圆锥曲线轨迹的例题和练习(优秀).doc
- 格式:doc
- 大小:26.50 KB
- 文档页数:5
经典例题精析类型一:求曲线的标准方程1. 求中心在原点,一个焦点为且被直线截得的弦AB的中点横坐标为的椭圆标准方程.思路点拨:先确定椭圆标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、(定量).解析:方法一:因为有焦点为,所以设椭圆方程为,,由,消去得,所以解得故椭圆标准方程为方法二:设椭圆方程,,,因为弦AB中点,所以,由得,(点差法)所以又故椭圆标准方程为.举一反三:【变式】已知椭圆在x轴上的一个焦点与短轴两端点连线互相垂直,且该焦点与长轴上较近的端点的距离为.求该椭圆的标准方程.【答案】依题意设椭圆标准方程为(),并有,解之得,,∴椭圆标准方程为2.根据下列条件,求双曲线的标准方程.(1)与双曲线有共同的渐近线,且过点;(2)与双曲线有公共焦点,且过点解析:(1)解法一:设双曲线的方程为由题意,得,解得,所以双曲线的方程为解法二:设所求双曲线方程为(),将点代入得,所以双曲线方程为即(2)解法一:设双曲线方程为-=1由题意易求又双曲线过点,∴又∵,∴,故所求双曲线的方程为.解法二:设双曲线方程为,将点代入得,所以双曲线方程为.总结升华:先根据已知条件确定双曲线标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、.在第(1)小题中首先设出共渐近线的双曲线系方程.然后代点坐标求得方法简便.第(2)小题实轴、虚轴没有唯一给出.故应答两个标准方程.(1)求双曲线的方程,关键是求、,在解题过程中应熟悉各元素(、、、及准线)之间的关系,并注意方程思想的应用.(2)若已知双曲线的渐近线方程,可设双曲线方程为().举一反三:【变式】求中心在原点,对称轴在坐标轴上且分别满足下列条件的双曲线的标准方程.(1)一渐近线方程为,且双曲线过点.(2)虚轴长与实轴长的比为,焦距为10.【答案】(1)依题意知双曲线两渐近线的方程是,故设双曲线方程为,∵点在双曲线上,∴,解得,∴所求双曲线方程为.(2)由已知设, ,则()依题意,解得.∴双曲线方程为或.3.求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:(1)过点;(2)焦点在直线:上思路点拨:从方程形式看,求抛物线的标准方程仅需确定一次项系数;从实际分析,一般需结合图形确定开口方向和一次项系数两个条件,否则,应展开相应的讨论解析:(1)∵点在第二象限,∴抛物线开口方向上或者向左当抛物线开口方向左时,设所求的抛物线方程为(),∵过点,∴,∴,∴,当抛物线开口方向上时,设所求的抛物线方程为(),∵过点,∴,∴,∴,∴所求的抛物线的方程为或,对应的准线方程分别是,.(2)令得,令得,∴抛物线的焦点为或当焦点为时,,∴,此时抛物线方程;焦点为时,,∴,此时抛物线方程为∴所求的抛物线的方程为或,对应的准线方程分别是,.总结升华:这里易犯的错误就是缺少对开口方向的讨论,先入为主,设定一种形式的标准方程后求解,以致失去一解.求抛物线的标准方程关键是根据图象确定抛物线开口方向,选择适当的方程形式,准确求出焦参数P.举一反三:【变式1】分别求满足下列条件的抛物线的标准方程.(1)焦点为F(4,0);(2)准线为;(3)焦点到原点的距离为1;(4)过点(1,-2);(5)焦点在直线x-3y+6=0上.【答案】(1)所求抛物线的方程为y2=16x;(2)所求抛物线的标准方程为x2=2y;(3)所求抛物线的方程y2=±4x或x2=±4y;(4)所求抛物线的方程为或;(5)所求抛物线的标准方程为y2=-24x或x2=8y.【变式2】已知抛物线的顶点在原点,焦点在轴负半轴上,过顶点且倾角为的弦长为,求抛物线的方程.【答案】设抛物线方程为(),又弦所在直线方程为由,解得两交点坐标,∴,解得.∴抛物线方程为.类型二:圆锥曲线的焦点三角形4.已知、是椭圆()的两焦点,P是椭圆上一点,且,求的面积.思路点拨:如图求的面积应利用,即.关键是求.由椭圆第一定义有,由余弦定理有,易求之.解析:设,,依题意有(1)2-(2)得,即.∴.举一反三:【变式1】设为双曲线上的一点,是该双曲线的两个焦点,若,则的面积为()A.B.C.D.【答案】依据双曲线的定义有,由得、,又,则,即,所以,故选A.【变式2】已知双曲线实轴长6,过左焦点的弦交左半支于、两点,且,设右焦点,求的周长.【答案】:由双曲线的定义有: ,,两式左、右分别相加得(.即∴.故的周长.【变式3】已知椭圆的焦点是,直线是椭圆的一条准线.①求椭圆的方程;②设点P在椭圆上,且,求.【答案】① .②设则,又.【变式4】已知双曲线的方程是.(1)求这双曲线的焦点坐标、离心率和渐近线方程;(2)设和是双曲线的左、右焦点,点在双曲线上,且,求的大小【答案】(1)由得,∴,,.焦点、,离心率,渐近线方程为.(2),∴∴【变式5】中心在原点,焦点在x轴上的一个椭圆与双曲线有共同焦点和,且,又椭圆长半轴与双曲线实半轴之差为4,离心率之比.(1)求椭圆与双曲线的方程;(2)若为这两曲线的一个交点,求的余弦值.【答案】(1)设椭圆方程为(),双曲线方程,则,解得∵,∴, .故所求椭圆方程为,双曲线方程为.(2)由对称性不妨设交点在第一象限.设、.由椭圆、双曲线的定义有:解得由余弦定理有.类型三:离心率5.已知椭圆上的点和左焦点,椭圆的右顶点和上顶点,当,(O为椭圆中心)时,求椭圆的离心率.思路点拨:因为,所以本题应建立、的齐次方程,使问题得以解决.解析:设椭圆方程为(),,,则,即.∵,∴,即,∴.又∵,∴.总结升华:求椭圆的离心率,即求的比值,则可由如下方法求.(1)可直接求出、;(2)在不好直接求出、的情况下,找到一个关于、的齐次等式或、用同一个量表示;(3)若求的取值范围,则想办法找不等关系.