连铸板坯和方坯表面缺陷的分析与判定
- 格式:doc
- 大小:29.50 KB
- 文档页数:2
连铸坯的质量缺陷及控制摘要连铸坯质量决定着最终产品的质量。
从广义来说所谓连铸坯质量是得到合格产品所允许的连铸坯缺陷的严重程度,连铸坯存在的缺陷在允许范围以内,叫合格产品。
连铸坯质量是从以下几个方面进行评价的:(1)连铸坯的纯净度:指钢中夹杂物的含量,形态和分布。
(2)连铸坯的表面质量:主要是指连铸坯表面是否存在裂纹、夹渣及皮下气泡等缺陷。
连铸坯这些表面缺陷主要是钢液在结晶器内坯壳形成生长过程中产生的,与浇注温度、拉坯速度、保护渣性能、浸入式水口的设计,结晶式的内腔形状、水缝均匀情况,结晶器振动以及结晶器液面的稳定因素有关。
(3)连铸坯的内部质量:是指连铸坯是否具有正确的凝固结构,以及裂纹、偏析、疏松等缺陷程度。
二冷区冷却水的合理分配、支撑系统的严格对中是保证铸坯质量的关键。
(4)连铸坯的外观形状:是指连铸坯的几何尺寸是否符合规定的要求。
与结晶器内腔尺寸和表面状态及冷却的均匀程度有关。
下面从以上四个方面对实际生产中连铸坯的质量控制采取的措施进行说明。
关键词:连铸坯;质量;控制1 纯净度与质量的关系纯净度是指钢中非金属夹杂物的数量、形态和分布。
夹杂物的存在破坏了钢基体的连续性和致密性。
夹杂物的大小、形态和分布对钢质量的影响也不同,如果夹杂物细小,呈球形,弥散分布,对钢质量的影响比集中存在要小些;当夹杂物大,呈偶然性分布,数量虽少对钢质量的危害也较大。
此外,夹杂物的尺寸和数量对钢质量的影响还与铸坯的比表面积有关。
一般板坯和方坯单位长度的表面积(S)与体积(V)之比在0.2~0.8。
随着薄板与薄带技术的发展,S/V可达10~50,若在钢中的夹杂物含量相同情况下,对薄板薄带钢而言,就意味着夹杂物更接近铸坯表面,对生产薄板材质量的危害也越大。
所以降低钢中夹杂物就更为重要了。
提高钢的纯净度就应在钢液进入结晶器之前,从各工序着手尽量减少对钢液的污染,并最大限度促使夹杂物从钢液中排除。
为此应采取以下措施:⑴无渣出钢。
连铸方坯的缺陷及其处理连铸方坯的缺陷及其处理1 表面缺陷1.1 气孔和针孔定义 : 垂直铸坯表面并在铸坯表面肉眼可见的小气孔并可能以针孔的形式深入表面。
原因 : 钢水脱氧不足、凝固时产生一氧化碳;脱氧后又钢流二次氧化吸收的气体;结晶器保护渣质量不合要求;钢包及中间包烘烤不好改进方法: 钢水完全脱氧;不浇注过氧化的钢水;保持浇注温度;(注温不能过高)使用干燥的钢水罐及中间罐;保护渣不能受潮,摆放时间不能太久。
1.2 坯头气孔及针孔定义: 同1.1,但仅出现在每次浇注的第一根钢坯坯头处原因: 钢液温度太低;结晶器中钢水氧化;保护渣受潮或杂质多;结晶器内壁上有冷凝水;引锭头潮湿;填入结晶器中切屑及废钢有锈、有油或潮湿;中间罐内衬及钢水罐内衬潮湿;改进方法: 保持浇注温度;采用适宜的保护渣;采用干燥和洁净的废钢及切屑;绝对避免在结晶器内壁及锭头上产生冷凝水;干燥及烘烤中间罐;1.3 夹渣定义: 表面分布不均匀的夹渣,有时针孔和渣聚集,呈疏松态的外观原因: 由保护渣耐火材料颗粒和钢水氧化产物以及出钢渣等引起,随着钢流带入并被卷至铸坯表面。
