triz物理矛盾及其解决办法总结
- 格式:ppt
- 大小:1.18 MB
- 文档页数:61
在triz中解决物理矛盾的主要原理是
矛盾解决是TRIZ方法中的核心概念之一,其主要原则包括以下几点:
1. 的分离原理:物理矛盾通常源于系统中的两个特性或参数之间的冲突。
通过将系统分为两部分或分离系统的特性,可以解决矛盾。
2. 资源限制原理:在解决物理矛盾时,通常会出现资源(如能量、材料、时间等)的限制。
通过对资源的分配、重新利用和节省等方式,可以解决矛盾。
3. 过渡过程原理:矛盾常常与系统的过渡过程有关。
通过优化过渡过程,包括加快过渡速度、平滑过渡等方式,可以解决矛盾。
4. 偏向反作用原理:在系统中常常存在着以一种特性的增加为代价而导致另一种特性减少的矛盾。
通过引入偏向反作用,可以实现这两个特性的双赢,从而解决矛盾。
5. 分子分离原理:当物理矛盾无法通过直接的分离来解决时,可以通过引入第三个组件或实现分子分离,使两个矛盾特性可以同时实现。
以上原理仅为TRIZ方法中解决物理矛盾的主要原理之一,TRIZ方法还包括大量的工具和方法,用于帮助解决矛盾并促进创新。
triz解决物理矛盾的方法物理矛盾,乍一听是不是觉得挺复杂?它就是我们生活中常见的一些“问题”,两方看起来互相冲突,怎么解决呢?举个例子:你想要一台手机又薄又轻,但又希望电池超耐用,能放个十年八年不充电。
听着是不是很心酸?这就是典型的物理矛盾。
你想让手机又薄又轻,结果就只能牺牲电池的容量,反之,如果要电池大,手机就得变得又厚又重。
这种问题,简直让人头疼。
怎么破局呢?这时候,TRIZ就出场了。
TRIZ,什么鬼?别着急,别被这个名字吓到,它其实就是一套“解决问题”的工具,听起来像什么高大上的东西,但实际应用起来,倒是特别简单。
它的核心思想是:通过分析矛盾,找到解决方法。
你看,这不是很像我们生活中的“避重就轻”,而且TRIZ的重点就是要找到那些看起来不可能解决的矛盾点,然后巧妙地绕过去。
就像一场智力游戏,既考验脑袋,也能让你在日常生活中灵活应对。
我们说的“物理矛盾”,其实是指两种互相抵触的物理要求。
例如上面提到的,手机又轻又薄与电池续航之间的矛盾。
再比如,想要一台电视屏幕又大又清晰,又不能把家里的客厅塞得满满的。
这些看似不能同时满足的需求,其实通过TRIZ,能找到一些巧妙的解决办法。
你要知道,TRIZ的厉害之处就在于,它能让你跳出传统思维的框框,找到别人想不到的办法。
TRIZ的思路非常简单,重点就在于“分开看”这些矛盾。
如果你把问题拆开来看,就不再觉得束手无策了。
比如,咱们以手机为例,如果单纯从外形上要求薄,电池本身不能占用太多空间,这不就是物理矛盾吗?可是,如果你能把电池分成几个小单元,分布在手机的不同位置,或许能在不影响外形的情况下解决这个问题。
你看,这样不就打破了传统“要么大,要么小”的困境了吗?不然,这种矛盾早就“卡死”了。
TRIZ教的就是这样“打破常规”的思维。
然后,TRIZ还有个很牛的地方,那就是它通过“矛盾矩阵”帮助我们找到不同的解决方案。
矩阵的意思,简单说就是“列个表格”,把可能的矛盾关系列出来。
(一)冲突解决理论1、技术冲突解决原理TRIZ提出描述技术冲突的39个通用工程参数:运动物体质量、静止物体质量、运动物体长度、静止物体长度等。
为了解决技术冲突,TRIZ理论提出了40 项发明原理,如分割、分离、局部质量、不对称等。
通过研究,Altshuller提出了冲突矩阵,该矩阵将描述技术冲突的39个工程参数与40条发明原理建立了对应关系,解决了设计过程中选择发明原理的难题。
2、物理冲突解决原理Terninko于1998年提出的物理冲突描述方法为:(1)为实现关键功能,子系统要具有一有用功能,但为了避免出现一有害功能,子系统又不能具有上述有用功能。
(2)关键子系统的特性必须是一大值以能取得有用功能,但又必须是一小值以避免出现有害功能。
(3)关键子系统必须出现以取得一有用功能,但又不能出现以避免出现有害功能。
