PPAR_功能与疾病关系研究进展_马晶晶
- 格式:pdf
- 大小:216.43 KB
- 文档页数:4
过氧化物酶体增殖物激活受体γ与相关疾病的研究进展1. 引言1.1 过氧化物酶体增殖物激活受体γ的介绍过氧化物酶体增殖物激活受体γ(PPARγ)是一种核受体蛋白,属于PPARs家族。
它广泛存在于多种组织和细胞中,并在调控脂质代谢、糖代谢、炎症反应等生理过程中起着重要作用。
PPARγ在疾病发生发展过程中扮演着重要角色,特别在代谢性疾病、炎症性疾病和肿瘤等方面有着重要作用。
PPARγ的功能主要通过结合内源性配体,如脂肪酸和合成类固醇等,来调控下游基因的转录活性。
激活PPARγ后,它与另一核受体RXR形成二聚体,结合到特定的DNA响应元上,从而调控一系列基因的表达。
研究表明,PPARγ的激活可促进脂肪细胞分化、增加糖代谢和胰岛素敏感性,抑制炎症反应等。
1.2 相关疾病的背景相关疾病包括自身免疫性疾病和恶性肿瘤等多种疾病。
自身免疫性疾病是一组由机体免疫系统错误地攻击自身组织和器官而引起的疾病,如类风湿关节炎、系统性红斑狼疮和自身免疫性甲状腺疾病等。
恶性肿瘤是一种细胞异常增殖的疾病,恶性细胞会不受控制地增殖和扩散,如白血病、乳腺癌和肺癌等。
这些疾病给患者的身体和心理健康造成了严重危害,严重影响了患者的生活质量和生存期。
目前,虽然已有一些治疗手段和药物用于这些疾病的治疗,但治疗效果并不理想,存在很多副作用和耐药性问题。
2. 正文2.1 过氧化物酶体增殖物激活受体γ在疾病中的作用过氧化物酶体增殖物激活受体γ(PPARγ)是一种重要的核受体,在人体的疾病发生和发展中扮演着重要的角色。
PPARγ主要通过调节基因的转录来影响细胞的代谢、增殖和分化等功能,从而参与调控多种生理过程。
在糖尿病研究中,PPARγ被发现对胰岛素敏感性具有重要影响。
PPARγ可以通过促进葡萄糖摄取和利用、调控血糖代谢等途径,降低血糖水平,提高胰岛素敏感性,从而有望成为糖尿病治疗的靶点。
在脂质代谢调控中,PPARγ也发挥着重要作用。
除了在糖尿病中的作用外,PPARγ在心血管疾病、炎症性疾病、神经系统疾病等方面也有着重要的影响。
PPARγ磷酸化与非磷酸化的研究进展宋扬【摘要】过氧化物酶体增殖物激活受体γ(PPARγ)是一种配体依赖性核转录因子,具有调控细胞分化、脂肪代谢、糖代谢及炎症等多种生物学功能.已知PPARγ有多种转录后修饰,磷酸化修饰是PPARγ第一个被鉴定的翻译后修饰方式,目前研究较多的是Ser112位点的丝裂原激活的蛋白激酶途径及Ser273位点的细胞周期素依赖的蛋白激酶5途径.PPARγ的异源二聚体结合到靶基因启动子区的特异反应元件过氧化物酶体增殖反应元件上调控靶基因的转录,PPARγ还参与炎性反应应答.PPARγ与糖尿病、肿瘤等疾病也有密切的联系.【期刊名称】《医学综述》【年(卷),期】2014(020)003【总页数】4页(P404-407)【关键词】过氧化物酶体增殖物激活受体γ;磷酸化;糖尿病;炎症【作者】宋扬【作者单位】中国医科大学附属盛京医院肿瘤科,沈阳,110021【正文语种】中文【中图分类】R73.3;R815过氧化物酶增殖活化受体(peroxisome proliferator-activated receptors,PPAR)是一类由配体激活的核转录因子,属于Ⅱ型核受体超家族。
由于这类新型的核受体可以被过氧化物酶体增殖剂激活,将其命名为PPAR。
PPAR能够识别内源性或外源性的特异性配体,发生激活并转录一系列靶基因,从而参与众多生理功能的调控。
目前认为PPAR共包括3种亚型,即α、β/δ、γ。
随着研究的深入,发现PPARγ与多种疾病密切相关,如糖尿病、肿瘤、动脉粥样硬化等[1]。
PPARγ的转录后修饰(磷酸化、乙酰化、泛素化等)也越来越引起人们的关注。
1 PPARγ简介1.1 PPARγ PPAR是配体依赖的核受体超家族的成员之一,包括三个相近同源基因的亚型PPARα(NR1C1)、PPARβ/δ(NR1C2)和PPARγ(NR1C3)。
与其他核受体相似,PPARγ主要包含以下四个不同的功能结构域:A/B、C、D和 E/F[1]。
[文章编号]㊀1674⁃8603(2021)01⁃0058⁃04PPAR激动剂治疗骨质疏松症的研究进展钱钧,孙瑶∗(同济大学口腔医学院㊃同济大学附属口腔医院种植科,上海牙组织修复与再生工程技术研究中心,上海200072)[摘要]㊀过氧化物酶增殖激活受体(PPAR)是核激素受体,包括3种亚型:PPARα㊁PPARβ/δ㊁PPARγ㊂PPARα与脂质分解代谢㊁炎症有关,PPARβ/δ与哺乳动物皮肤㊁肝脏和骨骼再生有关,PPARγ与脂肪形成㊁葡萄糖稳态有关㊂本文主要就PPAR激动剂在治疗骨质疏松症的研究现状作一综述㊂[关键词]㊀PPAR;PPAR激动剂;骨质疏松症[中图分类号]㊀R681.4㊀㊀[文献标识码]㊀A㊀㊀[doi]㊀10.3969/j.issn.1674⁃8603.2021.01.013基金项目:国家自然科学基金优秀青年科学基金(81822012)∗通信作者:孙瑶,Email:yaosun@tongji.edu.cn㊀㊀骨质疏松症是人口老龄化趋势下㊁威胁人类公共健康的主要骨代谢疾病之一,其特征是骨量减少和骨小梁的微结构损伤,是由成骨细胞的骨形成与破骨细胞的骨吸收之间的不平衡作用引起,临床表现为骨硬度下降和骨折风险性增加[1],从而影响患者生活水平㊂全身骨组织代谢包括口腔颌面部都受到多种因素调控㊂近年来过氧化物酶增殖激活受体(peroxisomeproliferator⁃activatedreceptor,PPAR)家族的关键作用不断被发现㊂PPAR属于核受体超家族,参与细胞分化,具有调控各种生物代谢功能,在脂质㊁葡萄糖和能量代谢过程中发挥重要作用,是治疗各种异常代谢疾病(糖尿病㊁肥胖症㊁动脉粥样硬化和癌症等)的药物靶标[2]㊂靶基因启动子区的反应元件与PPAR的C结构域结合,配体结合在PPAR的E/F结构域;当配体附着于PPAR,PPAR移位至核,从而与另一种核受体类视黄醇X产生异二聚体,从而激活靶基因受体的顺序表达㊂膳食中脂肪酸和类二十烷酸激活这些受体,根据组织表达发挥多种功能,并具有不同的配体结合特异性[3⁃4]㊂所有PPAR亚型的编码均单独进行,但它们作为一个整体进行交流以调节重要的代谢途径㊂目前,临床上应用PPAR激动剂治疗重要的代谢疾病,例如代谢综合征(metabolicsyndrome,MS)㊂MS主要包括肥胖㊁糖尿病或糖调节受损,以血脂紊乱和高血压为特征的代谢紊乱[5]㊂其中,2型糖尿病病理生理学特点为胰岛B细胞功能受损所导致的胰岛素分泌不足,导致胰岛素调控葡萄糖代谢能力下降,造成糖㊁脂类㊁蛋白质代谢紊乱,累积心血管㊁眼㊁肾㊁骨等组织,引发糖尿病性心脏病㊁糖尿病肾病㊁骨质疏松症等并发症[6]㊂本文主要就PPARα㊁PPARβ/δ㊁PPARγ三种不同亚型的激动剂在治疗骨质疏松症的研究现状作一综述㊂1㊀PPAR激动剂治疗骨质疏松症的研究进展1.1㊀PPARα的激动剂PPARα在棕色脂肪和肝脏中表达最多,其次在肾脏㊁心脏和骨骼肌[7]㊂贝特类药物㊁类花生酸㊁脂肪酸可以活化PPARα,通过减少血清中甘油三酯含量和提升高密度脂蛋白的浓度,防止动脉粥样硬化形成;降低脂肪酸的合成,并增强胆固醇的转运途径,调节体内脂代谢平衡;调控多种炎症转录因子,从而在抗炎中起关键作用[8⁃9]㊂PPARα激动剂药物主要包括:非诺贝特㊁匹立尼酸㊁氯贝特㊁培马贝特等药物㊂非诺贝特在剂量和时间上增加PPARα和骨形态发生蛋白2(bonemor⁃phogeneticprotein2,BMP2)的表达,增强成骨细胞系MC3T3⁃E1成骨分化[10]㊂连续4个月给卵巢切除(ovariectomy,OVX)的大鼠用非诺贝特和匹立尼酸每日灌胃,可以维持大鼠的股骨骨小梁的数目㊁厚度以及骨含量在假手术组的水平[11]㊂研究发现,非诺贝特和适量运动均可增加股骨的骨矿物质密度(bonemineraldensity,BMD),而且非诺贝特联合运动应用更能提高BMD和改善骨微结构[12],其他药物如新型的培马贝特在骨领域尚未有确切的研究㊂1.2㊀PPARβ/δ的激动剂PPARβ/δ在体内组织中均有广泛表达,如脂肪㊁小肠㊁心脏㊁骨骼肌㊁肝脏等[13]㊂在MS相关的疾病动物模型中,PPARβ/δ激动剂能改善肥胖㊁血脂异常㊁2型糖尿病和非酒精性脂肪肝㊂PPARβ/δ在骨骼和心肌的稳态和代谢中也起着重要的作用[14]㊂PPARβ/δ参与调节伤口愈合和组织再生,通过上调整合素连接激酶和磷酸肌醇依赖性蛋白激酶1的转录来控制丝苏氨酸蛋白激酶信号传导,介导视黄酸诱导的角质形成细胞存活[15⁃16]㊂人工合成PPARβ激动剂类药物有GW501516㊁GW0742㊁L165061等[17],但暂未获得临床批准㊂Scholtysek等[18]发现PPARβ/δ敲除小鼠Wnt信号通路传导减弱,血清骨保护素(osteoprotegerin,OPG)浓度降低,破骨细胞数量增加,小鼠骨量降低㊂而在OVX小鼠中激活PPARβ/δ能恢复核因子配体κ⁃B的受体激活剂(receptoractivatorofnuclearfactorκBligand,RANKL)与OPG的正常比率,并恢复正常骨密度㊂体外激活PPARβ/δ促进了成骨细胞的分化,并在成骨细胞和破骨细胞的共培养物中抑制破骨细胞的分化和骨吸收㊂正常状态下,GW501516几乎对Wnt信号通路和骨没有影响,但在OVX大鼠中会明显诱导β连环蛋白表达与骨形成[18]㊂然而,Mosti等[19]用鼻饲管喂食GW501516四个月后对OVX大鼠的骨形成产生抑制作用,出现骨密度的减少和骨小梁微结构的破坏,而对破骨细胞无明显作用,提示长期服用该药物抑制骨形成㊂另外,用GW0742处理颅骨成骨细胞增加过氧化物酶体数目和相关基因的表达,并加速成骨细胞的分化[20]㊂1.3㊀PPARγ的激动剂PPARγ在脂肪组织中表达最高,在结肠㊁免疫系统表达较少,是脂肪形成的主要调节分子,也是胰岛素增敏剂 噻唑烷二酮类(Thiazolidinedione,TZD)的药理学靶标[21]㊂TZD激活PPARγ会促进诱导骨髓间充质干细胞向成脂分化,损害成骨细胞的形成,同时促进破骨细胞的生成,从而导致骨质疏松[22]㊂但大量的小鼠和人的实验表明:PPARγ活化在全身代谢平衡中有重要作用,而且它控制与炎症㊁氧化还原反应㊁营养因子生成有关的基因表达[23]㊂PPARγ激动剂药物主要有:罗格列酮㊁吡格列酮㊁曲格列酮㊁巴格列酮等TZD类药物㊂罗格列酮是临床常用的PPARγ激动剂,是治疗2型糖尿病的有效药物,但与骨折风险增加有关[24]㊂药理性诱导PPARγ在破骨细胞中至关重要,导致TZD的骨折产生,而PPARγ的反向激动剂SR2595可促进骨髓来源间充质干细胞的成骨向分化,并对C57BL/6小鼠的代谢参数没有负面影响[25]㊂虽然PPARγ完全激动剂(如TZD)是治疗血脂异常和2型糖尿病公认的药物,但TZD的副作用已经迫切需要人们找到新型药物来替代㊂目前,非噻唑烷二酮类PPARγ激动剂INT131与对照组或吡格列酮治疗的高脂小鼠相比,INT