举一反三:【变式1】如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为()A.B.C.D.【答案】连接,则是直角三角形,且,令,则,,即,,所以,故选D.【变式2】已知椭圆()与x轴正半轴交于A点,与y轴正半轴交于B点,F点是左焦点,且,求椭圆的离心率.法一:,,∵, ∴,又,,代入上式,得,利用代入,消得,即由,解得,∵,∴.法二:在ΔABF中,∵,,∴,即下略)【变式3】如图,椭圆的中心在原点, 焦点在x轴上, 过其右焦点F作斜率为1的直线, 交椭圆于A、B两点, 若椭圆上存在一点C, 使. 求椭圆的离心率.【答案】设椭圆的方程为(),焦距为,则直线l的方程为:,由,消去得,设点、,则∵+, ∴C点坐标为.∵C点在椭圆上,∴.∴∴又∴∴【变式4】设、为椭圆的两个焦点,点是以为直径的圆与椭圆的交点,若,则椭圆离心率为_____.【答案】如图,点满足,且.在中,有:∵,∴,令此椭圆方程为则由椭圆的定义有,,∴又∵,∴,,∴∴,∴,即.6.已知、为椭圆的两个焦点,为此椭圆上一点,且.求此椭圆离心率的取值范围;解析:如图,令, ,,则在中,由正弦定理,∴,令此椭圆方程为(),则,,∴即(),∴, ∴,∵,且为三角形内角,∴,∴,∴, ∴.即此椭圆离心率的取值范围为.举一反三:【变式1】已知椭圆,F1,F2是两个焦点,若椭圆上存在一点P,使,求其离心率的取值范围.【答案】△F1PF2中,已知,|F1F2|=2c,|PF1|+|PF2|=2a,由余弦定理:4c2=|PF1|2+|PF2|2-2|PF1||PF2|cos120°①又|PF1|+|PF2|=2a ②联立①②得4c2=4a2-|PF1||PF2|,∴【变式2】椭圆的焦点为,,两条准线与轴的交点分别为,若,则该椭圆离心率的取值范围是()A.B.C.D.【答案】由得,即,解得,故离心率.所以选D.【变式3】椭圆中心在坐标系原点,焦点在x轴上,过椭圆左焦点F的直线交椭圆P、Q两点,且OP⊥OQ,求其离心率e的取值范围.【答案】e∈[,1)【变式4】双曲线(a>1,b>0)的焦距为2c,直线过点(a,0)和(0,b),且点(1,0)到直线的距离与点(-1,0)到直线的距离之和s≥c.求双曲线的离心率e的取值范围.【答案】直线的方程为bx+ay-ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线的距离.同理得到点(-1,0)到直线的距离.=.由s≥c,得≥c,即5a≥2c2.于是得5≥2e2.即4e4-25e2+25≤0.解不等式,得≤e2≤5.由于e>1,所以e的取值范围是.类型五:轨迹方程7.已知中,,,为动点,若、边上两中线长的和为定值15.求动点的轨迹方程.思路点拨:充分利用定义直接写出方程是求轨迹的直接法之一.应给以重视解法一:设动点,且,则、边上两中点、的坐标分别为,.∵,∴,即.从上式知,动点到两定点,的距离之和为常数30,故动点的轨迹是以,为焦点且,,的椭圆,挖去点.∴动点的轨迹方程是().解法二:设的重心,,动点,且,则.∴点的轨迹是以,为焦点的椭圆(挖去点),且,,.其方程为().又, 代入上式,得()为所求.总结升华:求动点的轨迹,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,建立等式,利用直接法或间接法得到轨迹方程.举一反三:【变式1】求过定点且和圆:相切的动圆圆心的轨迹方程.【答案】设动圆圆心, 动圆半径为,.(1)动圆与圆外切时,,(2)动圆与圆内切时,,由(1)、(2)有.∴动圆圆心M的轨迹是以、为焦点的双曲线,且,,.故动圆圆心的轨迹方程为.【变式3】已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程.【答案】设动圆圆心P(x,y),动圆的半径为R,由两圆外切的条件可得:,.∴.∴动圆圆心P的轨迹是以M1、M2为焦点的双曲线的右支,其中c=4,a=2,∴b2=12,故所求轨迹方程为.【变式4】若动圆与圆:相外切,且与直线:相切,求动圆圆心的轨迹方程.法一:设,动圆半径,动圆与直线切于点,点.依题意点在直线的左侧,故∵,∴.化简得, 即为所求.法二:设,作直线:.过作于,交于,依题意有, ∴,由抛物线定义可知,点的轨迹是以为顶点,为焦点,:为准线的抛物线.故为所求.。
圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程. (2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程. (1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33yy x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).(2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+by a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程. 解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-ky k x . 由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③ 由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.