几何体是________.9.在下面的四个平面图形中,哪几个是侧棱都相等的四面体的展开图?其序号是________.三、解答题10.如图所示为长方体ABCD—A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.11.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm2,母线与轴的夹角是45°,求这个圆台的高、母线长和底面半径.能力提升12.下列四个平面图形中,每个小四边形皆为正方形,其中可以沿两个正方形的相邻边折叠围成一个正方体的图形的是()13.如图,在底面半径为1,高为2的圆柱上A点处有一只蚂蚁,它要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?1.学习本节知识,要注意结合集合的观点来认识各种几何体的性质,还要注意结合动态直观图从运动变化的观点认识棱柱、棱锥和棱台的关系.2.棱柱、棱锥、棱台中的基本量的计算,是高考考查的热点,要注意转化,即把三维图形化归为二维图形求解.在讨论旋转体的性质时轴截面具有极其重要的作用,它决定着旋转体的大小、形状,旋转体的有关元素之间的关系可以在轴截面上体现出来.轴截面是将旋转体问题转化为平面问题的关键.3.几何体表面距离最短问题需要把表面展开在同一平面上,然后利用两点间距离的最小值是连接两点的线段长求解.第一章空间几何体§1.1空间几何体的结构1.1.1柱、锥、台、球的结构特征答案知识梳理1.互相平行2.有一个公共顶点的三角形3.圆柱4.直角边5.(1)平行于棱锥底面(2)平行6.直径作业设计1.C[用棱台的定义去判断.]2.C[A、B的反例图形如图所示,D显然不正确.]3.C[圆锥是直角三角形绕直角边旋转得到的,如果绕斜边旋转就不是圆锥,A不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体,故B不正确,通过圆台侧面上一点,有且只有一条母线,故D不正确.]4.D[两直线平行时,直线绕定直线旋转才形成柱面,故A错误.半圆以直径所在直线为轴旋转形成球体,故B不正确,C不符合棱台的定义,所以应选D.] 5.C6.B7.48.圆锥9.①②10.解截面BCFE右侧部分是棱柱,因为它满足棱柱的定义.它是三棱柱BEB′—CFC′,其中△BEB′和△CFC′是底面.EF,B′C′,BC是侧棱,截面BCFE左侧部分也是棱柱.它是四棱柱ABEA′—DCFD′.其中四边形ABEA′和四边形DCFD′是底面.A′D′,EF,BC,AD为侧棱.11.解圆台的轴截面如图所示,设圆台上、下底面半径分别为x cm 和3x cm ,延长AA 1交OO 1的延长线于点S .在Rt △SOA 中,∠ASO =45°,则∠SAO =45°.∴SO =AO =3x cm ,OO 1=2x cm .∴12(6x +2x)·2x =392,解得x =7,∴圆台的高OO 1=14 cm ,母线长l =2OO 1=14 2 cm ,底面半径分别为7 cm 和21 cm .12.C13.解 把圆柱的侧面沿AB 剪开,然后展开成为平面图形——矩形,如图所示,连接AB ′,则AB ′即为蚂蚁爬行的最短距离.∵AB =A ′B ′=2,AA ′为底面圆的周长,且AA ′=2π×1=2π, ∴AB ′=A ′B ′2+AA ′2=4+(2π)2=21+π2,即蚂蚁爬行的最短距离为21+π2.【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
高中数学必修第二册全册各章测验汇总章末质量检测(一) 平面向量及其应用 ............................................................................... 1 章末质量检测(二) 复数 ....................................................................................................... 8 章末质量检测(三) 立体几何初步 ..................................................................................... 14 章末质量检测(四) 统计 ..................................................................................................... 23 章末质量检测(五)概率 (32)章末质量检测(一) 平面向量及其应用一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在⊙O 中,向量OB →,OC →,AO →是( ) A .有相同起点的向量 B .共线向量 C .模相等的向量 D .相等的向量解析:由图可知OB →,OC →,AO →是模相等的向量,其模均等于圆的半径,故选C. 答案:C2.若A (2,-1),B (4,2),C (1,5),则AB →+2BC →等于( ) A .5 B .(-1,5) C .(6,1) D .(-4,9)解析:AB →=(2,3),BC →=(-3,3),∴AB →+2BC →=(2,3)+2(-3,3)=(-4,9). 答案:D3.设向量a ,b 均为单位向量,且|a +b |=1,则a 与b 的夹角θ为( ) A.π3 B.π2 C.2π3 D.3π4解析:因为|a +b |=1,所以|a |2+2a ·b +|b |2=1,所以cos θ=-12.又θ∈[0,π],所以θ=2π3.答案:C4.若A (x ,-1),B (1,3),C (2,5)三点共线,则x 的值为( ) A .-3 B .-1 C .1 D .3解析:AB →∥BC →,(1-x,4)∥(1,2),2(1-x )=4,x =-1,故选B. 答案:B5.已知向量a ,b 满足a +b =(1,3),a -b =(3,-3),则a ,b 的坐标分别为( ) A .(4,0),(-2,6) B .(-2,6),(4,0) C .(2,0),(-1,3) D .(-1,3),(2,0)解析:由题意知,⎩⎪⎨⎪⎧a +b =1,3,a -b =3,-3,解得⎩⎪⎨⎪⎧a =2,0,b =-1,3.答案:C6.若a =(5,x ),|a |=13,则x =( ) A .±5 B.±10 C .±12 D.±13解析:由题意得|a |=52+x 2=13, 所以52+x 2=132,解得x =±12. 答案:C7.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为( ) A .50 2 m B .50 3 m C .25 2 m D.2522m解析:由正弦定理得AB =AC ·sin∠ACB sin B=50×2212=502(m).答案:A8.已知平面内四边形ABCD 和点O ,若OA →=a ,OB →=b ,OC →=c ,OD →=d ,且a +c =b+d ,则四边形ABCD 为( )A .菱形B .梯形C .矩形D .平行四边形 解析:由题意知a -b =d -c , ∴BA →=CD →,∴四边形ABCD 为平行四边形,故选D. 答案:D9.某人在无风条件下骑自行车的速度为v 1,风速为v 2(|v 1|>|v 2|),则逆风行驶的速度的大小为( )A .v 1-v 2B .v 1+v 2C .|v 1|-|v 2| D.v 1v 2解析:题目要求的是速度的大小,即向量的大小,而不是求速度,速度是向量,速度的大小是实数,故逆风行驶的速度大小为|v 1|-|v 2|.答案:C10.已知O 为坐标原点,点A 的坐标为(2,1),向量AB →=(-1,1),则(OA →+OB →)·(OA→-OB →)等于( )A .-4B .-2C .0D .2解析:因为O 为坐标原点,点A 的坐标为(2,1), 向量AB →=(-1,1), 所以OB →=OA →+AB →=(2,1)+(-1,1)=(1,2), 所以(OA →+OB →)·(OA →-OB →)=OA →2-OB →2=(22+12)-(12+22) =5-5=0.故选C. 答案:C11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac,(b +c +a )(b+c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形 解析:∵sin A sin B =a c ,∴a b =ac,∴b =c .