131治疗组小鼠的BMD显着增加,并且已有其在骨质疏松治疗的应用[26⁃27]㊂1.4㊀PPAR多重激动剂1.4.1㊀双重激动剂新型的双重PPAR激动剂多集中在PPARα和PPARγ两个亚型,主要包括沙罗格列扎㊁阿格列扎㊁替格列扎等㊂其中,沙罗格列扎在实验性非酒精性肝炎模型治疗前后期安全有效,并未出现心脏和骨骼的副作用,而其他药物治疗骨质疏松的研究尚不明确[28]㊂通过吡格列酮和非诺贝特联合治疗OVX大鼠13周,发现骨强度和骨组织形态学参数的无明显变化㊂这说明通过双重激活PPARα和PPARγ削弱TZD类药物活化PPARγ对骨骼强度的副作用[29]㊂而且,PPARα/δ激动剂亚油酸和苯扎贝特在体内上调成骨细胞分化,诱导皮质骨面积增加和骨膜形成,而对破骨细胞并没有显著作用,PPARα/δ是骨质疏松症的潜在治疗靶标[30]㊂此外,蛇床子素也具有PPARα/γ双重激动的作用,通过调节脂肪肝大鼠肝脏脂肪和骨骼肌中基因的表达来改善葡萄糖和脂质代谢[31],同时也能促进成骨细胞介导的骨形成,从而治疗骨质疏松症[32]㊂1.4.2㊀泛激动剂泛PPAR激动剂结合了选择性PPAR激动剂的优点,并有效地抵抗肝脏中炎症和疾病进展[33]㊂另外,泛PPAR激动剂可以克服当前药物的一些局限性,包括体重增加㊁心血管疾病和骨折风险[34]㊂因此,开发双重或泛PPAR激动剂作为新的保健药以及治疗代谢性疾病具有广阔的应用前景㊂苯扎贝特是临床上批准使用的一种泛PPAR激动剂,以剂量和时间依赖性方式增加成骨细胞系MC3T3⁃E1细胞的增殖和分化,在100μmol/L时显著增强成骨细胞的矿化作用以及碱性磷酸酶㊁胶原蛋白Ⅰ和骨钙蛋白的表达,同时增加腺苷酸活化蛋白激酶和内皮型一氧化氮合酶的磷酸化,并上调BMP2和Runt相关转录因子2的表达[35]㊂另外,苯扎贝特在100nmol/L和10nmol/L显著抑制人外周血单核细胞来源的多核破骨细胞的形成,抑制约50%的骨吸收,但非诺贝特无明显作用[36]㊂Matin等[37]发现新型的泛PPAR激动剂 天然小分子化合物异黄酮对PPARβ/δ的半最大效应浓度(EC50)是苯扎菲特的2倍以上,有更好的药效㊂补骨脂二氢黄酮甲醚(Bavachinin)作为一种新型的天然泛PPAR激动剂,与合成的PPARγ和PPARα激动剂对糖尿病和饮食诱导的肥胖小鼠的碳水化合物和脂质代谢表现出独特的协同作用[38]㊂在异/补骨脂素连续灌胃8周后,OVX小鼠的骨强度增强,骨小梁数目和厚度增加,血清中碱性磷酸酶升高且抗酒石酸酸性磷酸酶减弱,提示成骨能力增强和破骨能力减弱[39]㊂2 小结与展望人工合成药物以及天然产物如膳食中的不饱和脂肪酸可以激活PPARα,这有利于PPARβ/δ活化,并且PPARα和PPARβ/δ均通过下调RANKL信号通路和破骨细胞关键基因的表达抑制破骨细胞生成[40]㊂PPARβ/δ是调节细胞再生过程主要信号通路的核激素受体,是成骨细胞中表达的最主要的PPAR亚型,是骨转换中Wnt信号通路和成骨细胞与破骨细胞之间串扰关键调节剂[41⁃42]㊂同时,PPARβ/δ和PPARγ在骨转换过程中具有拮抗作用[43],所以选择性激动PPAR亚型对控制骨代谢类疾病的平衡具有重要意义㊂代谢类疾病患者由于需要长期服药,部分PPARγ激动剂药物存在增加骨丢失的风险㊂多重激动剂或者泛激动剂则可规避相关的并发症,并为骨质疏松症的治疗提供新的思路㊂在口腔医学研究中,已有PPARγ激动剂/拮抗剂干预治疗实验性牙周炎㊁重塑牙槽骨的研究报道,为牙周疾病防治提供新的视角[44⁃45]㊂自然界的中草药作为小分子化合物药物的未开发资源库,用于预防和治疗代谢综合征㊂虽然上述药物的作用不断被发现,但是其作用机理和适用范围还有待深入揭示㊂因此,随着PPAR激动剂不断地研发和改进,骨质疏松症和相关疾病的治疗存在新的机遇㊂[参㊀考㊀文㊀献][1]㊀EnsrudKE,CrandallCJ.Osteoporosis[J].AnnInternMed,2017,167(3):C17⁃C32.[2]㊀MirzaAZ,AlthagafiII,ShamshadH.RoleofPPARreceptorindifferentdiseasesandtheirligands:Physiologicalimportanceandclinicalimplications[J].EurJMedChem,2019,166:502⁃513.[3]㊀CapelliD,CerchiaC,MontanariR,etal.StructuralbasisforPPARpartialorfullactivationrevealedbyanovelligandbindingmode[J].SciRep,2016,6:34792.[4]㊀DuboisV,EeckhouteJ,LefebvreP,etal.Distinctbutcomple⁃mentarycontributionsofPPARisotypestoenergyhomeostasis[J].JClinInvest,2017,127(4):1202⁃1214.[5]㊀BottaM,AudanoM,SahebkarA,etal.PPARAgonistsandMet⁃abolicSyndrome:AnEstablishedRole?[J].IntJMolSci,2018,19(4):1197.[6]㊀PapatheodorouK,BanachM,BekiariE,etal.ComplicationsofDiabetes2017[J].JDiabetesRes,2018,2018:3086167.