直流电机磁场
- 格式:docx
- 大小:82.01 KB
- 文档页数:12
直流电机励磁的方法有哪些
直流电机的励磁方法主要有以下几种:
1.磁铁励磁:在电机磁极上安装恒定磁场的永磁体。
这种方法简单易行,但磁场强度无法调节。
2.串联励磁:将电枢线圈和磁场线圈串联连接,由电枢提供电流激励磁场。
这种方法使电机具有稳定磁场,但需要较大的电枢电流。
3.并联励磁:将电枢线圈和磁场线圈并联连接,共享同一电源,由电枢电流和磁场电流一起激励磁场。
这种方法可以调节磁场强度,但对电枢电流的稳定性要求较高。
4.复合励磁:同时采用串联和并联励磁的方式,使电机具有较大的励磁范围和灵活性。
以上是常见的直流电机励磁方法,根据实际应用需求选择适合的方法。
直流电机励磁原理
直流电机励磁原理是指在直流电机中通过一定的方式产生磁场,使电机能够正常工作。
励磁是指给电机的磁场提供电能,使电机能够产生磁场。
直流电机的励磁方式通常有磁场励磁和电流励磁两种形式。
磁场励磁是通过外部线圈产生的磁场来励磁。
具体而言,将直流电源接通到电机的励磁线圈上,通过产生的磁场相互作用,使电机的磁场得以形成。
电流励磁是通过通电线圈在产生磁铁旁引线产生磁场来励磁。
具体而言,将直流电源接通到电机的绕组上,电流在线圈中流动,产生磁场,从而使电机获得励磁。
通常来说,直流电机的励磁线圈被称为电枢线圈或者励磁绕组。
电枢线圈是由细线圈绕制而成的,能够产生足够的磁场来使电机正常运转。
在直流电机的励磁过程中,需要根据实际需要调整励磁电流的大小和方向,以控制电机的运转速度和输出功率。
这通常通过调整励磁电流的大小来实现。
总结起来,直流电机的励磁原理是通过磁场励磁或电流励磁的方式来产生电机所需的磁场,使电机正常工作。
励磁电流的大小和方向可以通过调节来控制电机的运转速度和输出功率。
直流永磁同步电机原理
直流永磁同步电机是一种基于永磁体和直流电源驱动的电动机。
它采用永磁体产生磁场,通过电流与磁场之间的相互作用产生转矩,实现机械能转换。
该电机的工作原理可以分为磁场产生和转矩产生两个方面。
首先,永磁体产生的磁场是这种电机工作的关键。
在直流永磁同步电机中,通过永磁体内的稀土磁材料,形成一个强大且稳定的磁场。
这个磁场的方向和强度都是固定的,永磁体不需要外界电源来维持其磁场。
其次,当电机施加外界电源时,电流通过定子绕组,在定子绕组中产生一个磁场。
这个磁场与永磁体的磁场相互作用,形成一个转矩。
当电流的方向与永磁体磁场的方向一致时,转矩达到最大值;当电流方向相反时,转矩为零。
为了保持直流永磁同步电机在运行时的稳定性,电机的驱动器通常采用闭环控制,通过传感器实时监测电机的速度和位置,并调整电流的大小和方向。
通过闭环控制,可以使电机在不同负载条件下保持恒定的速度和转矩输出。
总的来说,直流永磁同步电机的工作原理是基于永磁体产生稳定磁场,并通过电流和磁场相互作用产生转矩。
这种电机具有高效率、高转矩密度和快速动态响应的特点,在工业和汽车领域得到广泛应用。
直流电机工作原理直流电机是一种将直流电能转化为机械能的装置。
它是由一个固定部分(定子)和一个旋转部分(转子)组成的。
当电流通过定子线圈时,会在定子中产生一个磁场。
而当磁场与转子上的磁场相互作用时,就会产生一个电力矩,推动转子旋转。
直流电机的工作原理可以分为以下几个方面来说明:1.磁场产生:当直流电流通过定子线圈时,会在定子内部产生一个磁场。
这是因为电流通过线圈时,会在线圈周围产生一个磁场。
而由于定子线圈是直接与电源相连的,因此它会持续地产生磁场。
2.磁场与转子相互作用:转子上有一个磁场。
当转子与定子中的磁场相互作用时,就会产生一个电力矩。
这是因为两个磁场之间会相互吸引或排斥,从而产生一个力矩作用在转子上。
3.反向作用力:当转子开始转动时,它会产生一个逆向的电动势,也就是所谓的自感电势。
这个电动势会抵消部分输入电流,从而减少了电流在定子线圈上的流动,进而减小了定子产生的磁场。
4.固定磁场方向:为了确保转子始终朝向磁场运动,直流电机在定子中使用了一个永久磁体。
这个永久磁体在定子中产生一个固定的磁场,确保转子在该磁场方向上运动。
5.制动和调速:直流电机可以通过改变输入电流来调节转速。
当增加电流时,定子内部的磁场将会变强,从而增大了电力矩。
反之,当降低电流时,定子内部的磁场将会变弱,进而减小了电力矩。
通过这种方式,可以实现对直流电机的调速。
直流电机的工作原理可以通过施加电流和控制磁场来实现。
通过改变电流的大小和方向,可以控制转子的转动方向和速度。
这使得直流电机在许多应用中非常有用,例如在电动汽车和工业机械等领域。
直流电机磁场的典型特点直流电机是一种将电能转化为机械能的电动机。
它的磁场是由电枢和磁极产生的交替磁通量所形成的。
直流电机的磁场具有以下典型特点。
1. 磁场方向可控制直流电机的磁场方向可以通过改变电枢电流的方向来控制。
这使得直流电机可以轻松地实现正反转。
2. 磁场强度随电流变化直流电机的磁场强度随着电枢电流的变化而变化。
当电枢电流增大时,磁场强度也随之增大。
3. 磁场分布不均匀直流电机的磁场在空间中分布不均匀。
磁场的强度在磁极之间最大,在磁极附近逐渐减小。
这种不均匀分布的磁场使得直流电机的转子会受到一定的扭矩作用。
4. 磁场线密集分布直流电机的磁场线密集地分布在磁极的周围。
这种密集的磁场线分布使得直流电机的转子可以产生较大的电磁力和扭矩。
5. 磁场稳定性高直流电机的磁场稳定性较高。
在恒定电流和稳定工作状态下,直流电机的磁场保持不变。
在以上典型特点的基础上,直流电机的磁场还具有以下特点:1. 磁场对电机性能影响较大直流电机的磁场对电机的性能影响很大。
磁场的大小和方向会影响电机的输出功率、效率和转速等性能指标。
2. 磁场的设计需要考虑电机的特性直流电机的磁场设计需要考虑电机的特性。
不同类型的直流电机,其磁场设计也有所不同。
3. 磁场的优化可以提高电机性能优化直流电机的磁场设计可以提高电机的性能。
例如,通过改变磁极的形状和位置、增加永磁体的数量和强度等方式,可以优化磁场分布,提高电机的效率和输出功率。
直流电机的磁场具有多种典型特点,这些特点对电机的性能和工作状态都有着重要的影响。
通过深入了解和优化直流电机的磁场设计,可以提高电机的性能和使用寿命。
直流电机的工作原理
直流电机是一种常见的电动机,它通过直流电源提供电能,将电能转换为机械能,驱动机械装置运转。
直流电机的工作原理主要包括磁场产生、电流通路和力矩产生三个方面。
首先,直流电机的工作原理与磁场产生密切相关。
在直流电机中,通常会有一个磁场产生装置,它可以是永磁体或者电磁铁。
当电流通过磁场产生装置时,会在装置周围产生磁场,形成磁极。
这个磁场是直流电机工作的基础,因为它与电流之间会产生相互作用,从而产生力矩,驱动电机运转。