又(b +c +a )(b +c -a )=3bc ,∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12.∵A ∈(0,π),∴A =π3,∴△ABC 是等边三角形.答案:C12.在△ABC 中,若|AB →|=1,|AC →|=3,|AB →+AC →|=|BC →|,则AB →·BC→|BC →|=( )A .-32 B .-12C.12D.32解析:由向量的平行四边形法则,知当|AB →+AC →|=|BC →|时,∠A =90°.又|AB →|=1,|AC →|=3,故∠B =60°,∠C =30°,|BC →|=2,所以AB →·BC →|BC →|=|AB →||BC →|cos 120°|BC →|=-12.答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知A ,B ,C 是不共线的三点,向量m 与向量AB →是平行向量,与BC 是共线向量,则m =________.解析:∵A ,B ,C 不共线,∴AB →与BC →不共线.又m 与AB →,BC →都共线,∴m =0. 答案:014.若向量OA →=(1,-3),|OA →|=|OB →|,OA →·OB →=0,则|AB →|=________. 解析:方法一:设OB →=(x ,y ),由|OA →|=|OB →|知x 2+y 2=10,又OA →·OB →=x -3y=0,所以x =3,y =1或x =-3,y =-1.当x =3,y =1时,|AB →|=25;当x =-3,y =-1时,|AB →|=2 5.故|AB →|=2 5.方法二:由几何意义知,|AB →|就是以OA →,OB →为邻边的正方形的对角线长,又|OA →|=10,所以|AB →|=10×2=2 5.答案:2 515.给出以下命题:①若a ≠0,则对任一非零向量b 都有a·b ≠0; ②若a ·b =0,则a 与b 中至少有一个为0; ③a 与b 是两个单位向量,则a 2=b 2. 其中正确命题的序号是________.解析:上述三个命题中只有③正确,因为|a |=|b |=1,所以a 2=|a |2=1,b 2=|b |2=1,故a 2=b 2.当非零向量a ,b 垂直时,有a·b =0,显然①②错误.答案:③16.用两条成120°角的等长绳子悬挂一个灯具,已知灯具重量为10 N ,则每根绳子的拉力大小为________N.解析:如图,由题意得,∠AOC =∠COB =60°,|OC →|=10,则|OA →|=|OB →|=10,即每根绳子的拉力大小为10 N.答案:10三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图所示,已知OA →=a ,OB →=b ,OC →=c ,OD →=d ,OE →=e ,OF →=f ,试用a ,b ,c ,d ,e ,f 表示:(1)AD →-AB →; (2)AB →+CF →; (3)EF →-CF →.解析:(1)因为OB →=b ,OD →=d , 所以AD →-AB →=BD →=OD →-OB →=d -b . (2)因为OA →=a ,OB →=b ,OC →=c ,OF →=f , 所以AB →+CF →=(OB →-OA →)+(OF →-OC →)=b +f -a -c . (3)EF →-CF →=EF →+FC →=EC →=OC →-OE →=c -e .18.(12分)已知|a |=2,|b |=3,a 与b 的夹角为60°,c =5a +3b ,d =3a +k b ,当实数k 为何值时,(1)c ∥d ;(2)c ⊥d .解析:由题意得a ·b =|a ||b |cos 60°=2×3×12=3.(1)当c ∥d ,c =λd ,则5a +3b =λ(3a +k b ). ∴3λ=5,且kλ=3,∴k =95.(2)当c ⊥d 时,c ·d =0,则(5a +3b )·(3a +k b )=0. ∴15a 2+3k b 2+(9+5k )a ·b =0, ∴k =-2914.19.(12分)已知向量a =(1,3),b =(m,2),c =(3,4),且(a -3b )⊥c . (1)求实数m 的值; (2)求向量a 与b 的夹角θ.解析:(1)因为a =(1,3),b =(m,2),c =(3,4), 所以a -3b =(1,3)-(3m,6)=(1-3m ,-3).因为(a -3b )⊥c ,所以(a -3b )·c =(1-3m ,-3)·(3,4) =3(1-3m )+(-3)×4 =-9m -9=0, 解得m =-1.(2)由(1)知a =(1,3),b =(-1,2), 所以a ·b =5,所以cos θ=a ·b |a ||b |=510×5=22.因为θ∈[0,π],所以θ=π4.20.(12分)已知向量a =(1,3),b =(2,-2). (1)设c =2a +b ,求(b -a )·c ; (2)求向量a 在b 方向上的投影.解析:(1)由a =(1,3),b =(2,-2),可得c =(2,6)+(2,-2)=(4,4),b -a=(1,-5),则(b -a )·c =4-20=-16.(2)向量a 在b 方向上的投影为a ·b |b |=-422=- 2. 21.(12分)已知O ,A ,B 是平面上不共线的三点,直线AB 上有一点C ,满足2AC→+CB →=0,(1)用OA →,OB →表示OC →;(2)若点D 是OB 的中点,证明四边形OCAD 是梯形. 解析:(1)因为2AC →+CB →=0, 所以2(OC →-OA →)+(OB →-OC →)=0, 2OC →-2OA →+OB →-OC →=0, 所以OC →=2OA →-OB →.(2)证明:如图, DA →=DO →+OA →=-12OB →+OA →=12(2OA →-OB →).故DA →=12OC →.故四边形OCAD 为梯形.22.(12分)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知(a -3b )·cos C=c (3cos B -cos A ).(1)求sin B sin A的值;(2)若c =7a ,求角C 的大小.解析:(1)由正弦定理得,(sin A -3sin B )cos C =sin C (3cos B -cos A ), ∴sin A cos C +cos A sin C =3sin C cos B +3cos C sin B , 即sin(A +C )=3sin(C +B ),即sin B =3sin A ,∴sin Bsin A=3.(2)由(1)知b =3a ,∵c =7a ,∴cos C =a 2+b 2-c 22ab =a 2+9a 2-7a 22×a ×3a =3a 26a 2=12,∵C ∈(0,π),∴C =π3.章末质量检测(二) 复数一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数i -i 2的实部为( ) A .0 B .1 C .i D .-2 解析:i -i 2=1+i. 答案:B2.用C ,R 和I 分别表示复数集、实数集和虚数集,那么有( ) A .C =R ∩I B .R ∩I ={0}C .R =C ∩ID .R ∩I =∅解析:由复数的概念可知R ⊂C ,I ⊂C ,R ∩I =∅. 答案:D3.下列说法正确的是( )A .如果两个复数的实部的差和虚部的差都等于0,那么这两个复数相等B .a i 是纯虚数(a ∈R )C .如果复数x +y i(x ,y ∈R )是实数,那么x =0,y =0D .复数a +b i(a ,b ∈R )不是实数解析:两个复数的实部的差和虚部的差都等于0,则它们的实部、虚部分别相等,所以A 正确;B 中,当a =0时,a i =0是实数,所以B 不正确;要使复数x +y i(x ,y ∈R )是实数,则只需y =0,所以C 不正确;D 中,当b =0时,复数a +b i 是实数,所以D 不正确.答案:A4.复数z =-1-2i(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:由题意得复数z 的实部为-1,虚部为-2,因此在复平面内对应的点为(-1,-2),位于第三象限.