∴所求椭圆方程为1315422=+y x 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即)32,325(P ∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,13412252222b a ba 得⎪⎩⎪⎨⎧==.3,41522b a (1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程.解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1.(2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=uu u v uuu v若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=u u u r u u u r ,即 ()11,OP x y =u u u r ,()22,OQ x y =u u u r,于是12120x x y y +=,即()()21212110ky y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=g ,解得4k =-或0k =(舍去),又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I )Θe c a =∴=2422, Θc a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±334分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]Θ2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分) (III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[]ΘOP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN⊥MQ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩L L L L L L L L ………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN⊥MQ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. 9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。
圆锥曲线技巧——轨迹方程一、直接翻译法题型:动点M 满足。
条件,可由M 坐标直接翻译为等式关系。
即设M (x ,y ),f(x,y)=01、已知点A(-2,0),B(2,0),动点M 满足直接AM 与 直线BM 的斜率之积为-21,记M 的轨迹为曲线C ,求C 的轨迹方程。
(*:斜率要注意存在问题;本题答案:x 2/4+y 2/2=1(x ≠±2))2、已知点A (0,-1),点B 在直线y=-3上,动点M 满足MB ∥OA 且AB MA •=BA MB •,求动点M 轨迹方程。
(本题答案:0842=--y x )3、已知圆O :0222=-+y x ,圆O ':010822=+-+x y x ,由点P 向两圆引切线长相等,求点P 的轨迹方程。
二、四大定义法如果吻合曲线四大定义,则直接写出曲线方程即可。
例题1:已知点)0,2(),0,2(21F F -,动点P 满足421=+PF PF ,则P 点的轨迹为() 答案:线段例题2:已知点)0,2(),0,2(21F F -,动点P 满足221=-PF PF ,则P 点的轨迹为() 答案:双曲线的一支例题3:已知动点M 到点)1,2(F 的距离和到直线01043:=-+y x l 的距离相等,则M 点的轨迹为()答案:直线1、已知动圆P 过定点A (-3,0),且与圆64)3(:22=+-y x B 相切,求动圆圆心P 的轨迹方程。
2、已知圆25)1(:22=++y x C ,Q 为圆C 上任意一点,点A (1,0),线段AQ 的垂直平分线与CQ 的连接线相交于点M ,求点M 的轨迹方程。
(提示:垂直平分线的性质定理,即垂直平分线上的点到线段两边的距离相等)3、已知动圆P 与圆1)3(:221=++y x O 外切,与圆1)3(:222=+-y x O 内切,求动圆圆心P 的轨迹方程。
4、已知动圆P 与定圆1)2(:22=++y x C 外切,又与定直线1:=x l 相切,求动圆圆心P 的轨迹方程。
圆锥曲线的轨迹方程1.已知直线2:220(1)l x ay a a --=>椭圆222:1x C y a+=,1F ,2F 分别为椭圆的左右焦点.(Ⅰ)当直线l 过右焦点2F 时,求C 的标准方程;2.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是1F ,2F ,P 是椭圆上的一点,I 为△12PF F 的内切圆圆心,11222PIF IF F PIF S S S =-V V V ,且△12PF F 的周长为6. (1)求椭圆C 的方程.3.椭圆2222:1(1)x y E a b a b+=>>的左、右焦点分别为1F ,2F ,椭圆E 上两动点P ,Q 使得四边形12PFQF为平行四边形,且平行四边形12PFQF 的周长和最大面积分别为8和 (1)求椭圆E 的标准方程;4.已知(2,0)A -,(2,0)B ,点P 在平面内运动,14PA PB k k =-g .(Ⅰ)求点P 的轨迹方程;5.已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为1F ,2F ,且1F 是圆2270x y +-+=的圆心,点H 的坐标为(0,)b ,且△12HF F 的面积为 (1)求椭圆C 的方程.6.