改进方法: 用挡渣出钢;采用适宜的保护渣及耐火材料;钢水不能过氧化,注温要合适。
1.4 振动波纹及折叠定义: 在与铸坯轴线垂直方向上,铸坯表面上以均匀间距分布的波纹振痕,在不利的情况下出现折叠。
原因: 浇注速度波动大,使结晶器中钢液面不稳定。
改进方法: 保持均匀的浇注速度,稳定结晶器钢水液面。
调整振动频率使其与拉速相适应。
1.5 结疤与重皮定义: 铸坯角部和表面上出现的疤痕原因: 由于结晶器内坯壳破裂、钢水渗入到结晶器和铸坯之间的夹缝,以及保护渣结块造成。
改进方法: 保证结晶器具有准确的锥度,当结晶器使用时间过长而磨损会使坯壳过早脱离结晶器内壁而导致坯壳破裂。
1.6 分层: (双浇)定义: 铸坯中间出现分界层原因: 浇注中断又重新开始浇注时,使两次浇注连接出现重接。
改进方法: 浇注过程中不要断流,拉速要相对稳定,不要忽高忽低。
连铸坯表面质量缺陷及处理措施【摘要】对于连铸板坯而言,振痕和裂纹是其主要的质量缺陷问题。
虽然这个缺陷在大多数情况下对连铸坯的质量影响不大,但是如果不及时有效的处理调还会带来很多附加的质量问题。
尤其是在生产不锈钢和高强度钢品种时,这种质量缺陷所带来的弊端更加明显。
【关键词】连铸坯;振痕;质量影响1振痕形成机理在连铸坯生产中,振痕和裂纹是两种最为常见的质量缺陷问题,主要是由于弯月面顶端溢流造成的,该缺陷形成以后会附带其他质量缺陷一并产生。
2振痕对铸坯质量的影响振痕对连铸坯的质量影响会导致后期出现列裂纹,包括横裂纹、角部横裂纹及矫直裂纹。
如果连铸坯内掺杂的杂质较多,会导致大规模网状裂纹的出现,甚至出现穿钢现象。
如果在连铸坯出现振痕的地方晶粒很大,就会产生晶间裂纹现象,在这样的情况下需要对连铸坯修磨,从而提高成材率。
3影响振痕深度的因素振动参数对振痕形状和深度有重要影响。
其中振幅、频率、负滑脱时间及振动方式最为重要;结晶器保护渣的耗量、粘度、保温性能及表面性能等有着重要影响;.钢的凝固特性对振痕有着重要影响,特别是当钢中碳含量和钢中Ni/Cr 比影响最突出。
当钢中碳含量为0.1%左右,Ni/Cr≈0.55左右,铸坯表面振痕最深。
4减少振痕深度的措施采用小振幅(s)、高频率(f)及减少负滑脱时间(tN),可以有效的减少振痕的深度;采用非正弦振动方式可以减少振痕的深度,这是因为非正弦振动其负滑脱时间tN比正弦振动短;采用渣耗量低,粘度高的保护渣,可以使振痕深度变浅。
采用保温性能好和能增加弯月面半径的保护渣可以减少振痕深度;提高不锈钢、钢液的过热度,尤其是含钛和含铝的不锈钢对减少该钢表面振痕深度是有效的。
提高结晶器进出冷却水的温差,对减少振痕深度是有利的。
5铸坯表面裂纹5.1表面纵裂纹铸坯表面纵裂纹是铸坯最主要表面缺陷,对铸坯质量影响极大,特别是板坯和圆坯最为突出,报废量和整修量很大。
5.1.1纵裂纹类型铸坯表面沟槽纵裂纹。
在钢板、板卷、棒材、型钢上的裂纹和其他等缺陷,大多源于板坯和方坯上的缺陷。
大多数钢厂面临的最大挑战是缺乏如何判定、检查这些缺陷及相应地采取何种对策。
令人遗憾的是,目前很多钢厂在遇到表面缺陷问题时所做的一些措施并不恰当,甚至没有对板坯和方坯进行检测分析便作出相应的判定和措施。