答案:C5.设z 1=3-4i ,z 2=-2+3i ,则z 1-z 2在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:z 1-z 2=5-7i. 答案:D6.复数1-7i 1+i 的虚部为( )A .0 B. 2 C .4 D .-4 解析:∵1-7i1+i=1-7i 1-i 1+i1-i =-6-8i2=-3-4i ,∴复数1-7i1+i 的虚部为-4,选D.答案:D7.复数z =(a 2-2a -3)+(a +1)i 为纯虚数,实数a 的值是( ) A .-1 B .3C .1D .-1或3解析:由题意知⎩⎪⎨⎪⎧a 2-2a -3=0,a +1≠0,解得a =3.故选B.答案:B8.已知z-1+i =2+i ,则复数z =( )A .-1+3iB .1-3iC .3+iD .3-i解析:由题意知z -=(1+i)(2+i)=2-1+3i =1+3i ,从而z =1-3i ,选B. 答案:B9.已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞) D.(-∞,-3)解析:由已知可得复数z 在复平面内对应的点的坐标为(m +3,m -1),且该点在第四象限,所以⎩⎪⎨⎪⎧m +3>0,m -1<0,解得-3<m <1.答案:A10.已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-4i ,它们在复平面上所对应的点分别为A ,B ,C ,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值是( )A .1B .2C .3D .4解析:依题意3-4i =λ(-1+2i)+μ(1-i)=μ-λ+(2λ-μ)i ,∴⎩⎪⎨⎪⎧μ-λ=32λ-μ=-4,∴⎩⎪⎨⎪⎧λ=-1μ=2,∴λ+μ=1.答案:A11.复数z =x +y i(x ,y ∈R )满足条件|z -4i|=|z +2|,则|2x+4y|的最小值为( )A .2B .4C .4 2D .16解析:由|z -4i|=|z +2|得x +2y =3. 则2x+4y≥22x +2y=2·23=4 2.12.已知f (n )=i n -i -n (i 2=-1,n ∈N ),集合{f (n )}的元素个数是( ) A .2个 B .3个 C .4个 D .无数个 解析:f (0)=i 0-i 0=0,f (1)=i -i -1=i -1i=2i ,f (2)=i 2-i -2=0, f (3)=i 3-i -3=-2i.∴{f (n )}={0,-2i,2i}. 答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若复数z =(m -1)+(m +2)i 对应的点在直线y =2x 上,则实数m 的值是________.解析:由已知得2(m -1)-(m +2)=0,∴m =4. 答案:414.设复数z 满足i(z +1)=-3+2i(i 是虚数单位),则z 的实部是________. 解析:设z =a +b i(a ,b ∈R ),则i(z +1)=i(a +1+b i)=-b +(a +1)i =-3+2i , 所以a =1,b =3,复数z 的实部是1. 答案:115.在复平面内,复数1+i 与-1+3i 分别对应向量OA →和OB →,其中O 为坐标原点,则|AB →|=________.解析:∵AB →=(-1+3i)-(1+i)=-2+2i , ∴|AB →|=2 2. 答案:2 216.设i 是虚数单位,若复数a -103-i(a ∈R )是纯虚数,则a 的值为________. 解析:先利用复数的运算法则将复数化为x +y i(x ,y ∈R )的形式,再由纯虚数的定义求a .因为a -103-i =a -103+i 3-i 3+i=a -103+i10=(a -3)-i ,由纯虚数的定义,知a -3=0,所以a =3.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)实数m 为何值时,复数z =m +6m -1+(m 2+5m -6)i 是实数? 解析:复数z 为实数,则虚部为0,由于实部是分式,因此要求分式有意义,则⎩⎪⎨⎪⎧m 2+5m -6=0,m ≠1,解得m =-6.所以当m =-6时,复数z 是实数. 18.(12分)计算⎣⎢⎡⎦⎥⎤1+2i ·i 100+⎝ ⎛⎭⎪⎫1-i 1+i 52-⎝ ⎛⎭⎪⎫1+i 220.解析:⎣⎢⎡⎦⎥⎤1+2i ·i 100+⎝ ⎛⎭⎪⎫1-i 1+i 52-⎝ ⎛⎭⎪⎫1+i 220=[(1+2i)·1+(-i)5]2-i 10=(1+i)2-i 10=1+2i.19.(12分)复数z =(a 2+1)+a i(a ∈R )对应的点在第几象限?复数z 对应的点的轨迹方程是什么?解析:因为a 2+1≥1>0,复数z =(a 2+1)+a i 对应的点为(a 2+1,a ),所以z 对应的点在第一、四象限或实轴的正半轴上.设z =x +y i(x ,y ∈R ),则⎩⎪⎨⎪⎧x =a 2+1,y =a ,消去a 可得x =y 2+1,所以复数z 对应的点的轨迹方程是y 2=x -1.20.(12分)设复数z 1=(a 2-4sin 2θ)+(1+2cos θ)i ,a ∈R ,θ∈(0,π),z 2在复平面内对应的点在第一象限,且z 22=-3+4i.(1)求z 2及|z 2|;(2)若z 1=z 2,求θ与a 的值.解析:(1)设z 2=m +n i(m ,n ∈R ),则z 22=(m +n i)2=m 2-n 2+2mn i =-3+4i ,即⎩⎪⎨⎪⎧m 2-n 2=-3,2mn =4,解得⎩⎪⎨⎪⎧m =1,n =2,或⎩⎪⎨⎪⎧m =-1,n =-2,所以z 2=1+2i 或z 2=-1-2i.又因为z 2在复平面内对应的点在第一象限,所以z 2=-1-2i 应舍去, 故z 2=1+2i ,|z 2|= 5.(2)由(1)知(a 2-4sin 2θ)+(1+2cos θ)i =1+2i ,即⎩⎪⎨⎪⎧a 2-4sin 2θ=1,1+2cos θ=2,解得cos θ=12,因为θ∈(0,π),所以θ=π3,所以a 2=1+4sin 2θ=1+4×34=4,a =±2.综上,θ=π3,a =±2.21.(12分)虚数z 满足|z |=1,z 2+2z +1z<0,求z .解析:设z =x +y i(x ,y ∈R ,y ≠0),∴x 2+y 2=1.则z 2+2z +1z =(x +y i)2+2(x +y i)+1x +y i =(x 2-y 2+3x )+y (2x +1)i.∵y ≠0,z 2+2z +1z<0,∴⎩⎪⎨⎪⎧ 2x +1=0,x 2-y 2+3x <0,①②又x 2+y 2=1.③ 由①②③得⎩⎪⎨⎪⎧x =-12,y =±32.∴z =-12±32i.22.(12分)已知复数z 1=i(1-i)3. (1)求|z 1|;(2)若|z |=1,求|z -z 1|的最大值.解析:(1)|z 1|=|i(1-i)3|=|2-2i|=22+-22=2 2.(2)如图所示,由|z |=1可知,z 在复平面内对应的点的轨迹是半径为1,圆心为O (0,0)的圆,而z 1对应着坐标系中的点Z 1(2,-2).所以|z-z1|的最大值可以看成是点Z1(2,-2)到圆上的点的距离的最大值.由图知|z-z1|max=|z1|+r(r为圆的半径)=22+1.章末质量检测(三) 立体几何初步一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.答案:D2.关于直观图画法的说法中,不正确的是( )A.原图形中平行于x轴的线段,其对应线段仍平行于x′轴,其长度不变B.原图形中平行于y轴的线段,其对应线段仍平行于y′轴,其长度不变C.画与坐标系xOy对应的坐标系x′O′y′时,∠x′O′y′可画成135°D.作直观图时,由于选轴不同,所画直观图可能不同解析:根据斜二测画法的规则可知B不正确.答案:B3.若圆柱的轴截面是一个正方形,其面积为4S,则它的一个底面面积是( )A .4SB .4πSC .πSD .2πS解析:由题意知圆柱的母线长为底面圆的直径2R , 则2R ·2R =4S ,得R 2=S .所以底面面积为πR 2=πS . 答案:C4.