设1F ,2F 分别是椭圆2222:1(0,0)x y C a b a b+=>>的左,右焦点,A ,B 两点分别是椭圆C 的上,下顶点,△12AF F 是等腰直角三角形,延长1AF 交椭圆C 于D 点,且2ADF ∆的周长为 (1)求椭圆C 的方程;7.已知点F 为椭圆22221(0)x y a b a b+=>>的一个焦点,点A 为椭圆的右顶点,点B 为椭圆的下顶点,椭圆上任意一点到点F 距离的最大值为3,最小值为1. (Ⅰ)求椭圆的标准方程;8.已知椭圆2222:1(0)x y C a b a b+=>>,左右焦点分别为1F 、2F ,A 为椭圆上一点,1AF 与y 轴交于点B ,2||||AB F B =,||OB =. (1)求椭圆C 的方程;9.已知椭圆2222:1(0,0)x y E a b a b+=>>的左,右焦点分别为1(1,0)F -,2(1,0)F ,点P 在椭圆E 上,212PF F F ⊥,且12||3||PF PF =.(Ⅰ)求椭圆E 的标准方程;10.在平面直角坐标系xOy 中,点(1,0)F 为椭圆2222:1(0)x y E a b a b+=>>的右焦点,过F 的直线与椭圆E交于A 、B 两点,线段AB 的中点为21(,)33P .(1)求椭圆E 的方程;11.已知抛物线C 的顶点为原点,其焦点(0F ,)(0)c c >关于直线:20l x y --=的对称点为M ,且||FM =P 为C 的准线上的任意一点,过点P 作C 的两条切线PA ,PB ,其中A ,B 为切点.(1)求抛物线C 的方程;12.已知1F ,2F 为椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,点P 在椭圆上,且过点2F 的直线l 交椭圆于A ,B 两点,△1AF B 的周长为.(Ⅰ)求椭圆E 的方程;13.有一种曲线画图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且12DN ON ==,1DM =.当栓子D 在滑槽AB 内作往复运动时,带动N 绕O 转动,M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(1)求曲线C 的轨迹方程;14.已知圆22(4)(4)25x y -+-=经过抛物线2:2(0)E y px p =>的焦点F ,且与抛物线E 的准线l 相切. (1)求抛物线E 的标准方程;15.已知焦点为F 的抛物线2:2(0)C y px p =>与圆222:1O x y p +=+交于点0(1,)P y . (1)求抛物线C 的方程;16.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A ,B ,焦距为2,点P 为椭圆上异于A ,B的点,且直线PA 和PB 的斜率之积为34-.(Ⅰ)求C 的方程;17.已知椭圆2222:1(0)x y C a b a b+=>>过点M ,且焦距为4.(1)求椭圆C 的标准方程;18.已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为28y x =的焦点重合.(1)求椭圆C 的标准方程;19.已知椭圆2222:1(0)x y C a b a b+=>>的上顶点为B ,圆22:4C x y '+=与y 轴的正半轴交于点A ,与C 有且仅有两个交点且都在x 轴上||,||OB O OA =为坐标原点). (1)求椭圆C 的方程;20.已知椭圆E 的中心为坐标原点O ,焦点在x ,1F ,2F 分别为椭圆E 的左、右焦点,点P 在椭圆E 上,以线段12F F 为直径的圆经过点P ,线段1F P 与y 轴交于点B ,且11||||6F P F B =g . (1)求椭圆E 的方程;21.已知(0,2)P -,点A ,B 分别为椭圆2222:1(0)x y E a b a b+=>>的左、右顶点,直线BP 交E 于另一点Q ,ABP ∆为等腰直角三角形,且||:||3:2PQ QB =.(Ⅰ)求椭圆E 的方程;22.已知圆221:(3)16F x y ++=,圆心为1F ,定点2(3,0)F ,P 为圆1F 上一点,线段2PF 上一点K 满足222PF KF =u u u r u u u r,直线1PF 上一点Q 满足20QK KF =u u u r u u u r g .(1)求点Q 的轨迹E 的方程;23.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,F 是椭圆C 的一个焦点,点(0,2)M ,直线MF 的斜率为2.(1)求椭圆C 的方程;24.、已知椭圆2222:1(0)x y E a b a b +=>>的离心率12e =,左、右焦点分别为1F 、2F ,(4,0)P -,过点P 的直线斜率为k ,交椭圆E 于A ,B 两点,12211221sin sin sin()BF F BF F a BF F BF F ∠+∠=∠+∠. (1)求椭圆E 的方程;25.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,过椭圆右焦点F 的直线l 与椭圆交于A ,B 两点,当直线l 与x 轴垂直时,||3AB =. (Ⅰ)求椭圆C 的标准方程;26.已知椭圆2222:1x y C a b +=,右顶点为A ,右焦点为F ,O 为坐标原点,2OA OF =u u u r u u u r ,椭圆C 过点3(1,)2-.(Ⅰ)求椭圆C 的方程;27.