[7]㊀KerstenS,DesvergneB,WahliW.RolesofPPARsinhealthanddisease[J].Nature,2000,405(6785):421⁃424.[8]㊀LeeHY,GaoX,BarrasaMI,etal.PPAR⁃αandglucocorticoidreceptorsynergizetopromoteerythroidprogenitorself⁃renewal[J].Nature,2015,522(7557):474⁃477.[9]㊀BougarneN,WeyersB,DesmetSJ,etal.MolecularActionsofPPARαinLipidMetabolismandInflammation[J].EndocrRev,2018,39(5):760⁃802.[10]KimYH,JangWG,OhSH,etal.FenofibrateinducesPPARαandBMP2expressiontostimulateosteoblastdifferentiation[J].BiochemBiophysResCommun,2019,520(2):459⁃465.[11]StunesAK,WestbroekI,GustafssonBI,etal.Theperoxisomeproliferator⁃activatedreceptor(PPAR)αagonistfenofibratemain⁃tainsbonemass,whilethePPARγagonistpioglitazoneexagger⁃atesboneloss,inovariectomizedrats[J].BMCEndocrDisord,2011,11:11.[12]MostiMP,EricssonM,ErbenRG,etal.ThePPARαAgonistFenofibrateImprovestheMusculoskeletalEffectsofExerciseinOvariectomizedRats[J].Endocrinology,2016,157(10):3924⁃3934.㊀㊀[13]PangM,delaMonteSM,LongatoL,etal.PPARδagonistatten⁃uatesalcohol⁃inducedhepaticinsulinresistanceandimprovesliverinjuryandrepair[J].JHepatol,2009,50(6):1192⁃1201.[14]NeelsJG,GrimaldiPA.Physiologicalfunctionsofperoxisomepro⁃liferator⁃activatedreceptorβ[J].PhysiolRev,2014,94(3):795⁃858.[15]SchugTT,BerryDC,ShawNS,etal.Opposingeffectsofretinoicacidoncellgrowthresultfromalternateactivationoftwodifferentnuclearreceptors[J].Cell,2007,129(4):723⁃733.[16]MagadumA,DingY,HeL,etal.Livecellscreeningplatformi⁃dentifiesPPARδasaregulatorofcardiomyocyteproliferationandcardiacrepair[J].CellRes,2017,27(8):1002⁃1019.[17]MaltarolloVG,KronenbergerT,WindshugelB,etal.AdvancesandChallengesinDrugDesignofPPARδLigands[J].CurrDrugTargets,2018,19(2):144⁃154.[18]ScholtysekC,KatzenbeisserJ,FuH,etal.PPARβ/δgovernsWntsignalingandboneturnover[J].NatMed,2013,19(5):608⁃613.[19]MostiMP,StunesAK,EricssonM,etal.Effectsoftheperoxis⁃omeproliferator⁃activatedreceptor(PPAR)⁃δagonistGW501516onboneandmuscleinovariectomizedrats[J].Endocrinology,2014,155(6):2178⁃2189.[20]QianG,FanW,AhlemeyerB,etal.PeroxisomesinDifferentSkeletalCellTypesduringIntramembranousandEndochondralOs⁃sificationandTheirRegulationduringOsteoblastDifferentiationbyDistinctPeroxisomeProliferator⁃ActivatedReceptors[J].PLoSOne,2015,10(12):e143439.[21]ShafiS,GuptaP,KhatikGL,etal.PPARγ:PotentialTherapeu⁃ticTargetforAilmentsBeyondDiabetesanditsNaturalAgonism[J].CurrDrugTargets,2019,20(12):1281⁃1294.