如果一个正四面体(各个面都是正三角形)的体积为9 cm 3,则其表面积为( ) A .18 3 cm 2B .18 cm 2C .12 3 cm 2D .12 cm 2解析:设正四面体的棱长为a cm ,则底面积为34a 2 cm 2,易求得高为63a cm ,则体积为13×34a 2×63a =212a 3=9,解得a =32,所以其表面积为4×34a 2=183(cm 2).答案:A5.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为1,6,3,其四面体的四个顶点在一个球面上,则这个球的表面积为( )A .16π B.32π C .36π D.64π解析:将四面体可补形为长方体,此长方体的对角线即为球的直径,而长方体的对角线长为12+62+32=4,即球的半径为2,故这个球的表面积为4πr 2=16π.答案:A6.若平面α∥平面β,直线a ∥平面α,点B 在平面β内,则在平面β内且过点B 的所有直线中( )A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一与a 平行的直线解析:当直线a ⊂平面β,且点B 在直线a 上时,在平面β内且过点B 的所有直线中不存在与a 平行的直线.故选A.答案:A7.若α∥β,A ∈α,C ∈α,B ∈β,D ∈β,且AB +CD =28,AB 、CD 在β内的射影长分别为9和5,则AB 、CD 的长分别为( )A .16和12B .15和13C .17和11D .18和10解析:如图,作AM ⊥β,CN ⊥β,垂足分别为M 、N ,设AB =x ,则CD =28-x ,BM =9,ND =5,∴x 2-81=(28-x )2-25, ∴x =15,28-x =13. 答案:B 8.如图,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=14A 1B 1,则多面体P -BCC 1B 1的体积为( )A.83B.163 C .4 D .5解析:V 多面体P -BCC 1B 1=13S 正方形BCC 1B 1·PB 1=13×42×1=163.答案:B9.如图,在直三棱柱ABC -A 1B 1C 1中,D 为A 1B 1的中点,AB =BC =BB 1=2,AC =25,则异面直线BD 与AC 所成的角为( )A .30° B.45° C .60° D.90°解析:如图,取B1C1的中点E,连接BE,DE,则AC∥A1C1∥DE,则∠BDE即为异面直线BD与AC所成的角(或其补角).由条件可知BD=DE=EB=5,所以∠BDE=60°,故选C.答案:C10.如图,在三棱锥P-ABC中,不能证明AP⊥BC的条件是( )A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BCP⊥平面PAC,BC⊥PCD.AP⊥平面PBC解析:A中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC,又BC⊂平面PBC,所以AP⊥BC,故A正确;C中,因为平面BCP⊥平面PAC,BC⊥PC,所以BC⊥平面APC,AP⊂平面APC,所以AP⊥BC,故C正确;D中,由A知D正确;B中条件不能判断出AP⊥BC,故选B.答案:B11.在等腰Rt△ABC中,AB=BC=1,M为AC的中点,沿BM把它折成二面角,折后A与C的距离为1,则二面角C-BM-A的大小为( )A.30° B.60°C.90° D.120°解析:如图所示,由AB=BC=1,∠A′BC=90°,得A′C= 2.∵M为A′C的中点,∴MC=AM=22,且CM⊥BM,AM⊥BM,∴∠CMA为二面角C-BM-A的平面角.∵AC =1,MC =AM =22,∴∠CMA =90°. 答案:C12.在矩形ABCD 中,若AB =3,BC =4,PA ⊥平面AC ,且PA =1,则点P 到对角线BD 的距离为( )A.292 B.135C.175D.1195 解析:如图,过点A 作AE ⊥BD 于E ,连接PE . ∵PA ⊥平面ABCD ,BD ⊂平面ABCD , ∴PA ⊥BD ,∴BD ⊥平面PAE ,∴BD ⊥PE . ∵AE =AB ·AD BD =125,PA =1, ∴PE =1+⎝ ⎛⎭⎪⎫1252=135.答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.正方形ABCD 绕对角线AC 所在直线旋转一周所得组合体的结构特征是________. 解析:由圆锥的定义知是两个同底的圆锥形成的组合体. 答案:两个同底的圆锥组合体14.若某空间几何体的直观图如图所示,则该几何体的表面积是________. 解析:根据直观图可知该几何体是横着放的直三棱柱,所以S 侧=(1+2+3)×2=2+2+6, S 底=12×1×2=22, 故S 表=2+2+6+2×22=2+22+ 6.答案:2+22+ 615.如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.解析:∵EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC ,∴EF ∥AC ,∴F 为DC 中点.故EF =12AC = 2.答案: 216.矩形ABCD 中,AB =1,BC =2,PA ⊥平面ABCD ,PA =1,则PC 与平面ABCD所成的角是________.解析:tan∠PCA =PA AC=13=33,∴∠PCA =30°. 答案:30°三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图是由正方形ABCE 和正三角形CDE 所组成的平面图形,试画出其水平放置的直观图.解析:(1)以AB 所在的直线为x 轴,AB 的中垂线为y 轴建立直角坐标系,如图(1),再建立坐标系x ′O ′y ′,使两轴的夹角为45°,如图(2).(2)以O ′为中点,在x ′轴上截取A ′B ′=AB ,分别过A ′,B ′作y ′轴的平行线,截取A ′E ′=12AE ,B ′C ′=12BC .在y ′轴上截取O ′D ′=12OD .(3)连接E ′D ′,E ′C ′,C ′D ′,并擦去作为辅助线的坐标轴,就得到所求的直观图,如图(3).18.(12分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连接A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:(1)三棱锥A ′-BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′-BC ′D 的体积.解析:(1)∵ABCD -A ′B ′C ′D ′是正方体, ∴A ′B =A ′C ′=A ′D =BC ′=BD =C ′D =2a ,∴三棱锥A ′-BC ′D 的表面积为4×12×2a ×32×2a =23a 2.而正方体的表面积为6a 2,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为23a 26a 2=33. (2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的. 故V 三棱锥A ′-BC ′D =V 正方体-4V 三棱锥A ′-ABD =a 3-4×13×12a 2×a =a33.19.(12分)如图,四边形ABCD 与四边形ADEF 都为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG .证明:(1)设DF 与GN 交于点O ,连接AE ,则AE 必过点O ,且O 为AE 的中点,连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO .因为BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为AD,EF的中点,四边形ADEF为平行四边形,所以DE∥GN.因为DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.因为M为AB的中点,N为AD的中点,所以MN为△ABD的中位线,所以BD∥MN.因为BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG.因为DE∩BD=D,BD,DE⊂平面BDE,所以平面BDE∥平面MNG.20.