已知椭圆2222:1(0)x y E a b a b+=>>的焦距为1:4l x =与x 轴的交点为G ,过点(,0)M l 且不与x 轴重合的直线2l 交E 于点A ,B .当2l 垂直x 轴时,ABG ∆. (1)求E 的方程;28.已知点M 为椭圆22221(0)x y a b a b+=>>上一点,1F ,2F 分别是椭圆的左、右焦点,1260F MF ∠=︒,△12MF F 的面积为12.(1)求椭圆的方程;29.已知Q ,R 是椭圆2222:1(0)x y C a b a b +=>>的左右顶点,P 点为椭圆C 上一点,点P 关于x 轴的对称点为H ,且12PQ RH k k =g .(1)若椭圆C 经过圆22(1)4x y +-=的圆心,求椭圆C 的方程;30.已知1F ,2F 分别为椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,离心率为12,P 是椭圆上异于左右顶点的一动点,已知△12F PF 的内切圆半径的最大值为3. (Ⅰ)求椭圆E 的方程;31.已知椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1F 、2F ,焦距为4,直线1:bl y x c=与椭圆相交于A 、B 两点,2F 关于直线1l 的对称点E 恰好在椭圆上.(1)求椭圆的标准方程;32.已知点3(1,)2P ,(1,)a x y =-r ,(1,)b x y =+r ,且||||4a b +=r r ,满足条件的点(,)Q x y 的轨迹为曲线C . (1)求曲线C 的方程;33.已知抛物线2:2(0)C y px p =>的焦点为F ,P 为抛物线上一点,当P 的横坐标为1时,3||2PF =. (1)求抛物线C 的方程;34.已知过点(4,0)A -的动直线l 与抛物线2:2(0)G x py p =>相交于B 、C 两点.当直线l 的斜率是12时,4AC AB =u u u r u u u r .(1)求抛物线G 的方程;35.已知抛物线2:2(0)C y px p =>的焦点为F ,Q 是抛物线上的一点,FQ =u u u r.(Ⅰ)求抛物线C 的方程;36.已知椭圆2222:1(0)x y C a b a b+=>>与抛物线2:4D y x =-有共同的焦点F ,且两曲线的公共点到F 的距离是它到直线4x =-(点F 在此直线右侧)的距离的一半. (1)求椭圆C 的方程;37.已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F ,点3(1,)2P 在椭圆C 上,满足1294PF PF =u u u r u u u u r g . (Ⅰ)求椭圆C 的标准方程;38.直角坐标系xOy 中,1F ,2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左右焦点,A 为椭圆的右顶点,点P 为椭圆C 上的动点(点P 与C 的左右顶点不重合),当△12PF F 为等边三角形时,123PF F S =V . (1)求椭圆C 的方程;(2)如图,M 为AP 的中点,直线MO 交直线4x =-于点D , 过点O 作//OE AP 交直线4x =-于点E ,证明11OEF ODF ∠=∠.39.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为1F ,过点1F 且与x 轴垂直的直线被椭圆截得的线段长为2,且1F 与短轴两端点的连线相互垂直.(1)求椭圆C 的方程;40.已知椭圆2222:1(0)x y a b a bΓ+=>>的离心率为2,过椭圆Γ的焦点且垂直于x 轴的直线被椭圆Γ截得的弦长为2. (1)求椭圆Γ的方程;41.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,过点1F 的直线与C 交于M ,N 两点.2MNF ∆的周长为8,且||MN 的最小值为3. (Ⅰ)求椭圆C 的标准方程;42.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为1A 、2A ,上、下顶点分别为1B ,2B ,F 为其右焦点,1111B A B F =u u u u r u u u u r g ,且该椭圆的离心率为12.(Ⅰ)求椭圆C 的标准方程;43.已知椭圆2222:1(0)x y C a b a b+=>>,与x 轴交于点1A ,2A ,过x 轴上一点Q 引x 轴的垂线,交椭圆C 于点1P ,2P ,当Q 与椭圆右焦点重合时,12||1PP =. (1)求椭圆C 的方程;44.在平面直角坐标系内,点(1,0)F ,过点P 作直线:l x m =的垂线,垂足为M ,MF 的中点H 在y 轴上,且()0PM PF FM +=u u u u r u u u r u u u u rg .设点P 的轨迹为曲线Q .(1)求曲线Q 的方程;45.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点坐标为(,A ,B 分别是椭圆的左,右顶点,P 是椭圆上异于A ,B 的一点,且PA ,PB 所在直线斜率之积为14-.(1)求椭圆C 的方程;46.已知椭圆E 的中心为坐标原点O ,焦点在x ,1F 、2F 分别为楠圆E 的左、右焦点,点P 在椭圆E 上,以线段12F F 为直径的圆经过点P ,线段1F P 与y 轴交于点B ,且11||||6F P F B =g . (1)求椭圆E 的方程;47.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,经过左焦点1F 的最短弦长为3,离心率为12. (1)求椭圆的标准方程;48.