1.板坯和方坯的表面缺陷类型板坯和方坯上的所有表面缺陷几乎可以被分成五大类,并且在世界上大多数铸机上它们的发生位置基本上也是可以预测的。
基于经验,按照发生概率的大小顺序列出了五大类缺陷,即针状气孔/疏松、裂纹、深度振痕、不良清理、结晶器壁污染和刮伤等。
依据加热炉的氧化条件,可以确定板坯和方坯表面缺陷的临界深度,从而判定缺陷是否最终会成为板材、板卷或棒材上的轧制表面缺陷。
大部分加热炉操作会导致1%~2%厚度的铸坯氧化成氧化铁皮。
如果铸坯的厚度为220mm,就意味着在加热过程中会造成2.2mm~4.4mm的厚度损失。
这个厚度损失同样会传递到表面缺陷。
如果铸坯表面缺陷的深度小于铸坯厚度的1%~2%,那么这些缺陷将在加热过程中消除。
而那些比成为氧化铁的1%~2%厚度更深的缺陷,最终会造成轧材的表面缺陷。
1)针状气孔/疏松在所有铸机上,针状气孔/疏松几乎都是常见的,也是最容易被忽略的铸坯缺陷。
如果钢中的气体得不到合理控制,就会在板坯和方坯表面上产生针状气孔/疏松。
当凝固率达到90%而气体总压力Ar+H2+N2+CO+CO2>1atm时,针状气孔/疏松就会在板坯和方坯表面上形成。
找出表面和皮下针状气孔/疏松的形成原因并不困难。
在实际生产中,皮下通常是指表面以下10mm的深度。
根据经验,针状气孔/疏松是影响钢板、板卷表面质量的最突出问题。
举一个板坯上的针状气孔/疏松的例子,钢种是V和Nb复合微合金化的A572Gr50结构钢,含0.15%C,在铸坯上角部出现针状气孔/疏松,导致14.3mm厚的成材的上边部出现缺陷。
该板坯进行了展宽轧制以满足板宽尺寸的需要。
第二篇连铸板坯缺陷(AA)第二篇连铸板坯缺陷(AA) (1)2.1表面纵向裂纹(AA01) (4)2.2表面横裂纹(AA02) (6)2.3星状裂纹(AA03) (7)2.4角部横裂纹(AA04) (8)2.5角部纵裂纹(AA05) (10)2.6气孔(AA06) (11)2.7结疤(AA07) (12)2.8表面夹渣(AA08) (13)2.9划伤(AA09) (14)2.10接痕(AA13) (15)2.11鼓肚(AA11) (16)2.12脱方(AA10) (17)2.13弯曲(AA12) (18)2.14凹陷(AA14) (19)2.15镰刀弯(AA15) (20)2.16锥形(AA16) (21)2.17中心线裂纹(AA17) (22)2.18中心疏松(AA18) (23)2.19三角区裂纹(AA19) (25)2.20中心偏析(AA20) (27)2.21中间裂纹(AA21) (28)2.1表面纵向裂纹(AA01)图2-1-11、缺陷特征表面纵向裂纹沿浇注方向分布在连铸板坯上下表面,裂纹深度一般为2mm~15mm,裂纹部位伴有轻微凹陷。
在连铸浇注过程中,当连铸板坯坯壳在结晶器内所受到的应力超过了坯壳所能承受的抗拉强度时,即产生表面纵向裂纹。
表面纵向裂纹缺陷在结晶器内产生,出结晶器后若二次冷却不良,裂纹将进一步加剧。
2、产生原因及危害产生原因:①钢中碳含量处于裂纹敏感区内;②结晶器钢水液面异常波动。
当结晶器钢水液面波动超过10mm时,表面纵向裂纹缺陷易于产生;③结晶器保护渣性能不良。