(12分)S是Rt△ABC所在平面外一点,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明:(1)如图所示,取AB的中点E,连接SE,DE,在Rt△ABC中,D、E分别为AC、AB的中点,∴DE∥BC,∴DE⊥AB,∵SA=SB,∴△SAB为等腰三角形,∴SE⊥AB.又SE∩DE=E,∴AB⊥平面SDE.又SD⊂平面SDE,∴AB⊥SD.在△SAC中,SA=SC,D为AC的中点,∴SD⊥AC.又AC∩AB=A,∴SD⊥平面ABC.(2)由于AB=BC,则BD⊥AC,由(1)可知,SD⊥平面ABC,BD⊂平面ABC,∴SD⊥BD,又SD∩AC=D,∴BD⊥平面SAC.21.(12分)如图,在斜三棱柱ABC-A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,点E是AB的中点.(1)求证:OE∥平面BCC1B1;(2)若AC1⊥A1B,求证:AC1⊥BC.证明:(1)连接BC1,因为侧面AA1C1C是菱形,AC1与A1C交于点O,所以O为AC1的中点,又因为E是AB的中点,所以OE∥BC1,因为OE⊄平面BCC1B1,BC1⊂平面BCC1B1,所以OE∥平面BCC1B1.(2)因为侧面AA1C1C是菱形,所以AC1⊥A1C,因为AC1⊥A1B,A1C∩A1B=A1,A1C⊂平面A1BC,A1B⊂平面A1BC,所以AC1⊥平面A1BC,因为BC⊂平面A1BC,所以AC1⊥BC.22.(12分)如图所示,在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连接ED,EC,EB和DB.(1)求证:平面EDB⊥平面EBC;(2)求二面角E-DB-C的正切值.解析:(1)证明:在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点.所以△DD1E为等腰直角三角形,∠D1ED=45°.同理∠C1EC=45°.所以∠DEC=90°,即DE⊥EC.在长方体ABCD-A1B1C1D1中,BC⊥平面D1DCC1,又DE⊂平面D1DCC1,所以BC⊥DE.又EC∩BC=C,所以DE⊥平面EBC.因为DE⊂平面DEB,所以平面DEB⊥平面EBC.(2)如图所示,过E在平面D1DCC1中作EO⊥DC于O.在长方体ABCD-A1B1C1D1中,因为平面ABCD⊥平面D1DCC1,且交线为DC,所以EO⊥面ABCD.过O在平面DBC中作OF⊥DB于F,连接EF,所以EF⊥BD.∠EFO为二面角E-DB-C的平面角.利用平面几何知识可得OF=15,又OE=1,所以tan∠EFO= 5.章末质量检测(四) 统计一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从某年级500名学生中抽取60名学生进行体重的统计分析,下列说法正确的是( )A.500名学生是总体B.每个被抽查的学生是样本C.抽取的60名学生的体重是一个样本D.抽取的60名学生是样本容量解析:A×总体应为500名学生的体重B×样本应为每个被抽查的学生的体重C√抽取的60名学生的体重构成了总体的一个样本D×样本容量为60,不能带有单位2.某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将70个同学按01,02,03,…,70进行编号,然后从随机数表第9行第9列的数开始向右读,则选出的第7个个体是( )(注:如表为随机数表的第8行和第9行)63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54A .07B .44C .15D .51解析:找到第9行第9列数开始向右读,符合条件的是29,64,56,07,52,42,44,故选出的第7个个体是44.答案:B3.对于数据3,3,2,3,6,3,10,3,6,3,2,有以下结论: ①这组数据的众数是3.②这组数据的众数与中位数的数值不等. ③这组数据的中位数与平均数的数值相等. ④这组数据的平均数与众数的数值相等. 其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个解析:由题意知,众数与中位数都是3,平均数为4.只有①正确,故选A. 答案:A4.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A .8B .11C .16D .10解析:若设高三学生数为x ,则高一学生数为x 2,高二学生数为x2+300,所以有x+x 2+x 2+300=3 500,解得x =1 600.故高一学生数为800,因此应抽取的高一学生数为800100=8.答案:A5.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形的面积和的25,且样本容量为140,则中间一组的频数为( )A .28B .40C .56D .60解析:设中间一组的频数为x ,则其他8组的频数和为52x ,所以x +52x =140,解得x =40.答案:B6.某校共有学生2 000名,各年级男、女生人数如表所示:一年级二年级三年级女生373380y男生377370z现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( )A.24 B.18C.16 D.12解析:一年级的学生人数为373+377=750,二年级的学生人数为380+370=750,于是三年级的学生人数为2 000-750-750=500,那么三年级应抽取的人数为500×642 000=16.故选C.答案:C7.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如下图,则下面结论中错误的一个是( )A.甲的极差是29 B.乙的众数是21C.甲罚球命中率比乙高 D.甲的中位数是24解析:甲的极差是37-8=29;乙的众数显然是21;甲的平均数显然高于乙,即C成立;甲的中位数应该是23.答案:D8.为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .1B .8C .12D .18解析:由图知,样本总数为N =200.16+0.24=50.设第三组中有疗效的人数为x ,则6+x 50=0.36,解得x =12. 答案:C9.一组数据的方差为s 2,平均数为x ,将这组数据中的每一个数都乘以2,所得的一组新数据的方差和平均数为( )A.12s 2,12x B .2s 2,2x C .4s 2,2x D .s 2,x解析:将一组数据的每一个数都乘以a ,则新数据组的方差为原来数据组方差的a 2倍,平均数为原来数据组的a 倍.故答案选C.答案:C10.某超市连锁店统计了城市甲、乙的各16台自动售货机在12:00至13:00间的销售金额,并用茎叶图表示如图,则可估计有( )A .甲城市销售额多,乙城市销售额不够稳定B .甲城市销售额多,乙城市销售额稳定C .乙城市销售额多,甲城市销售额稳定D .乙城市销售额多,甲城市销售额不够稳定解析:十位数字是3,4,5时乙城市的销售额明显多于甲,估计乙城市销售额多,甲的数字过于分散,不够稳定,故选D.答案:D11.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加上2所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差解析:设A 样本数据为x i ,根据题意可知B 样本数据为x i +2,则依据统计知识可知A ,B 两样本中的众数、平均数和中位数都相差2,只有方差相同,即标准差相同.答案:D12.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为( ) A.1169 B.367 C .36 D.677解析:由题图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x=91×7,解得x =4.故s 2=17[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.故选B. 答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中横线上) 13.将一个容量为m 的样本分成3组,已知第一组频数为8,第二、三组的频率为0.15和0.45,则m =________.