点(1,1)A 是抛物线2:2C x py =内一点,F 是抛物线C 的焦点,Q 是抛物线C 上任意一点,且已知||||QA QF +的最小值为2.(1)求抛物线C 的方程;圆锥曲线的轨迹方程参考答案1.【解答】(Ⅰ)由题可得:22222,12,12a c a c a c =-=⇒==,所以椭圆C 的方程为2212x y +=.2.【解答】(1)因为11222PIF IF F PIF S S S =-V V V ,所以1212||||2||PF PF F F +=,即2a c =①, 又因为△12PF F 的周长为6,所以1212||||||6PF PF F F ++=,即226a c +=②,由①②可得2a =,1c =,则3b =,所以椭圆的方程为22143x y +=.3.【解答】(1)由平行四边形12PFQF 的周长为8,可知48a =,即2a =.由平行四边形的最大面积为23,可知3bc =,又1a b >>,解得3,1b c ==.所以椭圆方程为22143x y +=.4.【解答】(Ⅰ)设(,)P x y ,0y ≠,则2124n yy x x -=-+g ,22221(4)144x y x y =--⇒+=;所以点P 的轨迹方程:221(0)4x y y +=≠;5.【解答】(1)由224270x y x +-+=,可得22(22)1x y -+=,则圆心坐标为(22,0), 即1F (22,0),22c ∴=,Q △12HF F 的面积为22,∴12222c b ⨯⨯=, 1b ∴=,2229a b c ∴=+=,∴椭圆C 的方程为:2219x y +=;6.【解答】(1)2ADF ∆Q 的周长为42,由椭圆的定义可知,12||||2AF AF a +=,12||||2DF DF a +=, 442a ∴=,2a ∴=,又Q △12AF F 是等腰直角三角形,且222a b c =+,1b c ∴==,∴椭圆C 的方程为:2212x y +=;7.【解答】(Ⅰ)由题意可知,31a c a c +=⎧⎨-=⎩,解得21a c =⎧⎨=⎩,2223b a c ∴=-=,∴椭圆的标准方程为:22143x y +=; 8.【解答】(1)连接2AF ,如图所示:, 由题意得21||||||AB F B F B ==, 所以BO 为△12F AF 的中位线, 又因为12BO F F ⊥,所以212AF F F ⊥,且222||2||2b AF OB a ===, 又22c e a ==,222a b c =+,得22a =,21b =, ∴椭圆C 的方程为:2212x y +=;9.【解答】(Ⅰ)因为P 在椭圆上,所以12||||2PF PF a +=,又因为12||3||PF PF =, 所以2||2a PF =,13||2aPF =,因为212PF F F ⊥,所以2222121||||||PF F F PF +=,又12||2F F =,所以22a =,2221b a c =-=,所以椭圆的标准方程为:2212x y +=;10.【解答】(1)由题意可知,1c =,设1(A x ,1)y ,2(B x ,2)y ,∴1243x x +=,1223y y +=, 又Q 点A ,B 在椭圆上,∴22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得:1212121222()()()()0x x x x y y y y a b +-+-+=, ∴2122122y y b x x a -=--,即直线AB 的斜率为:222b a -,又Q 直线AB 过右焦点(1,0)F ,过点21(,)33P , ∴直线AB 的斜率为:1031213-=--,2221b a ∴-=-,222a b ∴=,又222a b c =+Q ,1c =,22a ∴=,21b =,∴椭圆E 的方程为:2212x y +=;11.【解答】(1)由题意可知,焦点(0,)F c 到直线:20l x y --=的距离d =∴=1c =(负根舍去),∴抛物线C 的方程为:24x y =; 12.【解答】(Ⅰ)根据椭圆的定义,可得12||||2AF AF a +=,12||||2BF BF a +=,∴△1AF B 的周长为111122||||||||||||||4AF BF AB AF BF AF BF a ++=+++=,∴4a =,a =∴椭圆E 的方程为22213x y b +=,将P 代入得22b =,所以椭圆的方程为22132x y +=. 13.【解答】(1)设(,)M x y 则(,0)2x D1,即2214x y +=;14. 【解答】(1)由已知可得:圆心(4,4)到焦点F 的距离与到准线l 的距离相等,即点(4,4)在抛物线E 上,168p ∴=,解得2p =.∴抛物线E 的标准方程为24y x =.15.【解答】(1)将点0(1,)P y 代入得20220211y p y p ⎧=⎪⎨+=+⎪⎩,解得2p =,则抛物线C 的方程为24y x =; 16.【解答】(1)已知点P 在椭圆上,设0(P x ,0)y ,即有2200221x y a b+=,又2200022200034AP BPy y y b k k x a x a x a a ===-=-+--g ,且22c =,可得椭圆的方程为22143x y +=; 17.【解答】(1)由题意可知,2222242124a b c a b c ⎧+=⎪⎪=⎨⎪=+⎪⎩,解得22a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的标准方程为:22184x y +=;18.【解答】(1)由抛物线的方程可得抛物线的焦点坐标为(2,0),所以由题意可得椭圆的右焦点(2,0),即2c =,2a =a =222642b a c =-=-=,所以椭圆的标准方程为:22162x y +=; 19.