保护渣液渣层过厚、过薄或渣膜厚薄不均,使连铸板坯凝固壳局部过薄而产生表面纵向裂纹;④中间包浸入式水口与结晶器对中不良,钢水产生偏流冲刷连铸板坯凝固壳,而产生表面纵向裂纹。
危害:轻微的表面纵裂纹经火焰清理后均能消除;表面纵向裂纹严重时可能会造成漏钢;表面纵向裂纹若送热轧进行轧制可能导致热轧产品出现分层、开裂缺陷。
连铸坯在凝固过程中形成裂纹的原因随着市场竞争的日趋激烈,产品的质量已经成为占有市场的主要砝码,连铸坯作为炼钢厂的终端产品,其质量直接影响着轧材单位的产量和轧材质量,据统计炼钢厂连铸坯质量缺陷中约70%为连铸坯裂纹,连铸坯裂纹成为影响连铸坯产量和质量的重要缺陷之一,下面将对铸坯在凝固过程中裂纹的形成做简要分析:一、铸坯凝固过程的形成铸坯在连铸机内的凝固可看成是一个液相穴很长的钢锭,而凝固是沿液相穴的固液界面在液固相温度区间把液体转变为固体把潜热释放出来的过程。
在固液界面间刚凝固的晶体强度和塑性都非常小,当作用于凝固壳的热应力、鼓肚力、矫直力、摩擦力、机械力等外力超过所允许的外力值时,在固液界面就产生裂纹,这就形成了铸坯内部裂纹。
而已凝固的坯壳在二冷区接受强制冷却,由于铸坯线收缩,温度的不均匀性,坯壳鼓肚、导向段对弧形不准,固相变引起质点如(AlN)在晶界的沉淀等,容易使外壳受到外力和热负荷间歇式的突变,从而产生裂纹就是表面裂纹。
二、连铸坯裂纹形态和影响因素连铸坯裂纹形态分为表面裂纹和内部裂纹,表面裂纹有纵向、横向角部裂纹、表面横裂和纵裂、网状裂纹和凹陷等,内部裂纹有中间、中心和矫直裂纹等。
连铸坯裂纹的影响因素:连铸坯表面裂纹主要决定于钢水在结晶器的凝固过程,它是受结晶器传热、振动、润滑、钢水流动和液面稳定性所制约的,铸坯内部裂纹主要决定于二冷区凝固冷却过程和铸坯支撑系统(导向段)的对弧准确性。
铸坯凝固过程坯壳形成裂纹,从工艺设备和钢凝固特性来考虑影响裂纹形成的因素可分为:1、连铸机设备状态方面有:1)结晶器冷却不均匀2)结晶器角部形状不当。
3)结晶器锥度不合适。
4)结晶器振动不良。
5)二冷水分布不均匀(如喷淋管变形、喷咀堵塞等)。
6)支承辊对弧不准和变形。
2、工艺参数控制方面有:1)化学成份控制不良(如C、Mn/S)。
2)钢水过热度高。
3)结晶器液面波动太大。
4)保护渣性能不良。
5)水口扩径。
6)二次冷却水分配不良,铸坯表面温度回升过大。
连铸板坯轧制中板的表面缺陷
连铸板坯轧制中板的表面缺陷包括:1.毛刺:在轧制过程中,板坯表面可能会出现毛刺,这是由于轧辊表面不光滑或轧制压力不均匀造成的。
2.滚痕:滚痕是指板坯表面出现的长条状凹陷,通常是由于轧辊表面不平整或轧制压力不均匀造成的。
3.气泡:气泡是指板坯表面出现的圆形或椭圆形凸起,通常是由于板坯内部存在气体或轧制过程中气体被挤压到表面造成的。
4.裂纹:裂纹是指板坯表面出现的线状或网状裂缝,通常是由于板坯内部存在缺陷或轧制过程中应力过大造成的。
5.毛洞:毛洞是指板坯表面出现的小孔,通常是由于板坯内部存在气体或轧制过程中气体被挤压到表面造成的。
6.氧化皮:氧化皮是指板坯表面出现的氧化物层,通常是由于板坯表面暴露在空气中长时间造成的。
连铸板坯和方坯表面缺陷的分析与判定
在钢板、板卷、棒材、型钢上的裂纹和其他等缺陷,大多源于板坯和方坯上的缺陷。