TRIZ提出采用分离原理解决物理冲突的方法,包括空间分离和时间分离、基于条件的分离、整体与部分的分离。
英国Bath大学的Mann提出,解决物理冲突的分离原理与解决技术冲突的发明原理之间存在关系,一条分离原理可以与多条发明原理存在对应关系。
(二)物—场模型分析方法物—场分析是用符号表达技术系统变换的建模技术。
物—场模型分析方法产生于1947—1977年,每一次的改进都增加了新的可用的知识,现在已经有了76 种标准解。
这些标准解是最初解决问题方案的精华,因此,物—场分析为我们提供了一种方便快捷的方法,利用这种方法,可以在汲取基本知识的基础上产生不同想法。
TRIZ理论认为,技术系统构成要素S1、作用体S2、场F三者缺一就会造成系统不完整。
而当系统中某一物质的特定机能没有实现时,系统就会产生问题。
为了控制这一物质产生的问题,有必要引入另外的物质。
由此产生这些物质之间的相互作用并伴随能量(场)的产生、变换、吸收等,物—场模型也从一种形式变换为另一种形式。
因此各种技术系统及其变换都可用物质和场的相互作用形式表述。
triz物理矛盾分离原则-回复Triz物理矛盾分离原则是一项创新方法,旨在解决物理矛盾的问题。
物理矛盾指的是在设计过程中,同时满足两个或更多的需求却会相互冲突的情况。
这意味着改善一个方面可能会损害另一个方面。
为了解决这种矛盾,Triz提出了分离原则。
接下来,我将详细介绍这一原则,并通过实例来说明如何应用。
Triz物理矛盾分离原则的核心思想是,通过将存在矛盾的系统分离成两个或多个独立的部分,以满足不同的需求,从而解决矛盾。
这种分离可以是时间上的、空间上的、功能上的或任何其他方面的。
在应用物理矛盾分离原则时,我们需要遵循以下步骤:第一步:明确问题在开始解决物理矛盾之前,我们首先需要明确问题。
这涉及到识别系统中的矛盾需求,并确定需要满足的不同需求。
例如,考虑一个汽车发动机设计的案例。
当发动机需要更高的功率输出时,它会产生更大的噪音和振动,这可能对驾驶员和乘客的舒适性产生负面影响。
这里存在一个物理矛盾:想要更高的功率,但不想要过多的噪音和振动。
第二步:寻找分离原则一旦问题被明确,我们需要寻找适用的分离原则。
根据Triz的理论,有39个常用的分离原则可供选择。
对于上述汽车发动机的案例,我们可以选择“分离空间原则”。
这意味着将发动机的噪音和振动隔离到一个与驾驶员和乘客隔离的空间中。
这个空间可以是发动机室内的隔音材料,或者是通过改变座椅设计等方式将噪音和振动远离驾驶员和乘客。
第三步:应用分离原则在确定适用的分离原则后,我们需要开始应用它。
这涉及到根据分离原则来重新设计系统,以满足不同的需求。
在汽车发动机的例子中,我们可以通过使用吸声材料来隔离发动机产生的噪音,并使用减震器来减少振动的传递。
此外,还可以通过优化座椅设计和车辆悬挂系统来减少噪音和振动对驾驶员和乘客的影响。
第四步:评估和改进在应用分离原则后,我们需要评估和改进系统的性能。
这可以通过测试和实验来完成。
如果系统的性能仍然无法满足要求,我们可能需要重新评估问题,并选择其他适用的分离原则。
triz物理矛盾分离原理1. 什么是TRIZ物理矛盾分离原理在生活中,常常会遇到一些矛盾,比如说你想吃蛋糕,但又怕长胖,这种心态真是让人苦恼呀!这时候,TRIZ的物理矛盾分离原理就像一位智者,帮你找到解决的钥匙。
简单来说,这个原理就是把矛盾的各个部分“拆开”,分别处理,从而找到更好的解决方案。
就像煮火锅,先把底料和配菜分开,才不会让汤底变得杂乱无章。
1.1 原理的由来TRIZ,这个名字听起来有点高深,但其实是个很实用的工具。
它是由一位叫阿尔图尔·金茨堡的俄罗斯人提出的。
他可真是个“脑袋瓜”灵活的人,经过长期的观察和研究,发现了许多创新的规律和原理。
可以说,他就是把创新变成了一门科学!所以,当你面临技术难题时,试试用TRIZ的办法,说不定能豁然开朗。
1.2 日常生活中的应用想象一下,你家里的小狗又在沙发上撒野了,你想教育它,但又不想伤害它的自尊心。
此时,你可以用分离原理!你可以把“教训”和“狗狗的感受”分开来考虑。