【解答】(1)Q 圆22:4C x y '+=与C 有且仅有两个交点且都在x 轴上,所以2a =, 又Q ||||OB OA =∴2b,解得b =C 的方程为22143x y +=;20.【解答】(1)设椭圆E 的方程为22221(0)x y a b a b+=>>,12||2F F c =,112BFO PF F ∠=∠Q ,1122FOB F PF π∠=∠=,∴△1F BO ∽△12F F P ,∴11121||||||||F B FO F F F P =, 即211112||||||||26F P F B FO F F c ===,c ∴=c e a ==,解得2a =,所以2221b a c =-=, 则椭圆E 的方程为2214x y +=;21.【解答】(Ⅰ)根据题意ABP ∆是等腰直角三角形,2a ∴=,(2,0)B ,设0(Q x ,0)y ,由||:||3:2PQ QB =,得32PQ QB =u u u r u u u r ,则006545x y ⎧=⎪⎪⎨⎪=-⎪⎩,代入椭圆方程得21b =,∴椭圆E 的方程为:2214xy +=;22.【解答】(1)Q 222PF KF =u u u r u u u r,K ∴是线段2PF 的中点.又20QK KF =u u u r u u u r g ,QK ∴为线段2PF 的中垂线,则2||||QP QF =,1112||||||||||4F P FQ QP FQ QF =+=+=Q , ∴由椭圆的定义可知,点Q 的轨迹是以1F ,2F 为焦点,长轴为4的椭圆,则2a =,c ,21b ∴=,故点Q 的轨迹C 的方程为2214x y +=;23.【解答】(1)由题意,可得1222c a c⎧=⎪⎪⎨⎪=⎪⎩,解得21a c =⎧⎨=⎩,则2223b a c =-=,故椭圆C 的方程为22143x y +=;24.【解答】(1)由正弦定理得2112||||||BF BF a F F +=,由椭圆的定义可得22a ac =,1c ∴=, 又Q 离心率12e =,∴12c a =,2a ∴=,2223b a c ∴=-=,∴椭圆E 的方程为:22143x y +=;25.【解答】(Ⅰ)由题意得:222223,1,2,b a c a a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得:2,1a b c ===.所以椭圆的标准方程为:22143x y +=;26.【解答】(Ⅰ)由2OA OF =u u u r u u u r ,可得,2a c =,且过点3(1,)2-,则221914a b +=,焦解得:2a =,b =,所以椭圆的方程为:22143x y+=;27.【解答】(1)由焦距为2c =c =,即2223a b c -== ①;由题意可得(4,0)G,13||||||22AB MG AB ==g可得||AB =,由在椭圆上可得221314a b+=②; 由①②解得2a =,1b =,则椭圆的方程为2214xy +=;28.【解答】(1)设1(,0)F c -,2(,0)F c ,1||MF m =,2||MF n =可得2m n a +=,1sin 602mn ︒=,即8mn =, 又2222cos604m n mn c +-︒=,即22()24m n mn mn c +--=,即222444324a c b mn -===,可得b =,由12c e a ==,即2a c =,又2226b a c =-=,解得a =,c 22186x y +=;29.【解答】(1)设(,)P x y ,因为(,0)P a -,(,0)Q a ,则点P 关于x 轴的对称点(,)H x y -, PQy k x a =+,RH y k a x=-,因为22221x y a b +=,所以22222222(1)()x b y b a x a a =-=-, 所以2222212PQ RH y b k k a x a ===-g ,又椭圆C 过圆22(1)4x y +-=的圆心(0,1),∴22011a b+=, 所以22a =,21b =,所以椭圆C 的标准方程为2212x y +=;30.【解答】(Ⅰ)由题意知:12c a =,2a c ∴=,222b a c =-,∴b =,设△12PF F 的内切圆半径为r ,则12121211(||||||)(22)()22PF F S PF PF F F r a c r a c r =++=+=+V g g g ,故当△12PF F 面积最大时,r 最大,即P点位于椭圆短轴顶点时r ,)a c bc +=,把2a c =,b =代入,解得:2a =,b =,所以椭圆方程为22143x y +=; 31.【解答】(1)Q 焦距为4,2c ∴=,2(2,0)F ∴,Q 点2F 关于直线1:bl y x c=的对称点E 恰好在椭圆上,∴由椭圆的对称性可知,当b c =时,点2(2,0)F 关于直线1:l y x =的对称点E 坐标为(0,2),恰在椭圆上, 2b c ∴==,2228a b c =+=,∴椭圆的标准方程为:22184x y +=; 32.【解答】(1)设1(1,0)F -,2(1,0)F ,由(1,)a x y =-r,(1,)b x y =+r ,||||4a b +=r r ,4,即为12||||4QF QF +=,由124||F F >,可得Q 的轨迹是以1(1,0)F -,2(1,0)F 为焦点,且24a =的椭圆,由1c =,2a =,可得b ==,可得曲线C 的方程为22143x y +=;33.【解答】(1)由抛物线的方程可得准线方程为:2px =-,由抛物线的性质,到焦点的距离等于到准线的距离,3||2PF =,又P 的横坐标为1,所以3122p +=,所以1p =,所以抛物线的方程为:22y x =;34.