大多数钢厂面临的最大挑战是缺乏如何判定、检查这些缺陷及相应地采取何种对策。
令人遗感的是,目前很多钢厂在遇到表面缺陷问题时所做的一些措施并不恰当,甚至没有对板坯和方坯进行检测分析便作出相应的判定和措施。
板坯和方坯的表面缺陷类型
板坯和方坯上的所有表面缺陷几乎可以被分成五大类,并且在世界上大多数铸机上它们的发生位置基本上也是可以预测的。
基于经验,按照发生概率的大小顺序列出了五大类缺陷,即针状气孔/疏松、裂纹、深度振痕、不良清理、结晶器壁污染和刮伤等。
依据加热炉的氧化条件,可以确定板坯和方坯表面缺陷的临界深度,从而判定缺陷是否最终会成为板材、板卷或棒材上的轧制表面缺陷。
大部分加热炉操作会导致1%~2%厚度的铸坯氧化成氧化铁皮。
如果铸坯的厚度为220mm,就意味着在加热过程中会造成2.2mm~4.4 mm的厚度损失。
这个厚度损失同样会传递到表面缺陷。
如果铸坯表面缺陷的深度小于铸坯厚度的1%~2%,那么这些缺陷将在加热过程中稍除。
而那些比成为氧化铁的1%~2%厚度更深的缺陷,最终会造成轧材的表面缺陷。
针状气孔/疏松
在所有铸机上。
针状气孔/疏松几乎都是常见的,也是最容易被忽略的铸坯缺陷。
如果钢中的气体得不到合理控制,就会在板坯和方坯表面上产生针状气孔/疏松。
当凝固率达到90%而气体总压力Ar+H2+N2+CO+CO2>1atm时,针状气孔/疏松就会在板坯和方坯表面上形成。
找出表面和皮下针状气孔/疏松的形成原因并不困难。
在实际生产中,皮下通常是指表面以下10mm的深度。
根据经验,针状气孔/疏松是影响钢板、板卷表面质量的最突出问题。
举一个板坯上的针状气孔/疏松的例子,钢种是V和Nb复合微合金化的A572 Gr50结构钢,含0.15%C,在铸坯上角部出现针状气孔/疏松,导致14.3mm厚的成材的上边部出现缺陷。
该板坯进行了展宽轧制以满足板宽尺寸的需要。
随着为满足轧材宽度需要而采取的轧制方式(直轧或是展宽轧制)的变化,针状气孔/疏松的直径大小会同成材的厚度或直径(棒材)一起决定其在钢板上的最终几何形状或特征。
裂纹
纵裂和横裂是连续浇铸板坯和方坯的第二大常见的表面缺陷。
在炼钢控制良好的情况下,纵裂相比于横裂少见。
为拉速和碳含量选择合理的结晶器保护渣是控制纵裂的关键因素。
懂得结晶器保护渣重要性的炼钢厂通常会有3种之多的保护渣,分别满足低碳钢(wc<0.09%),包晶钢(w c0.09%~0.15%)和碳含量高的钢种(w c>0.15%)需要。
令人遗憾的是,仍然有很多钢厂试图只用一种保护渣来生产全部品种。
纵裂或深或浅,通常位于铸坯的上表面或下表面。
在铸坯出连铸机时,会看到铸坯表面上呈现一道道暗线的纵裂纹。
当采用直轧时,大部分纵向裂纹会被轧平,看起来像一条类似缺陷的长缝。
如果采用了展宽轧制,纵向裂纹则表现出一定的宽度,但依然具有采用直轧时的特点。
经过展宽轧制后,类似缺陷的缝隙可能会变得不直。
横裂主要产生于板坯或方坯的上表面接近边部的地方。
在一些严重的情况下,横裂还会出现在板坯和方坯的表面。
由于横裂通常与铸坯低塑性(由微合金化元素析出和温度引起)有关,低热塑性会引起板坯和方坯在矫直过程中开裂,所以横裂多出现在铸坯的上表面。
在铸态板坯和方坯表面上的这些裂纹尺寸非常小,以致于很难用肉眼发现。