其次,直流电机的工作原理还与电流通路有关。
在直流电机中,电流通路是通过电刷和换向器来实现的。
电刷是连接电源和电机的导电装置,它与换向器配合工作,使得电流可以按照一定的规律在电机的绕组中流动。
这样,电流在磁场中产生作用,产生力矩,从而驱动电机转动。
最后,直流电机的工作原理还涉及到力矩的产生。
在直流电机中,当电流通过绕组时,会在绕组中产生磁场,这个磁场与磁场产生装置的磁场相互作用,产生力矩。
这个力矩会驱动电机转动,实现能量转换。
综上所述,直流电机的工作原理是通过磁场产生、电流通路和力矩产生三个方面相互作用,实现电能到机械能的转换。
通过对这些原理的深入理解,可以更好地掌握直流电机的工作特点,为实际应用提供理论支持。
直流电动机基本工作原理
直流电动机基本工作原理如下:
1. 电磁感应:直流电动机的核心是一个称为电枢的带有导线的金属线圈。
当通过这个线圈流过电流时,会在其周围产生磁场。
2. 感应磁场:当电源连接到电动机的电枢上时,电流开始流动,产生磁场。
这个磁场与电枢上的永久磁体产生作用,产生一个力矩。
3. 力矩转换:根据洛伦兹力的原理,电流通过电枢产生的磁场会与永久磁体产生的磁场相互作用,产生一个力矩。
这个力矩会使电动机开始旋转。
4. 电刷与换向器:直流电动机的电枢需要不断地改变方向来保持旋转。
为了实现这一点,电动机装有一个装置,称为电刷和换向器。
电刷是通过电流进入电枢的导线,而换向器则用来改变电流的方向,以保持电动机的旋转方向。
5. 转子与定子:直流电动机由两个主要部分组成,分别是转子和定子。
转子是电动机旋转的部分,定子是固定的部分。
电流通过电枢产生的磁场与转子上的永久磁体相互作用,产生旋转力矩。
综上所述,直流电动机的基本工作原理是通过电流在电枢产生的磁场与转子上的永久磁体相互作用,产生旋转力矩,从而驱动电动机旋转。
直流电机的电枢反应及负载时的磁场1、电枢反应:电机负载时,电枢绕组中有电流流过,产生一磁动势,称为电枢磁动势。
此时,气隙磁场有主极磁势和电枢磁势二者合成磁势建立,电枢磁势的消失必定对空载时的主极磁场有影响,使气隙磁密的分布发生变化,这种电枢磁势对主极所建立气隙磁场的影响称为电枢反应。
由于这两个磁动势的相互作用,直流电机才能进行机电能量的转换。
电枢反应对电机运行特性影响很大:对电动机:影响转速。
对发电机:影响感应电势。
2、电枢磁场的分布:同极性下电流方向相同,异极性下电流方向相反。
电刷是电枢表面电流分布的分界线。
特点:电枢磁场与主极磁场分布是相对静止的。
3、电枢磁动势沿电枢表面分布:a、以一个元件为例:线圈匝数,电流安。
元件边产生磁动势安匝。
每根磁力线仅与一个元件边相交链,磁场对称于电刷轴线,反向对称于磁极轴线。
将电枢从几何中性线处切开。
每个磁回路的磁势均为安匝。
规定磁动势方向与磁力线的方向全都,不计铁磁材料的磁压降,则全部降落在两气隙上,于是,每通过一次气隙消耗磁动势为,可得一个元件所耗于气隙的磁动势的空间分布关系为:一矩形波。
每极下有一个元件边的磁动势波形b、若每极下有四个元件边匀称分布:据上分析,应有四个矩形波,它们相互之间位移一个槽距,将它们迭加起来可得一阶梯数为2的阶梯波。
c、若每极下元件边的数目许多,且匀称分布在电枢表面,则经上述方法迭加后总的电枢磁动势会接近于三角波形。