也许你可以用积极的奖励来引导它,而不是直接训斥。
这样一来,狗狗也乐意配合,真是一举两得。
2. 如何运用物理矛盾分离原理好,咱们说完了理论,接下来就来聊聊怎么实际运用这个原理。
其实,运用这个原理的关键就是要有“拆”的意识。
想象一下,拆乐高玩具,先把大块的拆开,再慢慢研究每一小块的作用,那样才能组合得更好。
2.1 分析矛盾第一步,找到矛盾。
比如说,你想让产品又便宜又好,那可真是“鱼与熊掌不可兼得”的典型案例。
先把“便宜”和“好”这两个因素拆开,分别分析。
你会发现,或许在某些方面你可以降低成本,比如材料,换成更经济的替代品,但在关键性能上还是要保持质量。
这就像是买衣服,有时候买品牌的确要多花钱,但那件衣服可能真的穿得更舒服。
2.2 创造解决方案接下来,创造解决方案。
就拿我们前面提到的狗狗教育来说,或许可以考虑用互动玩具来吸引它,让它在玩耍中自然地学会遵守规则。
这种方法既能满足狗狗的玩耍需求,又能在不伤害它自尊的情况下,达成教育目的。
在triz中解决物理矛盾的主要原理TRIZ是一门创新和解决问题的理论和方法,其中解决物理矛盾是其中的关键原则之一。
在TRIZ中,物理矛盾是指在同一系统中存在着两个或多个相互矛盾的因素,如需要增强某个方面的性能,但增强这个方面会影响到另一个方面的性能。
为了解决这些矛盾,TRIZ提出了一系列原理来引导思考和解决问题。
1. 分离原理:将物理矛盾的两个因素物理上分离开来,使它们可以独立地解决。
例如,考虑到汽车需要高速行驶时发动机需要释放能量,但这会导致更高的燃油消耗,因此可以采用刹车能量回收系统等技术分离这两个因素,达到节能的目的。
2. 矛盾解除原理:采用一种新的物理过程或技术,消除物理矛盾。
例如,为了解决手机屏幕分辨率和电池寿命之间的矛盾,可以采用新的材料和制造工艺,提高屏幕的透明度和能效,从而同时提高分辨率和电池寿命。
3. 过程逆转原理:改变某个物理过程的方向,使原本不利的因素变为有利因素。
例如,为了改善城市的空气质量,可以借助太阳能等可再生能源,使传统的废气排放变成新的能源来源,实现环保和可持续发展。
4. 超越矛盾原理:采用更高级别的解决方案,同时满足两个矛盾因素的要求。
例如,在飞机上增加货舱的时候,需要同时考虑到重量和安全性的矛盾,就可以采用轻质高强度材料和智能控制系统等技术,实现两个因素的平衡和协调。
5. 负效果转正原理:将原本不利的因素变成有益的因素,从而消除物理矛盾。
例如,在医疗器械中,在减少辐射的同时,利用辐射的特殊作用来更精准地治疗疾病。
以上这些原理是TRIZ方法中解决物理矛盾的主要原理。
除此之外,TRIZ还有很多其他的思维工具和技术,如矩阵分析、矛盾树、系统演化和标准解决方案等,帮助创新者更加深入全面地理解问题和解决问题。
因此,掌握TRIZ方法和原理对于解决复杂的物理矛盾和推动技术进步具有重要的指导意义。
从triz角度看利用分离方法解决物理矛盾的步骤
利用分离方法解决物理矛盾的步骤如下:
1. 确定物理矛盾:识别系统中的物理矛盾,明确矛盾双方的相互作用和影响。
2. 确定分离原则:根据物理矛盾的特点和系统需求,确定分离原则,即如何把矛盾双方分离开来以降低解决问题的难度。
3. 设计分离方案:根据分离原则,设计分离方案,包括空间分离、时间分离、条件分离或整体与部分分离等。
4. 实施分离方案:实施分离方案,把矛盾双方分离开来,从而降低解决问题的难度。
5. 创新解决方案:结合分离方案和系统需求,创新解决方案,解决物理矛盾。
在解决物理矛盾时,分离方法可以有多种,具体取决于矛盾双方的特点和系统需求。
例如,在解决十字路口的交通问题时,可以使用空间分离方法,将车辆和行人分别在不同的空间内进行处理,从而降低交通拥堵和事故风险。
在解决机器磨损问题时,可以使用条件分离方法,将磨损部件和未磨损部件分别进行处理,从而提高部件更换的效率和减少维修成本。
利用分离方法解决物理矛盾需要深入理解系统需求和物理矛盾的特点,同时结合创新思维和实践经验,不断探索和创新解决方案。