等式和方程
- 格式:ppt
- 大小:1.27 MB
- 文档页数:22
方程的定义和等式的性质
方程的定义和等式的性质
一、方程的定义
含有未知数的等式叫做方程。
即:
1.方程中一定有一个或一个以上含有未知数的代数式;
2.方程式是等式,但等式不一定是方程。
等式:含有等号的式子叫做等式(数学术语)。
形式:把相等的两个数(或字母表示的数)用“=”连接起来。
等式基本性质:
二、等式的性质
等式两边同时加上、减去、乘以、除以(除数不为0)同一个整式,等式仍然成立。
等式具有传递性。
用式子表达为:若a=b,那么a+c=b+c。
若a=b,那么a·c=b·c。
若a=b,那么a²=b²。
性质 1 等式两边同时加上(或减去)同一个整式,等式的值不变。
若a=b 那么a+c=b+c 性质2 等式两边同时乘或除以同一个不为0的整式,等式的值不变。
若a=b 那么有a·c=b·c 或a÷c=b÷c (c≠0)性质 3 等式具有传递性。
若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an。
方程和等式之间的关系方程和等式是数学中的重要概念,它们在解决实际问题和描述数学关系中起着关键作用。
方程和等式之间存在紧密的联系,它们既是数学语言中的重要组成部分,又具有深刻的数学内涵。
在本文中,我们将探讨方程和等式之间的关系,并通过具体例子来说明它们在数学中的应用。
让我们来了解方程和等式的定义。
方程是指包含未知数的数学表达式,其形式为“等号两边有表达式”的形式。
等式是方程的一种特殊形式,它要求等号两边的表达式的值相等。
可以说,等式是方程的一种特殊情况。
例如,2x + 3 = 7就是一个方程,而2x + 3 = 5就是一个等式。
方程和等式在数学中有着广泛的应用。
它们是解决实际问题的有力工具,可以用来描述各种数学关系。
例如,在代数中,我们可以通过方程和等式来解决未知数的问题。
通过建立方程和等式,我们可以求解未知数的值,从而解决各种实际问题。
这些问题可以涉及到各个领域,如物理、化学、经济等。
通过方程和等式,我们可以建立数学模型,对实际问题进行分析和求解。
在数学中,方程和等式的解是非常重要的。
解是指使方程或等式成立的未知数的值。
通过解方程和等式,我们可以求解未知数的值,并得到准确的结果。
解方程和等式的方法有很多种,如代入法、消元法、配方法等。
每种方法都有其适用的情况和使用的技巧。
通过灵活运用这些方法,我们可以解决各种复杂的数学问题。
方程和等式还可以用来描述数学关系。
数学关系是指数学中的各种关系,如等差数列、等比数列、函数关系等。
通过建立方程和等式,我们可以准确地描述数学关系,并分析其性质和规律。
例如,在等差数列中,通过建立等式,我们可以求解出数列中的任意一项的值。
在函数关系中,通过建立方程,我们可以求解函数的零点和极值,进而分析函数的图像和性质。
方程和等式的应用还可以延伸到其他数学领域,如几何、概率等。
在几何中,方程和等式可以用来求解各种几何问题,如求解直线与平面的交点、求解圆与直线的交点等。
在概率中,方程和等式可以用来描述事件的概率,通过求解方程和等式,我们可以计算出事件发生的概率,并进行概率的推导和分析。
等式与方程的解法在数学中,等式和方程是我们常常遇到的两个概念。
它们在数学问题的解决中起着重要的作用。
本文将介绍等式和方程的基本概念以及它们的解法方法。
一、等式的解法等式是具有相等关系的数学表达式。
求解等式的解,就是找出使得等式成立的数值。
下面介绍两种常见的等式解法方法。
1.1 值的代入法值的代入法是求解等式的最直观的方法之一。
假设有一个等式x + 5 = 10,我们要求解x的值。
我们可以将x的值依次代入等式中,直到找到符合等式成立的值。
当我们将x = 5代入等式时,得到5 + 5 = 10,显然这不是一个正确的解。
继续尝试,当我们将x = 10代入等式时,得到10 + 5 = 10,仍然不满足等式。
最后,当我们将x = 5代入等式时,得到5 + 5 = 10,满足等式,因此我们可以得出结论,x = 5是等式的解。
通过值的代入法,我们可以逐一尝试不同的数值,找到等式的解。
1.2 变量的移项法变量的移项法是求解较复杂等式的一种常用方法。
当等式中含有未知数和常数时,我们可以通过变量的移项以简化等式的形式,再进行求解。
例如,考虑等式2x + 3 = 7,我们要求解x的值。
首先,我们可以将常数3移到等式的右侧,得到2x = 7 - 3。
继续化简等式,得到2x = 4。