4、电枢磁场的磁密沿电枢表面分布:(推导B与F的关系)设电枢绕组的总匝数为N,元件数为S,极对数为p,极距为,电枢直径为,每元件匝数为Wy,则N=2SWy,阶梯数为S/2p ,阶梯波幅值为:,为电枢表面单位周长上的安匝数,称为线负荷。
若忽视铁磁材料中的磁压降,则电枢磁场沿电枢表面的分布曲线为:上式表明:与成正比,与成反比。
即:极靴下,气隙变化小,变化小;极尖处,气隙大,大大减弱,曲线呈马鞍形。
5、直流电机负载时磁场的电枢反应6、直流电机负载时磁场特点(呈去磁作用):a、磁场发生了畸变。
直流电机磁场的典型特点
直流电机是一种常见的电动机,其磁场具有典型的特点。
首先,直流电机的磁场是由永磁体或电磁铁产生的,通电时可以产生磁场,而断电时则不再产生磁场。
因此,直流电机也被称为“永磁电机”或“电磁电机”。
其次,直流电机的磁场具有极性。
不同极性的磁极之间会产生磁场线并相互吸引或排斥,从而导致直流电机产生运动。
根据极性的不同,直流电机的磁极可以分为南极和北极。
在电机运转时,由于电枢的转动,南极和北极会交替出现在电枢与磁极之间,从而不断地产生吸引和排斥的力量。
第三,直流电机的磁场具有磁通量的概念。
磁通量是磁场所穿过的面积和磁场强度的乘积,用符号Φ表示。
它是描述磁场强度大小的物理量,可以用来计算直流电机的输出功率和效率等参数。
与磁通量相关的概念还包括“磁密度”和“饱和磁密度”,它们分别指的是单位面积上的磁通量和磁场达到饱和状态时的磁密度。
最后,直流电机的磁场可以通过改变电枢电流、磁极数目、永磁体或电磁铁的材料和形状等方式进行调节。
例如,增加电枢电流可以增强磁场强度,从而增加电机输出功率;增加磁极数目可以提高电机的转速和稳定性;更换不同材料的永磁体或电磁铁可以改善电机的耐用性和性能等。
综上所述,直流电机的磁场具有极性、磁通量和调节性等典型特点,这些特点对于直流电机的设计、生产和应用都具有重要的指导意义,为提高电机性能和效率提供了理论基础和实践依据。
直流小电机工作原理
直流小电机工作原理是利用电流通过导线产生的磁场与永磁体的磁场相互作用,产生力矩使电机转动。
具体工作原理如下:
1. 直流电源接通后,电流通过电机的线圈,产生磁场。
线圈一般为绕在铁芯上的导线,称为电枢。
2. 电枢的磁场与永磁体之间的磁场发生相互作用,产生力矩。
永磁体一般由强磁性材料制成,保持恒定的磁场。
3. 由于磁场之间的相互作用,电枢开始受到力矩的作用而转动。
转动时,导线在磁场中感受到的力会随着导线的位置不断改变。
4. 为了保持电枢连续不断地转动,需要不断改变导线所受力的方向。
这一点通过电刷和集电环实现。
电刷由碳刷制成,与电枢接触,能够改变电枢的通电方向。
5. 集电环由金属材料制成,用于接触电刷,并将电流输出至外部电路。
集电环会随着电枢的转动而改变位置,确保电枢和外部电路的连接。
通过这样的作用,直流小电机能够完成转动的工作。
其转速和转矩可根据电流的大小和磁场强度来控制。
常见的应用场景包括电子设备、玩具、自动化控制等。
电机的主磁场一般由套在主极铁心上的励磁绕组通过电流产生。
励磁绕组与电枢回路之间的连接方式有:他励、并励、串励、复励。
不同的励磁方式对电机的性能将产生较大的影响。
直流电机空载时的磁场由励磁绕组单独激励,其分布取决于磁路的情况。
一般情况下,直流电机的空载磁通密度分布呈平顶波。
当直流电机负载时,电枢绕组绕组中的电枢电流将产生电枢磁势,电枢磁势对主磁场的分布和主磁通的大小将产生一定的影响,这种影响称为电枢反应。