解析:由题意知第一组的频率为 1-(0.15+0.45)=0.4, 所以8m=0.4,所以m =20.答案:2014.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上(包括50岁)的人,用分层抽样的方法从中抽20人,各年龄段分别抽取的人数为________.解析:由于样本容量与总体个体数之比为20100=15,故各年龄段抽取的人数依次为45×15=9(人),25×15=5(人),20-9-5=6(人).答案:9,5,615.某市高三数学抽样考试中,对90分以上(含90分)的成绩进行统计,其频率分布图如图所示,若130~140分数段的人数为90人,则90~100分数段的人数为________.解析:由频率分布图知,设90~100分数段的人数为x ,则0.40x =0.0590,所以x=720.答案:72016.设样本数据x 1,x 2,…,x 2017的方差是4,若y i =2x i -1(i =1,2,…,2 017),则y 1,y 2,…,y 2017的方差为________.解析:本题考查数据的方差.由题意得D (y i )=D (2x i -1)=D (2x i )=4D (x i )=4×4=16.答案:16三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)某总体共有60个个体,并且编号为00,01,…,59.现需从中抽取一个容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列的1开始.依次向下读数,到最后一行后向右,直到取足样本为止(大于59及与前面重复的数字跳过),求抽取样本的号码.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 39 90 84 60 79 80 24 36 59 87 38 82 07 53 89 35 56 35 23 79 18 05 98 90 07 35 46 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 79 20 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 30 71 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 60解析:由随机数表法可得依次的读数为:18,24,54,38,08,22,23,0118.(12分)某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中,青年人占50%,中年人占40%,老年人占10%,为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例; (2)游泳组中,青年人、中年人、老年人分别应抽取的人数.解析:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人各占比例分别为a ,b ,c ,则有x ·40%+3xb 4x =47.5%,x ·10%+3xc4x=10%.解得b =50%,c =10%. 故a =1-50%-10%=40%.即游泳组中,青年人、中年人、老年人各占比例分别为40%,50%,10%.(2)游泳组中,抽取的青年人数为200×34×40%=60;抽取的中年人数为200×34×50%=75;抽取的老年人数为200×34×10%=15.19.(12分)已知一组数据按从小到大的顺序排列为-1,0,4,x,7,14,中位数为5,求这组数据的平均数与方差.解析:由于数据-1,0,4,x,7,14的中位数为5,所以4+x2=5,x =6.设这组数据的平均数为x -,方差为s 2,由题意得 x -=16×(-1+0+4+6+7+14)=5,s 2=16×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=743. 20.(12分)为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将取得数据整理后,画出频率分布直方图(如图).已知图中从左到右前三个小组频率分别为0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生有多少人;(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率是多少.解析:(1)由累积频率为1知,第四小组的频率为1-0.1-0.3-0.4=0.2. (2)设参加这次测试的学生有x 人,则0.1x =5, 所以x =50.即参加这次测试的学生有50人. (3)达标率为0.3+0.4+0.2=90%,所以估计该年级学生跳绳测试的达标率为90%.21.(12分)市体校准备挑选一名跳高运动员参加全市中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛.他们的成绩(单位:m)如下:甲:1.70 1.65 1.68 1.69 1.72 1.73 1.68 1.67乙:1.60 1.73 1.72 1.61 1.62 1.71 1.70 1.75(1)甲、乙两名运动员的跳高平均成绩分别是多少?(2)哪位运动员的成绩更为稳定?(3)若预测跳过1.65 m就很可能获得冠军,该校为了获得冠军,可能选哪名运动员参赛?若预测跳过1.70 m才能得冠军呢?解析:(1)甲的平均成绩为:(1.70+1.65+1.68+1.69+1.72+1.73+1.68+1.67)÷8=1.69 m,乙的平均成绩为:(1.60+1.73+1.72+1.61+1.62+1.71+1.70+1.75)÷8=1.68 m;(2)根据方差公式可得:甲的方差为0.0006,乙的方差为0.00315∵0.0006<0.00315∴甲的成绩更为稳定;(3)若跳过1.65 m就很可能获得冠军,甲成绩均过1.65米,乙3次未过1.65米,因此选甲;若预测跳过1.70 m才能得冠军,甲成绩过1.70米3次,乙过1.70米5次,因此选乙.22.(12分)某中学高一女生共有450人,为了了解高一女生的身高(单位:cm)情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:(1)(2)画出频率分布直方图;(3)估计该校高一女生身高在[149.5,165.5]范围内的有多少人?解析:(1)由题意得M=80.16=50,落在区间[165.5,169.5]内的数据频数m=50-(8+6+14+10+8)=4,。
(数学2必修)第一章 空间几何体[基础训练A 组] 一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A.棱台B.棱锥C.棱柱D.都不对2.棱长都是1的三棱锥的表面积为( )A. 3B. 23C. 33D. 433.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对 4.正方体的内切球和外接球的半径之比为( )A .3:1B .3:2C .2:3D .3:35.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( )A. 92π B. 72π C. 52π D. 32π6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。
2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。
3.正方体1111ABCD A B C D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。
4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的射影可能是____________。
5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题 1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12M ,高4M ,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。