最后,通过除以系数2,我们可以得到x = 2,即等式的解。
通过变量的移项法,我们可以通过移动项的位置来简化等式,使我们更容易求解。
二、方程的解法方程是一个含有未知数的等式。
与等式不同的是,方程通常不止一个解。
在解决方程时,我们要找到所有使方程成立的未知数的取值。
下面介绍两种常见的方程解法方法。
2.1 因式分解法因式分解法是一种寻找方程解的有效方式。
当方程可以分解成更简单的形式时,我们可以利用因式分解的思想,找到方程的根。
例如,考虑方程x^2 - 4 = 0,我们要求解x的值。
我们可以将方程进行因式分解,得到(x + 2)(x - 2) = 0。
第一课方程一、等式:左右两边相等的式子叫做等式。
二、方程:叫做方程。
三、等式的性质:①等式两边同时,所得结果仍然是等式;②等式两边同时,所得结果仍然是等式。
四、解方程:求方程中未知数的值的过程叫做解方程。
利用等式性质解方程解方程 x-28=32方程两边同时加上28使等号左边只剩x方程得解解方程 16x=256方程两边同时除以16方程得解五、解方程过程中遇到的几大类型:①x-2.5=3.6 ②x+6.7=17.5 ③1.7x=5.1④12.6-x=4.8 ⑤x÷3.4=2.7 ⑥6÷x=1.5六、列方程解应用题:读懂题意,找出等量关系,根据等量关系设未知数,从而列出方程,求未知数的值。
例:根据题意列方程解答。
比x少17.2的数是22.8有关方程的常见题型:1. 看图列方程。
= = =2、下面的式子中不是方程的有()A、X=0B、3m=nC、X+1.9>2.53、哪一个x的值能使方程10x = 0.1的左右两边相等?x = 10 □x = 0.1 □x = 0.01□4、如果4X-28=12,那么4X的值是()。
A、3B、40C、105、列算式或方程解答:(1)从10里减去58与34的和,差是多少?(2)57比一个数的2倍少27,这个数是多少?6、方程一定是等式,等式却不一定是方程。
………………………………()7、我国参加28届奥运会的男运动员138人,女运动员比男运动员的2倍少7人。
男、女运动员一共多少人?8、世界人均占有森林面积大约是0.65公顷,相当于我国人均占有森林面积的5倍。
我国人均占有森林面积大约是多少公顷?(列方程解答)习题一、我会填1、含有()的()是方程。
例如()。
2、李晓红去年重25千克,今年比去年重x千克,今年重()千克。
3、一个平行四边形的底是x厘米,高是底的2倍,那么高是()厘米。
4、等式两边同时加上或减去(),所得结果仍然是等式。
这是()的性质。
5、根据“原有x本书,借出56本,还剩60本”可以用以下方程表示数量关系:()或()7、三个连续自然数中,中间一个数是a,最小的一个数是(),最大的一个数是(),这三个数的和是()。
等式与方程的意义等式与方程,这俩概念啊,就像一对亲兄弟,看着相似,可又有不同的地方。
咱先说说等式吧。
等式啊,就像一个天平,两边得是平的。
比如说3 + 2 = 5,这就是个等式。
左边3加2得到的结果和右边的5是一样重的,就像天平两边放着同等重量的东西,稳稳当当的。
你看生活里也有很多等式的例子呢。
好比说你去买苹果,一个苹果2块钱,你买了3个,给了老板10块钱,老板找你4块钱。
那这个过程就可以写成2×3 + 4 = 10这样一个等式。
这里面的数字关系就像一个小秘密,被等式这个神奇的东西给揭示出来了。
那方程呢?方程啊,就像是一个带着小问号的天平。
比如说x + 3 = 5,这个x就是我们要找的那个小秘密。
方程就像是在等式的基础上,藏了一个小宝贝,让我们去把它找出来。
这个小宝贝可能是个数字,也可能是个能代表数字的东西。
方程就像是一场小冒险,我们要通过一些线索来找到这个x到底是多少。
就好比你知道一个盒子加上3个苹果就等于5个苹果,那这个盒子里有几个苹果呢?这个盒子就像是那个x,我们得想办法算出它代表的数量。
等式和方程的意义可大着呢。
在我们解决实际问题的时候,它们就像两个小助手。
比如说你要装修房子,你知道客厅的长是x米,宽是3米,面积是15平方米。
那根据长方形面积公式,就可以列出方程3x = 15。
这个方程就像一把钥匙,能帮我们打开求出客厅长度的门。
如果没有等式和方程,我们就像在黑暗里摸索,只能瞎猜客厅的长度。
这多不靠谱啊。
再打个比方,你和小伙伴们分糖果。
你知道一共有y颗糖果,要平均分给5个小伙伴,每人能分到4颗。
那我们就可以列出方程y÷5 = 4。
这个方程就像一个小侦探,能帮我们找出糖果的总数。