[22]WanY.PPARγinbonehomeostasis[J].TrendsEndocrinolMetab,2010,21(12):722⁃728.[23]BrunJ,BerthouF,TrajkovskiM,etal.BoneRegulatesBrowningandEnergyMetabolismThroughMatureOsteoblast/OsteocytePPARγExpression[J].Diabetes,2017,66(10):2541⁃2554.[24]LuW,WangW,WangS,etal.RosiglitazonePromotesBoneMarrowAdipogenesistoImpairMyelopoiesisunderStress[J].PLoSOne,2016,11(2):e149543.[25]MarcianoDP,KuruvillaDS,BoregowdaSV,etal.PharmacologicalrepressionofPPARγpromotesosteogenesis[J].NatCommun,2015,6:7443.[26]BriguglioE,DiPaolaR,PaternitiI,etal.WY⁃14643,aPotentPeroxisomeProliferatorActivatorReceptor⁃αPPAR⁃αAgonistA⁃melioratestheInflammatoryProcessAssociatedtoExperimentalPeriodontitis[J].PPARRes,2010,2010:193019.[27]DennisLanfearPV.PPAR⁃γagonistfortreatmentofbonedisorders[P].UnitedStates:US2019/0167660A1.[28]JainMR,GiriSR,BhoiB,etal.DualPPARα/γagonistsarogli⁃tazarimprovesliverhistopathologyandbiochemistryinexperimentalNASHmodels[J].LiverInt,2018,38(6):1084⁃1094.[29]SmithSY,SamadfamR,ChouinardL,etal.Effectsofpioglitazoneandfenofibrateco⁃administrationonbonebiomechanicsandhisto⁃morphometryinovariectomizedrats[J].JBoneMinerMetab,2015,33(6):625⁃641.[30]StillK,GrabowskiP,MackieI,etal.Theperoxisomeproliferatoractivatorreceptorα/δagonistslinoleicacidandbezafibrateupreg⁃ulateosteoblastdifferentiationandinduceperiostealboneformationinvivo[J].CalcifTissueInt,2008,83(4):285⁃292.[31]ZhaoX,WangF,ZhouR,etal.PPARα/γantagonistsreversetheameliorativeeffectsofostholeonhepaticlipidmetabolismandinflammatoryresponseinsteatohepatiticrats[J].Inflammopharma⁃cology,2018,26(2):425⁃433.[32]QiZG,ZhaoX,ZhongW,etal.OstholeimprovesglucoseandlipidmetabolismviamodulationofPPARα/γ⁃mediatedtargetgeneexpressioninliver,adiposetissue,andskeletalmuscleinfattyliverrats[J].PharmBiol,2016,54(5):882⁃888.[33]LefereS,PuengelT,HundertmarkJ,etal.Differentialeffectsofselective⁃andpan⁃PPARagonistsonexperimentalsteatohepatitisandhepaticmacrophages[J].JHepatol,2020,73(4):757⁃770.[34]TanCK,ZhuangY,WahliW.SyntheticandnaturalPeroxisomeProliferator⁃ActivatedReceptor(PPAR)agonistsascandidatesforthetherapyofthemetabolicsyndrome[J].ExpertOpinTherTar⁃gets,2017,21(3):333⁃348.[35]ZhongX,XiuLL,WeiGH,etal.Bezafibrateenhancesprolifera⁃tionanddifferentiationofosteoblasticMC3T3⁃E1cellsviaAMPKandeNOSactivation[J].ActaPharmacolSin,2011,32(5):591⁃600.