交轴电枢反应将使主磁场发生畸变,当磁路饱和时会对主磁场产生去磁作用。
当电刷偏离几何中性线时,还将产生去磁或者增磁的直轴电枢反应。
发电机和电动机是直流电机的两种运行状态。
在两种状态下,电枢绕组中均产生感应电势。
感应电势的公式Ea=CeΦn表明感应电势的大小正比于转速及每极磁通。
在发电机中Ea>U,在电动机中U>Ea。
同样,直流发电机和电动机中均存在电磁转矩。
其公式T=CTΦIa表明电磁转矩的大小正比于电枢电流和每极磁通。
在发电机中,电磁转矩是阻力转矩,在电动机中电磁转矩是拖动转矩。
直流电机的电势平衡方程反映了电机电路中各种量之间的关系。
功率平衡方程表明了输入功率、输出功率和各种损耗之间的关系。
电磁功率PM=TΩ=EaIa显示了机械功率和电磁功率之间的转换关系。
1.4直流电机的磁场(返回顶部)直流电机中除主极磁场外,当电枢绕组中有电流流过时,还将会产生电枢磁场。
电枢磁场与主磁场的合成形成了电机中的气隙磁场,它是直接影响电枢电动势和电磁转矩大小的。
要了解气隙磁场的情况,就要先分析清楚主磁场和电枢磁场的特性。
1.4.1 直流电机的空载磁场(返回顶部)直流电机的空载是指电枢电流等于零或者很小,且可以不计其影响的一种运行状态,此时电机无负载,即无功率输出。
所以直流电机空载时的气隙磁场可以看作就是主磁场,即由励磁磁通势单独建立的磁场。
当励磁绕组通入励磁电流,各主磁极极性依次呈现为极和极,由于电机磁路结构对称,不论极数多少,每对极的磁路是相同的,因此只要分析一对极的磁路情况就可以了。
图1.16是一台四极直流电机空载时的磁场分布示意图(一对极的情形)。
从图中看出,由极出来的磁通,大部分经过气隙进入电枢齿部,再经过电枢磁轭到另一部分的电枢齿,又通过气隙进入极,再经过定子磁轭回到原来出发的极,成为闭合回路。
这部分磁通同时匝链着励磁绕组和电枢绕组,电枢旋转时,能在电枢绕组中感应电动势,或者产生电磁转矩,把这部分磁通称为主磁通,用φ表示。
此外还有一小部分磁通不进入电枢而直接经过相邻的磁极或者定子磁轭形成闭合回路,这0部分磁通仅与励磁绕组相匝链,称为漏磁通,用φ表示。
由于主磁通磁路的气隙较小,磁导较大,漏磁通磁路的气隙较大,磁导较小,而作用在这两条磁路的磁通势是相同的,所以漏磁通在数量上比主磁通要小得多,大约是主磁通的20%左右。
图1.16直流电机空载时的磁场分布示意图1—极靴;2—极身;3—元子磁轭;4—励磁绕组;5—气隙;6—电枢齿;7—电枢磁轭由于主磁极极靴宽度总是比一个极距要小,在极靴下的气隙又往往是不均匀的,所以主磁通的每条磁力线所通过的磁回路不尽相同,在磁极轴线附近的磁回路中气隙较小;接近极尖处的磁回路中气隙较大。
如果不计铁磁材料中的磁压降,则在气隙中各处所消耗的磁通势均为励磁磁通势。
因此,在极靴下,气隙小,气隙中沿电枢表面上各点磁密较大;在极靴范围外,气隙增加很多,磁密显著减小,至两极间的几何中性线处磁密为零。
不考虑齿槽影响时,直流电机空载磁场的磁密分布如图1.17所示。
图1.17直流电机空载磁场的磁密分布在直流电机中,为了感应电动势或产生电磁转矩,气隙里要有一定数量的主磁通φ,也就是需要有一定的励磁磁通势,或者当励磁绕组匝数一定时,需要有一定的励磁电流。
把空载时主磁通φ0与空载励磁磁通势或空载励磁电流的关系,即φ=或φ=,称为直流电机的磁化曲线,它表明了电机磁路的特性。