要是没有方程这个概念,我们可能就得一个一个地数,多麻烦呀。
从数学的角度来看,等式是一种陈述,是一种两边相等的关系的展示。
而方程呢,是一种更有挑战性的等式,它是在找那个能让等式成立的未知的数或者量。
等式就像是一个平静的湖面,我们一眼就能看到它的全貌。
等式和方程的应用一、等式的概念与性质1.等式的定义:表示两个数或表达式相等的式子,用等号“=”连接。
2.等式的性质:a.两边同时加减同一个数,等式仍成立;b.两边同时乘除同一个非零数,等式仍成立;c.等式两边交换位置,等式仍成立;d.等式两边同时乘以或除以同一个数(0除外),等式仍成立。
二、方程的概念与解法1.方程的定义:含有未知数的等式,简称方程。
2.方程的解法:a.代入法:将方程中的未知数替换为具体的数值,求出方程的解;b.移项法:将方程中的未知数移到等式的一边,常数移到另一边,使未知数系数化为1;c.合并同类项法:将方程中的同类项合并,简化方程;d.因式分解法:将方程进行因式分解,求出方程的解;e.求根公式法:对于一元二次方程,利用求根公式求解。
三、方程的应用1.实际问题中的应用:a.行程问题:速度、时间和路程的关系;b.利润问题:售价、成本和利润的关系;c.浓度问题:溶质、溶剂和溶液的关系;d.比例问题:比例、外项和内项的关系。
2.方程在科学计算中的应用:a.物理中的力学问题:力、质量、加速度的关系;b.化学中的反应问题:反应物、生成物和反应速率的关系;c.生物学中的种群问题:种群数量、增长率的关系。
四、等式和方程在生活中的应用1.购物问题:计算商品总价、找零等;2.Time 问题:计算时间差、周期等;3.测量问题:计算长度、面积、体积等;4.分配问题:计算分配比例、分配数量等。
五、等式和方程的拓展应用1.函数关系式:用等式表示两个变量之间的关系;2.不等式:表示两个数或表达式的大小关系;3.系统方程:多个方程组成的求解体系。
习题及方法:1.等式性质习题:已知等式 2x + 3 = 13,求 x 的值。
答案:将等式两边同时减去3,得到 2x = 10,再将等式两边同时除以2,得到 x = 5。
解题思路:利用等式的性质,将常数项移到等式右边,未知数系数化为1。
2.方程解法习题:已知方程 5x - 8 = 2x + 1,求 x 的值。
等式方程知识点总结一、等式方程的基本概念1.1 等式与方程首先,我们需要明确等式与方程的概念。
等式是指两个表达式之间用等号连接起来的数学式子,例如:2x + 3 = 7就是一个等式。
而方程则是含有未知数的等式,例如:2x + 3 = 7就可以看作是一个包含未知数x的方程。
因此,方程是等式的一种特殊形式,它描述了未知数与已知数之间的关系。
1.2 等式方程的种类根据等式方程所含未知数的次数和方程的次数,等式方程可以分为一元一次方程、一元二次方程、二元一次方程等多种类型。
其中,一元一次方程最为常见,它的一般形式可以表示为ax + b = c,其中a、b、c为已知数,x为未知数。
一元二次方程的一般形式则是ax^2 + bx + c = 0,其中a≠0。
1.3 等式方程的解解是指使得方程成立的未知数的取值,对一元一次方程来说,它的解就是使得等式两边相等的x的值。
对于一元一次方程ax + b = c,它的解可以表示为x = (c - b)/a。
而一元二次方程的解则需要用到求根公式。
二、等式方程的解法2.1 方程的移项变元法移项变元法是解一元一次方程最常用的方法之一。
其步骤是将方程两边的式子进行移项,使得方程的未知数x单独出现在一边,然后根据移项后等式仍然成立的原则,得出方程的解。
例如,对于方程2x + 3 = 7,首先将等式两边的常数项3移动到方程的右侧,得到2x = 7 - 3,然后再将系数2移到右侧,得到x = (7 - 3)/2,最终得到x = 2,这就是方程的解。
2.2 方程的加减法对于包含两个未知数的二元一次方程,可以利用方程的加减法来求解。
其基本思路是通过加减法使得两个方程的某一项消失,从而得到一个只含有一个未知数的方程,再利用移项变元法求解即可。
例如,对于方程2x + 3y = 7和3x - 2y = 1,可以通过将两个方程相加或相减,消去其中一个未知数的系数,得到一个只含有一个未知数的方程,然后再利用移项变元法求解。
等式与方程;1)含有未知数的等式叫做方程。
表示数字或算式相等的式子叫等式;方程式一定是等式,等式不一定是方程。
2)解方程时不要忘记写“解”字;方程的解不需写单位名称;3)在等式的两边同时加上或减去相同的数,等式不变,这是等式的性质;4)等式的两边同时乘以或除以一个不等于0的数,等式不变,这也是等式的性质。