因此,火焰清理是检查这类缺陷的最好工具。
不管轧制工艺如何,根据横裂纹自身的几何形状,它们轧制后形成的缺陷形状类似于由针状气孔/疏松造成的缺陷。
星形裂纹的形成主要源于结晶器污染(Cu吸附)或氧化造成的晶界脆化。
在板坯和方坯上出现星形裂纹很可能意味着发生了结晶器污染。
星形裂纹曾经是连铸过程中铸坯的主要缺陷之一,然而随着技术的发展和对这种裂纹形成机理的理解深入,到今天这些缺陷基本上不存在了。
只有那些对连铸理解有限的企业依然会遇到星形裂纹缺陷。
振痕
所有连续浇铸的板坯和方坯表面上都会有不同程度的振痕。
根据铸机的不同,振动行程和热传输决定了振痕会有多深。
一般情况振痕都比较浅,在加热炉中会被氧化掉而不会造成质量问题。
但是,有时工艺参数会失去控制,使得振痕非常深。
此外,振痕会导致横裂纹出现而造成表面缺陷。
不良的火焰清理
火焰清理是检查和去除连铸坯表面缺陷的一个极好的方法。
但是,这项操作需要掌握一定的技巧,从而能够正确地操作而不在最终产品上产生额外的表面缺陷。
连铸坯表面上的深槽、突脊和界面必须平滑以确保清理操作本身不造成额外表面缺陷。
如果采取了正确的操作,轧制表面通常不会产生与清理操作有关的缺陷。
要确保清理操作光滑过度,应该使得清理道次宽度6倍于清理深度。
如果没有采用正确的清理操作,那么缺陷会折叠,轧制后看起来像一条很直的划伤。
结晶器壁引起的污染、划伤和沟槽
在连铸和处理板坯和方坯的过程中,可能会发生各种各样的机械问题。
但是,这些
问题通常又很少发生。
它们可以是结晶器壁污染,引起星形裂纹的发生,而导致加热、轧制过程中的热脆。
它们也可以是划伤、沟槽等,如果它们足够深而不能在加热过程中被氧化掉,就会发生轧制缺陷。
正确检查表面缺陷的方法
很多钢厂人员试图通过观察轧材表面,然后猜测造成缺陷的原因可能是何种起始浇铸缺陷。
这种检查方式是很难做到的,须具有掌握轧制缺陷和连铸缺陷间关系的多年经验。
最好的方法是对板坯和方坯进行主动检查。
实现这个检查的最成功的方法是通过对连浇期内的所选板坯和方坯进行火焰清理。
这须对火焰清理操作人员进行正确的培训,让他们能够识别之前讨论的各种各样的缺-陷。
不能够给清理和检查人员进行正确的培训是钢厂易于犯错误的地方。
在大多数情况下,上面提及的板坯缺陷趋于发生在连浇期内的某些特定铸坯上。
一个浇次的第一块和最后一块以及换钢包时涉及的炉次最后一块和第一块铸坯发生表面缺陷的可能性最大。
因此,在这些铸坯上进行例行检查,同时配合在整个浇铸期随机抽检,以最小量地检查工作完成质量控制。
对于涉及诸如拉速等连铸参数发生突然变化的板坯和方坯,要针对性地进行检查。
必须在所选板坯和方坯的上下表面都检查。
当在检查的板坯和方坯上发现某个缺陷时,必须检查该铸坯上下游的所有铸坯,直到这种缺陷消失。
不过,通过了解各种缺陷出现位置(上部或底部,边部或表面等)的概率、各种缺陷发生的可能性及其轧制缺陷的几何形状,将有助于确定正在检查的是何种可能缺陷。
工作人员不能仅通过对各种缺陷形成机理的理解和发生可能性来作出排除。
此外,金相有助于在轧制形成的表面缺陷和源于板坯、方坯形成的缺陷间作出判定。
铸坯上的缺陷会在缺陷周边存在再加热氧化的证据,而轧制造成的缺陷则不会有这种特征。