[36]ChanBY,GartlandA,WilsonPJ,etal.PPARagonistsmodulatehumanosteoclastformationandactivityinvitro[J].Bone,2007,40(1):149⁃159.[37]MatinA,DoddareddyMR,GavandeN,etal.Thediscoveryofno⁃velisoflavonepanperoxisomeproliferator⁃activatedreceptoragonists[J].BioorgMedChem,2013,21(3):766⁃778.[38]FengL,LuoH,XuZ,etal.Bavachinin,asanovelnaturalpan⁃PPARagonist,exhibitsuniquesynergisticeffectswithsyntheticPPAR⁃γandPPAR⁃αagonistsoncarbohydrateandlipidmetabo⁃lismindb/dbanddiet⁃inducedobesemice[J].Diabetologia,2016,59(6):1276⁃1286.[39]ZhangT,HanW,ZhaoK,etal.Psoralenacceleratesbonefracturehealingbyactivatingbothosteoclastsandosteoblasts[J].FASEBJ,2019,33(4):5399⁃5410.[40]KasongaA,KrugerMC,CoetzeeM.ActivationofPPARsModu⁃latesSignallingPathwaysandExpressionofRegulatoryGenesinOsteoclastsDerivedfromHumanCD14+Monocytes[J].IntJMolSci,2019,20(7):1798.[41]DjouadF,IpseizN,Luz⁃CrawfordP,etal.PPARβ/δ:Amasterregulatorofmesenchymalstemcellfunctions[J].Biochimie,2017,136:55⁃58.[42]MagadumA,EngelFB.PPARβ/δ:LinkingMetabolismtoRegen⁃eration[J].IntJMolSci,2018,19(7):2013.[43]WanY,ChongLW,EvansRM.PPAR⁃γregulatesosteoclastogen⁃esisinmice[J].NatMed,2007,13(12):1496⁃1503.[44]QiaoW,WangC,HuangW,etal.Peroxisomeproliferator⁃activa⁃tedreceptorγplaysdualrolesonexperimentalperiodontitisinrats[J].JClinPeriodontol,2018,45(5):514⁃523.[45]DiPaolaR,BriguglioF,PaternitiI,etal.EmergingroleofPPAR⁃β/δininflammatoryprocessassociatedtoexperimentalpe⁃riodontitis[J].MediatorsInflamm,2011,2011:787159.(收稿日期:2020-10-12)(本文编辑:顾建雨)。
PPAR_双重激动剂研究进展_荆丹清PPAR(全称:peroxisome proliferator-activated receptors)是一类核受体,可通过双重激动剂的作用来调节基因表达。
PPAR在新陈代谢、炎症反应、肿瘤生成等多个生理过程中发挥重要作用。
因此,研究人员一直在探索PPAR双重激动剂的潜在应用。
PPAR双重激动剂研究进展主要包括以下几个方面:药物发现、机制研究、临床应用等。
在药物发现方面,目前已经发现了多种PPAR双重激动剂。
其中,一类是合成化合物,如非甾体类抗炎药物;另一类则是天然化合物,如植物提取物中的活性成分等。
这些化合物能够同时激活PPARα和PPARγ,以达到治疗目的。
机制研究方面,研究人员通过细胞实验和动物模型研究,深入探索了PPAR双重激动剂的作用机制。
实验证明,PPAR双重激动剂可以改善脂代谢紊乱、减少脂肪积累、降低血糖水平等。
通过激活PPARα和PPARγ,还可以抑制炎症反应、促进血管生长、抗肿瘤等。
这些研究成果为PPAR双重激动剂的进一步研发提供了理论依据。
临床应用方面,PPAR双重激动剂在糖尿病、高血脂、非酒精性脂肪肝等疾病的治疗中显示出了广阔的应用潜力。
例如,苯妥英酸钠是一种经典的PPAR双重激动剂,已经被广泛用于2型糖尿病的治疗。
除此之外,最近的研究表明,PPAR双重激动剂还可能对心血管疾病、肿瘤等疾病具有治疗效果,但需要进一步的临床研究来验证。
总结起来,PPAR双重激动剂的研究进展显示了其在多个领域的潜在应用价值。
然而,目前还存在一些问题需要解决,如副作用、长期疗效等。
因此,PPAR双重激动剂的研究仍然需要进一步的努力。
希望通过不断的研究,能够为PPAR双重激动剂的开发和临床应用提供更多的科学依据,使其成为一种有效的治疗手段,改善人类健康水平。
PPAR-γ在慢性阻塞性肺疾病所致肺动脉高压患者中的表
达变化的开题报告
题目:PPAR-γ在慢性阻塞性肺疾病所致肺动脉高压患者中的表达变化
背景和目的:
慢性阻塞性肺疾病(COPD)是一种慢性炎症性肺疾病,常伴随肺动脉高压(PAH)的发生。