高中数学必修二练习题(人教版,附答案)本文适合复习评估,借以评价学习成效。
一、选择题1. 已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为()A.3B.-2C. 2D. 不存在2.过点且平行于直线的直线方程为()A. B.C.D.3. 下列说法不正确的....是()A.空间中,一组对边平行且相等的四边形是一定是平行四边形;B.同一平面的两条垂线一定共面;C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D. 过一条直线有且只有一个平面与已知平面垂直.4.已知点、,则线段的垂直平分线的方程是()A. B. C. D.5. 研究下在同一直角坐标系中,表示直线与的关系6. 已知a、b是两条异面直线,c∥a,那么c与b的位置关系()A.一定是异面B.一定是相交C.不可能平行D.不可能相交7. 设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是( )(A)①和②(B)②和③(C)③和④(D)①和④8. 圆与直线的位置关系是()A.相交 B.相切 C.相离 D.直线过圆心9. 两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c的值为()A.-1 B.2 C.3 D.010. 在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么( )A.点P必在直线AC上 B.点P必在直线BD上C.点P必在平面DBC内 D.点P必在平面ABC外11. 若M、N分别是△ABC边AB、AC的中点,MN与过直线BC的平面β的位置关系是(C )A.MN∥βB.MN与β相交或MNβC. MN∥β或MNβD. MN∥β或MN与β相交或MNβ12. 已知A、B、C、D是空间不共面的四个点,且AB⊥CD,AD⊥BC,则直线BD与AC(A )A.垂直B.平行C.相交D.位置关系不确定二填空题13.已知A(1,-2,1),B(2,2,2),点P在z轴上,且|PA|=|PB|,则点P的坐标为;14.已知正方形ABCD的边长为1,AP⊥平面ABCD,且AP=2,则PC=;15.过点(1,2)且在两坐标轴上的截距相等的直线的方程 ___________;16.圆心在直线上的圆C与轴交于两点,,则圆C的方程为.三解答题17(12分) 已知△ABC三边所在直线方程为AB:3x+4y+12=0,BC:4x-3y+16=0,CA:2x+y-2=0 求AC边上的高所在的直线方程.18(12分)如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE 的中点,求证:(1) FD∥平面ABC;(2) AF⊥平面EDB.19(12分)如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,(1)求证:平面A B1D1∥平面EFG;(2)求证:平面AA1C⊥面EFG.20(12分)已知圆C同时满足下列三个条件:①与y轴相切;②在直线y=x上截得弦长为2;③圆心在直线x-3y=0上. 求圆C的方程.设所求的圆C与y轴相切,又与直线交于AB,2分)设有半径为3的圆形村落,A、B两人同时从村落中心出发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇.设A、B两人速度一定,其速度比为3:1,问两人在何处相遇?22(14分)已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程;(3) 当直线l的倾斜角为45度时,求弦AB的长.一、选择题(5’×12=60’)(参考答案)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B A D B C C A A C A C A二、填空题:(4’×4=16’) (参考答案)13. (0,0,3) 14. 15 y=2x或x+y-3=0 16. (x-2)2+(y+3)2=5三解答题17(12分) 解:由解得交点B(-4,0),. ∴AC边上的高线BD的方程为.18(12分) 解:(1)取AB的中点M,连FM,MC,∵F、M分别是BE、BA的中点∴ FM∥EA, FM=EA∵ EA、CD都垂直于平面ABC ∴ CD∥EA∴ CD∥FM又 DC=a, ∴ FM=DC ∴四边形FMCD是平行四边形∴FD∥MCFD∥平面ABC(2)因M是AB的中点,△ABC是正三角形,所以CM⊥AB又 CM⊥AE,所以CM⊥面EAB, CM⊥AF, FD⊥AF,因F是BE的中点, EA=AB所以AF⊥EB.19解:略20解:∵圆心C在直线上,∴圆心C(3a,a),又圆与y轴相切,∴R=3|a|. 又圆心C到直线y-x=0的距离在Rt△CBD中,.∴圆心的坐标C分别为(3,1)和(-3,-1),故所求圆的方程为或.21解解:如图建立平面直角坐标系,由题意可设A、B两人速度分别为3v千米/小时,v千米/小时,再设出发x0小时,在点P改变方向,又经过y0小时,在点Q处与B相遇.则P、Q两点坐标为(3vx0, 0),(0,vx0+vy0).由|OP|2+|OQ|2=|PQ|2知,………………3分(3vx0)2+(vx0+vy0)2=(3vy0)2,即.……①………………6分将①代入……………8分又已知PQ与圆O相切,直线PQ在y轴上的截距就是两个相遇的位置.设直线相切,则有……………………11分答:A、B相遇点在离村中心正北千米处………………12分22解:(1)已知圆C:的圆心为C(1,0),因直线过点P、C,所以直线l的斜率为2,直线l的方程为y=2(x-1),即 2x-y-20.(2)当弦AB被点P平分时,l⊥PC, 直线l的方程为, 即 x+2y-6=0(3)当直线l的倾斜角为45度时,斜率为1,直线l的方程为y-2=x-2 ,即 x-y=0圆心C到直线l的距离为,圆的半径为3,弦AB的长为.。
主视图左视图俯视图一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个()A .棱台B .棱锥C .棱柱D.都不对2.棱长都是1的三棱锥的表面积为()A.B .C .D .3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是()A .25πB .50πC .125πD .都不对4.正方体的内切球和外接球的半径之比为()AB 2C .2:D 35.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周,则所形成的几何体的体积是()A.92π B.72π C.52π D.32π6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是()A .130B .140C .150D .160二、填空题1.一个棱柱至少有_____个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱。
2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。
3.正方体1111ABCD A B C D −中,O 是上底面ABCD 中心,若正方体的棱长为a ,则三棱锥11O AB D −的体积为_____________。
4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的射影可能是____________。
5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________.三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12M ,高4M ,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。