电机的磁化曲线可通过电机磁路计算来得到。
直流电机磁路计算内容是:已知气隙每极磁通为φ,求出直流电机主磁路各段中的磁压降,各段磁压降的总和便是励磁磁通势。
对于给定的不同大小的φ0用同一方法计算,得到与φ相应的不同,经多次计算,便得到了空载磁化曲线φ。
直流电机主磁通的磁回路从图1.16中可看出主要包括这样几段:两段主磁极、两段气隙、两段电枢齿部、电枢磁轭、定子磁轭。
对于每一段磁路,都是根据已知的φ,算出磁密B,再找出相应的磁场强度H,分别乘以各段磁路长度后便得到磁压降。
气隙部分的磁导率是常数,不随φ而变,或者说气隙磁压降与φ成正比。
但其它各段磁路,都是铁磁材料构成,它们的B与H之间是非线性关系,具有磁饱和的特点,也就是说它们的磁压降与φ0不成正比,也具有饱和现象,当φ大到一定程度后,出现饱和,φ0再增大,H或磁压降就急剧增大。
因此,造成了直流电机φ大到一定程度后,磁路总磁压降即励磁磁通势急剧增大,电机的磁化曲线具有饱和现象,如图2.18所示。
图1.18电机的磁化曲线考虑到电机的运行性能和经济性,直流电机额定运行的磁通额定值的大小取在磁化曲线开始弯曲的地方(称为膝部),如图1.18中的a点(称为膝点),对应的φN系指在空载额定电压时的每极磁通,对应的励磁磁通势为FfN。
1.4.2 直流电机负载时的磁场和电枢反应(返回顶部)当电机带上负载后,电枢绕组中就有电流流过,在电机磁路中,又形成一个磁通势,这个磁通势称为电枢磁通势。
因此,负载时的气隙磁场将由励磁磁通势和电枢磁通势共同作用所建立。
电枢磁通势的出现,必然会影响空载时只有励磁磁通势单独建立的磁场,有可能改变气隙磁密分布及每极磁通量的大小。
通常把负载时电枢磁通势对主磁场的这种影响称为电枢反应,电枢反应对直流电机的运行性能影响很大。
电枢磁通势如何影响电机中的主磁场呢?下面先分析清楚电枢磁通势和电枢磁场的特性,然后把两种磁场合成起来,再考虑到饱和问题,就可以看清楚电枢磁通势对主磁场的影响了。
1.电枢磁通势和电枢磁场电枢磁通势是由电枢电流所产生的,从对电枢绕组的分析可知,不论什么型式的绕组,其各支路中的电流是通过电刷引入或引出的。
在一个极下元件边中电流方向是相同的,相邻的不同极性的磁极下元件边中电流方向总是相反的。
因此,电刷是电枢表面电流分布的分界线。
在电枢磁通势的作用下,电刷在几何中性线上时的电枢磁场分布如图1.19所示。
图1.19电刷在几何中性线上时的电枢磁场分布由于电刷和换向器的作用,尽管电枢是旋转的,但是每极下元件边中的电流方向是不变的,因此电枢磁通势以及由它建立的电枢磁场是不动的。
电枢磁场的轴线总是与电刷轴线重合,并与励磁磁通势产生的主磁场轴线相互垂直。
现在研究电枢磁通势的大小和电枢磁场的磁密沿电枢表面分布的情况。
首先讨论一个元件所产生的电枢磁通势。
设电枢槽内仅嵌放一个元件,该元件轴线(即元件的中心线)与磁极轴线垂直,即元件边位于磁极轴线上,如图1.20(a)所示。
元件有匝,元件中的电流为,则元件边所产生的磁通势为安培导线数。
由该元件所建立的磁场的磁力线的路径如图1.20(a)所示。
设想将电机从处切开,展平如图1.20(b)所示。
根据全电流定律可知,每个磁回路的磁通势均为。
每根磁力线通过两次气隙,若不计铁磁材料中的磁压降,则磁通势全部消耗在气隙中。
在直流电机中,与磁极轴线等距离处的气隙大小相等,所以磁力线通过一次气隙所消耗的磁通势则为磁力线所包围的全电流的一半,即1/2。