5)因为两个数的和一定时,他们的差越小,积越大;二、公倍数和公因数1、公倍数和最小公倍数:1)几个数公有的倍数,叫做这几个数的公倍数;2)一个数的倍数是无限的,所以几个数的公倍数也是无限的;3)几个公倍数中最小的一个是这几个数的最小公倍数;4)因为几个数的公倍数是无限的,所以只能求出它们最小的公倍数;5)两个数中较大的数是较小数的倍数时,他们的最小公倍数就是较大的数;两个数字为互质数时候,他们的最小公倍数就是他们的积;2、公因数和最大公因数:6)一个数的因数的个数是有限的,最小的因数是1,最大的因数是这个数本身;7)几个数公有的因数叫做这几个数的公因数;8)两个公因数个数是有限的,其中最大的公因数叫做最大公因数;9) 1是所有非零自然数的公因数;10)如果两个数的最小公倍数是1,那么它们的最大公因数就是111)甲数是乙数的倍数,乙数就是两数的最大公因数,甲数就是两数的最小公倍数;例如(18 9),最小公倍数是18,最大公因数是9三、分数:1、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数;2、分数单位:把单位“1”平均分成若干份,表示这样的一份叫做分数单位;3、真分数/分数:分子比分母小的分数叫做真分数;分母大于或等于分子的分数叫做假分数;4、带分数:分子不是分母倍数的假分数,可以写成整数和真分数合成的数叫做带分数;5、把假分数化成带分数时,要用分子除以分母,商就是带分数的整数部分,余数就是分数部分的分子,分母则保持不变;6、在分数里,把单位1平均分成多少份的数是分母;表示取了多少份的数叫做分数的分子;7、在分数里,分母不能为零;8、分数的分子和分母同时乘以或除以相同的数(零除外)分数的大小不变,这叫做分数的基本性质;9、在分数里,真分数总是小于假分数,因为真分数小于1,假分数大于或等于1;五、圆形1、画圆时,针尖固定的一点叫做圆心,用字母O表示;圆心确定圆的位置,半径或直径确定圆的大小;圆形是轴对称图形,有无数条对称轴,任何一条通过圆心的直线都是圆的对称轴;2、连接圆心和圆上任意一点的线段叫做半径用字母r表示;3、通过圆心并且两端都在圆上的线段叫直径。
等式与方程 【知识要点】一、方程1、等式的意义:表示相等关系的式子叫做等式。
如:25-5=202、方程:含有未知数的等式是方程。
如:28-x =123、两者之间的关系:方程一定是等式;等式不一定是方程。
4、方程成立的条件:(1)必须是等式; (2)必须设有未知数二、解方程1、方程的解:使方程左右两边相等的未知数的值,叫做方程的解。
解方程:求方程的解的过程。
2、等式的性质:(1)等式两边同时加上或减去同一个数,所得结果仍然是等式。
(2)等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。
3、解方程的方法:(1)等式的性质;(2)四则运算各部分的关系:一个加数=和-另一个加数 减数=被减数-差 被减数=减数+差一个因数=积÷另个因数 除数=被除数÷商 被除数=商×除数(3)移项。
4、等式的检验:将方程的解代入原方程看方程两边是否相等。
注意:解方程的时候要注意三点:1、要写“解”字;2、所有的等号要上下对齐;3、解完方程,要养成检验的好习惯。
【经典例题】【例1.1】下面的式子中,是等式的在后面( )里画“√”。
x +18=36( ) x +2﹥10( ) 72-x ( ) x =3( )等式方程【例1.2】哪些是等式,哪些是方程,请填入相应的横线上。
(填序号)①3+x=12②3.6+x③4+17.5=21.5④48+x﹤63等式______________________;方程:_____________________。
【练习1】判断。
(1)含有未知数的式子叫方程。
()(2)等式都是方程。
()(3)方程都是等式。
()(4)10=4x-8不是方程。
()【例2】练习:1、解方程x-18=2020+3x=452x-4=133x+12=15x÷26=528x=33.6x÷25=1512x=108【练习2】解方程32+4x=4672-3x=181.2x-3=11.46.3x×3=22.6834÷3.2x=2.1255.6x÷1.12=10【例3】解方程并检验x -97=145 1.15+x =6.8 x ÷3=2.1 15x =240 -x【练习3】解方程并检验13.5-x =8.2 3x =3.9 28÷x =42 7.6+x =34.5【例4】填空。