PPAR-γ是一种核受体,在心血管系统中具有抗炎、抗氧化和减少血管紧张素Ⅱ扩血管等作用。
本研究旨在探讨PPAR-γ在COPD所致PAH患者中的表达变化及其临床意义。
方法:
本研究计划选取40例青年COPD患者并分为PAH组和对照组,对组织样本进行免疫组织化学染色以评价PPAR-γ在患者中的表达变化。
另外,将对患者的临床资料、肺功能和肺动脉压力进行分析。
预期结果:
本研究预计发现PPAR-γ在COPD所致PAH患者中的表达降低,同时,患者的肺功能和肺动脉压力也将与PPAR-γ的表达水平有关联。
这表明PPAR-γ可能在COPD所致PAH的发展过程中扮演重要的角色,可能成为筛选治疗方案的新目标。
意义:
本研究可为COPD所致PAH的发生机制提供新的理论依据,并有望开发出新的治疗靶点和治疗手段,为患者的治疗提供更多的可选方案。
PPAR—γ在免疫中的调节作用分析众所周知,免疫作用对于机体有着积极的意义,其中过氧化物酶体激活受体γ(PPAR-γ)在机体免疫调节中起到了十分重要的作用。
PPAR-γ属于过氧化物酶体激活受体(PPAR)的亚型之一,而PPAR则属于核激素受体家族中的一员,研究显示其在稳定免疫内环境、糖脂合成及代谢等方面发挥了关键作用。
随着对PPAR-γ的研究越来越深入,如今有研究显示其能参与到细胞的分化、免疫细胞增殖等环节,同时对于炎症反应、自身免疫性疾病、移植免疫等方面也有着重要的作用。
为了进一步分析PPAR-γ在免疫中的调节作用,本文进行了相关探讨,希望对相关研究有所借鉴。
标签:PPAR-γ;免疫;调节;核激素受体过氧化物酶体激活受体γ(PPAR-γ)属于过氧化物酶体激活受体(PPAR)三个亚型之一(其余2个为PPARα与PPARβ/δ),而PPAR最早发现是在20世纪90s,当时由美国科学家Green与Issemann两位学者首次发现新的核激素受体,该受体能被脂肪酸样化合物过氧化物酶体增殖剂激活[1]。
逐渐表明PPAR一旦激活后,可对核内的多种靶基因表达进行调控,而且可参与糖脂合成、代謝,以及免疫反应等。
近几年的研究显示,PPAR-γ在免疫中的调节作用主要在于其能与视黄醇类Х受体(RXR)之间结合,从而形成异二聚体,然后通过多个靶基因(包括COX-2、ERK1/2、NF-κB等)对细胞分化、增殖、凋亡等进行调节,并且可对细胞因子分泌进行调控,还可对T细胞表面活化因子表达进行调节等。
此外,有研究还显示其在抗炎、缓和自身免疫性疾病、抗肿瘤等方面也有重要的作用。
为了进一步分析PPAR-γ在免疫中的调节作用,本文进行了如下分析。
1 PPAR-γ概述1.1结构PPAR-γ可通过不同刺激物产生不同转录产物,基本为三类,即PPAR-γ1、PPAR-γ2、PPAR-γ3。
相较于其他类型的固醇激素类受体而言,PPAR-γ与之有一定的相似性,主要是利用PPAR和反应基因上游特异DNA反应元件结合,以此来实现靶基因表达的调控。
PPARγ在动脉粥样硬化中的研究进展【摘要】动脉粥样硬化(atherosclerosis,AS)是动脉硬化中最常见而重要的类型,动脉粥样硬化的病因目前尚不清楚,可能与多种因素有关。
过氧化物酶体增生物激活受体(peroxisome proliferators activated receptors,PPARs)是一类由配体激活的核转录因子,属核激素受体(nuclear hormone receptor)超家族成员。
本文对有关PPARγ的组织细胞分布、在动脉粥样硬化作用及其可能的机制之最新研究进展作一综述。
【关键词】PPARγ;动脉粥样硬化;研究进展动脉粥样硬化(atherosclerosis,AS)是动脉硬化中最常见而重要的类型,常导致管腔闭塞或管壁破裂出血等严重后果。
AS是老年人最常见的疾病之一,在我国60岁以上人群中发病率高达79.9%。
广泛接受的病因是高脂血症,但其如何引起动脉粥样硬化尚不十分明确。
对动脉粥样硬化病因学的研究对其防止具有重要的意义。
过氧化物酶体增生物激活受体(peroxisome proliferators activated receptors,PPARs)是一类由配体激活的核转录因子,属核激素受体(nuclear hormone receptor)超家族成员。
PPARs有三种异构体:PPARα、PPARβ/δ和PPARγ,在巨噬细胞、树突细胞、T细胞、B细胞内等广泛表达。
PPARγ作为其中的亚型之一,具有多种生物学效应:可促进脂肪细胞分化和脂肪生成;增强机体对胰岛素的敏感性;调节体内糖平衡;影响肿瘤生长;对心血管产生保护效应等。
近年发现,PPARs,尤其是PPARγ,在调节炎症中也具有重要作用。
本文对有关PPARγ的组织细胞分布、在动脉粥样硬化作用及其可能的机制之最新研究进展作一综述。
1 PPARγ的家族成员及其分布PPARγ是PPARs家族三成员之一,由于启动子的差异,PPARγ至少有四个亚型:PPARγ1,PPARγ2,PPARγ3和PPARγ4。
过氧化物酶体增殖物激活受体γ与相关疾病的研究进展过氧化物酶体增殖物激活受体γ(PPARγ)是一种核受体转录因子,已被广泛应用于糖尿病、肥胖症、心血管疾病和肿瘤等疾病的治疗研究中。
PPARγ在脂质与糖代谢、细胞增殖和分化等过程中起着重要作用。
近年来,研究发现PPARγ还与许多其他疾病有关,如神经退行性疾病、炎症性疾病、自身免疫疾病、肿瘤和感染性疾病。
通过深入了解PPARγ的功能和调控机制,可以为相关疾病的治疗提供新的思路和方法。
本文将针对PPARγ与相关疾病的研究进展进行综述。