若以几何中性线为纵轴,电枢周长为横轴,但规定磁通势方向与磁力线方向一致,即正磁通势表示由它产生的磁通方向从电枢到主磁极,负磁通势则为从主磁极到电枢。
作这些规定后,一个元件所消耗于气隙的磁通势的空间分布为(1.15)将式(1.15)用曲线形式表示,如图1.20(b)中所示。
从图中看出,一个宽度为一个极距的元件所产生的电枢磁通势在空间的分布为一个以2为周期,幅值为1/2的矩形波。
图1.20一个元件所产生的电枢磁通势a)磁力线分布 b)磁通势分布若电枢表面均匀分布四个元件,如图1.21所示。
根据上面分析,每个元件的磁通势空间分布均为一个高为1/2、宽度为的矩形波。
把这样的四个矩形波叠加起来,可得一个每级高度为、阶梯级数为2的阶梯形波。
图1.21四个元件所产生的电枢磁通势如果电枢表面均匀分布的元件数目较多,那么总的电枢磁通势波形会接近图1.21中所表示的三角形波。
由于实际电机中,电枢上元件很多,可近似地认为电枢磁通势分布波形为一三角形波,其轴线即位于三角形的顶点上。
设为电枢绕组的总导线数,为元件数,为极对数,为极距,为电枢直径,则阶梯级数为,且阶梯形波或三角形波的幅值为(1.16)把和代入式(2.16)得(1.17)式中——电枢表面单位长度上的安培导体数,称为线负荷(A/m)。
知道了电枢磁通势分布曲线,在忽略铁心中磁阻的情况下,即可求出电枢磁场的磁密沿电枢表面的分布曲线。
这条曲线表示为(1.18)式中——气隙长度(m);——真空中的磁导率,。
如果气隙是均匀的,即为常数,则在极靴范围内,磁密分布也是一条直线。
但在两极极靴之间的空间内,因气隙长度大为增加,磁阻急剧增加,虽然此处磁通势较大,磁密却反而减小,因此磁密分布曲线是马鞍形,如图1.22中所示。
图1.22磁场分布和电枢反应2.负载时的合成磁场和电枢反应以直流电动机为例,把主磁场与电枢磁场合成,将合成磁场与主磁场比较,便可看出电枢反应的作用。
在图2.22中,表明了磁极极性和极下元件边中的电流方向。
根据左手定则,决定转动方向为由右向左。
再按磁力线方向与磁通势方向一致的原则,分别画出主磁场分布曲线及电枢磁场分布曲线。
若磁路不饱和,可用迭加原理,将沿电枢表面逐点相加,便得到负载时气隙内合成磁场分布曲线(如图2.22中实线所表示)。
将和比较,得出:(1)使气隙磁场发生畸变。
每一磁极下,因为电枢磁场使主磁场一半被削弱,另一半被加强,并使电枢表面磁密为零的位置由空载时在几何中性线逆转向移动了一个角度。
称通过电枢表面磁密为零的这条直线为物理中性线。
故在空载时,物理中性线与几何中性线重合;负载时,由于电枢反应的影响,气隙磁场发生畸变,物理中性线与几何中性线不再重合,而且磁场的分布曲线也与空载时不同。
(2)对主磁场起去磁作用。
在磁路不饱和时,主磁场被削弱的数量恰好等于被加强的数量(图2.22中表示出面积),因此负载时每极下的合成磁通量与空载时相同。
但在实际电机中,磁路总是饱和的。
因为在主磁极两边磁场变化情况不同,一边是增磁的,另一边是去磁的。
主极的增磁作用会使饱和程度提高,铁心磁阻增大,从而使实际的合成磁场曲线(图中用虚线表示)比不计饱和时要低些,与不饱和时相比,增加的磁通要少些;主极的去磁作用可使饱和程度降低,铁心磁阻减小,结果使实际的合成磁场曲线(图中用虚线表示)比不计饱和时略高些,与不饱和时相比,减少的磁通要少些。