(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?2.将圆心角为0120,面积为3π的扇形,作为圆锥的侧面,求圆锥的表面积和体积C 图(1)图(2)一、选择题1.如果一个水平放置的图形的斜二测直观图是一个底面为045,腰和上底均为1的等腰梯形,那么原平面图形的面积是()A .22+B .221+C .222+D .21+2.半径为R 的半圆卷成一个圆锥,则它的体积为()A3R B.3R C3R D 3R 3.一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是()A.28cm πB.212cm πC.216cm πD.220cm π4.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为()A .7B.6C.5D.35.棱台上、下底面面积之比为1:9,则棱台的中截面分棱台成两部分的体积之比是()A .1:7B.2:7C.7:19D.5:166.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,且EF 与平面ABCD 的距离为2,则该多面体的体积为()A .92B.5C.6D.152二、填空题1.圆台的较小底面半径为1,母线长为2,一条母线和底面的一条半径有交点且成060,则圆台的侧面积为2.Rt ABC ∆中,3,4,5AB BC AC ===,将三角形绕直角边AB 旋转一周所成的几何体的体积为3.等体积的球和正方体,它们的表面积的大小关系是S 球___S 正方体4.若长方体的一个顶点上的三条棱的长分别为3,4,5,从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,其最短路程是______________。
5.图(1)为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;图(2)中的三视图表示的实物为_____________。
6.若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为________三、解答题1.有一个正四棱台形状的油槽,可以装油190L ,假如它的两底面边长分别等于60cm 和40cm ,求它的深度为多少cm ?2.已知圆台的上下底面半径分别是2,5,且侧面面积等于两底面面积之和,求该圆台的母线长.6一、选择题1.下图是由哪个平面图形旋转得到的()C D2.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为()A .1:2:3B .1:3:5C .1:2:4D .1:3:93.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后,剩下的几何体的体积是()A.23 B.76 C.45 D.564.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V A .1:3B .1:1C .2:1 D.3:15.如果两个球的体积之比为8:27,那么两个球的表面积之比为()A .8:27B .2:3C .4:9D .2:96.有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为:()A .224cm π,212cm πB .215cm π,212cm πC .224cm π,236cm πD .以上都不正确二、填空题1.若圆锥的表面积是15π,侧面展开图的圆心角是060,则圆锥的体积是_______。
2.一个半球的全面积为Q ,一个圆柱与此半球等底等体积,则这个圆柱的全面积是.3.球的半径扩大为原来的2倍,它的体积扩大为原来的_________倍.4.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.5.已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为___________。
三、解答题1.(如图)在底半径为2,母线长为4的圆锥中内接一个高为求圆柱的表面积2.如图,在四边形ABCD 中,090DAB ∠=,0135ADC ∠=,5AB =,CD =,2AD =,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.A 一、选择题1.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。
⑵两条直线没有公共点,则这两条直线平行。
⑶两条直线都和第三条直线垂直,则这两条直线平行。
⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。
其中正确的个数为()A .0B .1C .2D .32.下面列举的图形一定是平面图形的是()A .有一个角是直角的四边形B .有两个角是直角的四边形C .有三个角是直角的四边形D .有四个角是直角的四边形3.垂直于同一条直线的两条直线一定()A .平行B .相交C .异面D .以上都有可能4.如右图所示,正三棱锥V ABC −(顶点在底面的射影是底面正三角形的中心)中,,,DEF 分别是,,VC VA AC 的中点,P 为VB 上任意一点,则直线DE 与PF 所成的角的大小是()A .030B .090C .060D .随P 点的变化而变化。
5.互不重合的三个平面最多可以把空间分成()个部分A .4B .5C .7D .86.把正方形ABCD 沿对角线AC 折起,当以,,,A B C D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为()A .90B .60C .45D .30二、填空题1.已知,a b 是两条异面直线,//c a ,那么c 与b 的位置关系____________________。
2.直线l 与平面α所成角为030,,,l A m A m αα=⊂∉∩,则m 与l 所成角的取值范围是_________3.棱长为1的正四面体内有一点P ,由点P 向各面引垂线,垂线段长度分别为1234,,,d d d d ,则1234d d d d +++的值为。
4.直二面角α-l -β的棱l 上有一点A ,在平面,αβ内各有一条射线AB ,AC 与l 成045,,AB AC αβ⊂⊂,则BAC ∠=。
5.下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有_____________。
三、解答题1.已知,,,E F G H 为空间四边形ABCD 的边,,,AB BC CD DA 上的点,且//EH FG .求证://EH BD .2.自二面角内一点分别向两个半平面引垂线,求证:它们所成的角与二两角的平面角互补。
H GF ED BA C一、选择题1.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π2.已知在四面体ABCD 中,,E F 分别是,AC BD 的中点,若2,4,AB CD EF AB ==⊥,则EF 与CD 所成的角的度数为()A.90°B.45°C.60°D.30°3.三个平面把空间分成7部分时,它们的交线有()A.1条B.2条C.3条D.1条或2条4.在长方体1111ABCD A B C D −,底面是边长为2的正方形,高为4,则点1A 到截面11AB D 的距离为()A .83B .38C .43D .345.直三棱柱111ABC A B C −中,各侧棱和底面的边长均为a ,点D 是1CC 上任意一点,连接11,,,A B BD A D AD ,则三棱锥1A A BD −的体积为()A .361a B .3123a C .363a D .3121a 6.下列说法不正确的....是()A .空间中,一组对边平行且相等的四边形是一定是平行四边形;B .同一平面的两条垂线一定共面;C .过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D .过一条直线有且只有一个平面与已知平面垂直.二、填空题1.正方体各面所在的平面将空间分成_____________部分。
2.空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 的中点,则BC 与AD 的位置关系是_____________;四边形EFGH 是__________形;当___________时,四边形EFGH 是菱形;当___________时,四边形EFGH 是矩形;当___________时,四边形EFGH 是正方形3.四棱锥V ABCD −中,底面ABCD 是边长为2的正方形,其他四个侧面都是侧棱长为5的等腰三角形,则二面角V AB C −−的平面角为_____________。