一、PPARγ与糖尿病、肥胖症研究表明,PPARγ在调控葡萄糖代谢和胰岛素敏感性中起着关键作用,因此成为糖尿病和肥胖症的重要治疗靶点。
PPARγ激动剂被广泛应用于二型糖尿病的治疗,可以提高胰岛素敏感性,促进葡萄糖的利用和代谢,从而降低血糖水平。
PPARγ激动剂还可以促进脂肪细胞的分化和脂肪的储存,减少脂肪酸的流动,降低血脂水平,减轻肥胖症患者的症状。
二、PPARγ与心血管疾病PPARγ在心血管系统中的作用也备受关注。
研究表明,PPARγ激动剂可以抑制动脉粥样硬化的形成,减少血管内皮细胞的增殖和炎症反应,保护血管壁的完整性,降低动脉硬化和心血管疾病的发病风险。
PPARγ激动剂还有降低血液中胆固醇和三酰甘油的作用,可以改善血脂代谢,降低血压,减少心血管疾病的发生。
三、PPARγ与肿瘤近年来的研究表明,PPARγ在肿瘤的发生和发展中发挥着重要作用。
PPARγ激动剂可以抑制肿瘤细胞的增殖和转移,诱导肿瘤细胞凋亡,促进肿瘤细胞的分化,从而抑制肿瘤的生长和扩散。
PPARγ还可以调节肿瘤相关的炎症反应和血管生成,影响肿瘤的微环境,抑制肿瘤的发展。
PPARγ激动剂被认为有望成为肿瘤治疗的新靶点。
四、PPARγ与神经退行性疾病最新研究发现,PPARγ在神经保护和修复中也起着重要作用。
PPARγ激动剂可以抑制神经炎症和氧化应激反应,保护神经细胞免受损伤,促进神经干细胞的分化和再生,有望成为治疗神经退行性疾病的新药物。
《PPAR-α调控fad3小鼠肌卫星细胞能量代谢机制研究》篇一一、引言近年来,能量代谢在肌肉生物学和疾病发生机制的研究中备受关注。
PPAR-α(过氧化物酶体增殖物激活受体α)作为一种重要的核转录因子,在调节能量代谢过程中发挥着关键作用。
Fad3小鼠作为一种常用的实验动物模型,其肌卫星细胞在能量代谢方面的研究具有重要意义。
本文旨在探讨PPAR-α对Fad3小鼠肌卫星细胞能量代谢的调控机制,以期为相关疾病的防治提供理论依据。
二、材料与方法1. 实验材料本实验所使用的Fad3小鼠购自某生物技术公司,PPAR-α激动剂和抑制剂购自Sigma公司。
实验所需试剂和仪器均符合实验要求。
2. 实验方法(1)肌卫星细胞的分离与培养:从Fad3小鼠中分离出肌卫星细胞,并进行培养。
(2)PPAR-α激动剂和抑制剂处理:将培养的肌卫星细胞分为三组,分别进行PPAR-α激动剂、抑制剂及对照组处理。
(3)能量代谢相关指标检测:通过实时荧光定量PCR、Western Blot等方法检测各组细胞中能量代谢相关基因和蛋白的表达情况。
(4)数据分析:对实验数据进行统计分析,绘制图表。
三、实验结果1. PPAR-α激动剂对Fad3小鼠肌卫星细胞能量代谢的影响PPAR-α激动剂处理后,肌卫星细胞中脂肪酸氧化相关基因(如CPT-1、ACOX)的表达明显上调,脂肪酸合成相关基因(如FAS、SREBP-1c)的表达则明显下调。
此外,细胞内ATP 含量显著增加,乳酸产量降低。
2. PPAR-α抑制剂对Fad3小鼠肌卫星细胞能量代谢的影响PPAR-α抑制剂处理后,肌卫星细胞中脂肪酸氧化相关基因和蛋白的表达均受到抑制,脂肪酸合成相关基因和蛋白的表达则增加。
同时,细胞内ATP含量降低,乳酸产量增加。
3. PPAR-α对肌卫星细胞能量代谢的调控机制通过分析PPAR-α激动剂和抑制剂对肌卫星细胞能量代谢的影响,可以推测PPAR-α可能通过调节脂肪酸氧化和合成的相关基因和蛋白表达来调控肌卫星细胞的能量代谢。
PPARγ调节的脂肪代谢及其相关疾病研究随着社会的发展和生活方式的改变,肥胖症、糖尿病、高血压等代谢性疾病的发病率越来越高。
研究表明,这些疾病之间存在着密切的关系并常常同时发生。
而PPARγ作为核激素受体家族之一,对脂肪代谢具有重要调节作用,近年来成为了研究的热点之一。
1. PPARγ的基本特点PPARγ是一种核激素受体,人和小鼠的PPARγ基因编码不同形式的蛋白质,分别为PPARγ1和PPARγ2。
其中,PPARγ1在多种组织中广泛分布,对脂肪酸代谢起重要作用;PPARγ2则主要分布在脂肪组织中,是调节脂肪细胞分化和代谢的重要分子。
PPARγ的识别基序是TNNGGAACTAGGTCA,存在于多种基因的启动子区域,包括脂肪酸氧化酶、脂肪转运蛋白和脂肪合成酶等。
当PPARγ与其配体结合后,会形成一个三聚体,并结合到坐标基序上,从而激活相应基因的表达。
2. PPARγ在脂肪代谢中的作用脂肪细胞是体内主要储能细胞,PPARγ作为脂肪细胞分化和代谢的关键分子,在脂肪代谢中扮演着重要的角色。
具体表现在以下几个方面:(1)调节脂肪细胞分化。
PPARγ能够促进脂肪细胞的分化,使其从前脂肪细胞向成熟的脂肪细胞转变。
同时,PPARγ的表达也受到分化状态的调节,即在脂肪细胞分化过程中逐渐上调。
(2)调节脂肪酸合成和氧化的平衡。
PPARγ可以通过诱导脂肪细胞内脂肪酸合成酶的表达,增加脂肪细胞对葡萄糖的摄取和利用,并通过诱导脂肪酸氧化酶的表述,降低脂肪酸在脂肪细胞内的积累。
(3)影响胰岛素信号传导。
PPARγ能够影响脂肪细胞对胰岛素的反应,并调节胰岛素信号通路,从而影响葡萄糖的代谢和胰岛素的敏感性。
3. PPARγ在相关疾病中的作用PPARγ在许多代谢性疾病中均发挥着重要作用,下面对其中几种常见疾病进行详细阐述。
(1)肥胖症。
肥胖症是一种由于脂肪细胞的数量和/或大小的增加而导致身体脂肪过多的疾病。
PPARγ能够促进脂肪细胞分化和脂肪酸合成,促进脂肪细胞的增生和夹层化,从而导致脂肪细胞数量和大小的增加,是肥胖症的重要诱因。