【解答】(1)设1(B x ,1)y ,2(C x ,2)y ,当直线l 的斜率是12时,l 的方程为1(4)2y x =+,即24x y =-,由2224x py x y ⎧=⎨=-⎩得22(8)80y p y -++=,∴21212(8)640424p p y y y y ⎧=+->⎪⎪+=+⎨⎪=⎪⎩V ,①;又4AC AB =u u u r u u u r .214y y ∴=,②; 由①②和0p >得11y =,24y =,2p =,则抛物线的方程为24x y =;35.【解答】(Ⅰ)由题意可知,(2p F ,0),Q 点Q 在物线2:2C y px =上,∴设20(2y Q p ,0)y ,∴200(,)22y p FQ y p =-=u u u r ,∴200122y pp y ⎧-=⎪⎨⎪=⎩,解得2p =,∴抛物线C 的方程为:24y x =;36.【解答】(1)由题意知(1,0)F -,因而1c =,即221a b =+,又两曲线在第二象限内的交点(Q Q x ,)Q y 到F 的距离是它到直线4x =-的距离的一半,即42(1)Q Q x x +=-+,得23Q x =-,则283Q y =,代入到椭圆方程,得2248193a b+= .由2222481931a ba b ⎧+=⎪⎨⎪=+⎩,解得24a =,23b =, ∴所求椭圆的方程为22143x y +=.37.【解答】(1)设1F (,0)c -,2(,0)F c ,0c >,则12(1PF PF c =--u u u r u u u u r g ,3)(12c --g ,2399)1244c -=-+=,1c ∴=,∴2222219141a b a b c c ⎧+=⎪⎪=+⎨⎪=⎪⎩,解得21a b c =⎧⎪=⎨⎪=⎩∴椭圆C 的标准方程为:22143x y +=; 38.【解答】(1设椭圆的半个焦距c ,因为△12PF F 是等边三角形,所以P 此时在上顶点或下顶点,所以2a c =,所以bc 222a b c =+,解得24a =,23b =,所以椭圆的方程为:22143x y +=;39.【解答】(1)设右焦点为1(,0)F c ,令x c =,可得2b y a =±=±,可得22b a=1F 与短轴两端点的连线相互垂直,可得b c =,且222a b c -=,解得a 1b c ==,则椭圆方程为2212x y +=;40.【解答】(1)根据题意得22c ab a ⎧=⎪⎪⎨⎪=⎪⎩,又因为222b ac =-,解得22a =,则21b =, 所以椭圆Γ的方程为:2212x y +=;41.【解答】(1)根据椭圆的定义可得:122MF MF a +=,122NF NF a +=,则2MNF ∆的周长22112248MN MF NF MF NF MF MF a =++=+++==,解得2a =,又因为||MN 的最小值为3,所以223b a=,解得23b =,所以椭圆的标准方程为22143x y +=,42.【解答】(Ⅰ)1(,0)A a -,1(0,)B b ,(,0)F c ,11(,)B A a b =--u u u u r ,1(,)B F c b =-u u u u r ,由1111B A B F =u u u u r u u u u rg ,得21b ac -=,又12c a =,222a b c =+,解得:2a =,b =1c =.∴椭圆C 的标准方程为22143x y +=;43.【解答】(1)由题意可得离心率c e a ==x c =代入椭圆方程可得2||b y a =,所以221b a=,222c a b =-可得22a =,21b =,所以椭圆的方程为:2214x y +=;44.【解答】(1)设点(,)P x y ,依题意可得||||PM PF =,则222(1)(1)x x y +=-+,整理可得:24y x =,所以曲线Q 的方程24y x =;45.【解答】(1)设(,)P x y ,有题意可得(,0)A a -,(,0)B a ,由PA ,PB 所在直线斜率之积为14-,可得14y y x a x a =-+-g ,即22214y x a =--, 而P 在椭圆上可得:22222222(1)()x b y b a x a a =-=-g ,所以2214b a =,即224a b =,2223c a b ==-,解得:24a =,21b =,所以椭圆的方程为:2214x y +=;46.【解答】(1)设椭圆的方程为:22221(0)x y a b a b+=>>,12||2F F c =,因为112BFO PF F ∠=∠,1122FOB F PF π∠=∠=,所以△1F BO ∽△12F F P ,所以 11121||||||||F B FO F F F P =, 所以211112||||||||26F P F B FO F F c ===g g,可得c =,又c e a ==2a =,2221b a c =-=, 所以椭圆的方程为:2214x y +=;47.【解答】(1)由题意可得:12c a =,223b a =,222c a b =-,解得24a =,23b =,所以椭圆的标准方程为22143x y +=;48.【解答】(1)抛物线的准线方程为:2py =-,因为A 点在抛物线内部,过A 做AN 垂直于准线交于N ,抛物线于Q ,由抛物线的性质可得||||||||||QA QF QA QN AN +=+…,当且仅当,A ,Q ,N 三点共线时||||QA QF +最小,即||2AN =,即122p +=,解得:2p =,所以抛物线的方程为:24x y =;。
圆锥曲线专题五:轨迹问题有关动点的轨迹问题是解析几何中的一类重要的问题,求动点的轨迹和圆锥曲线的定义、 性质有着密切的关系。
在求解时要先画出相应的草图进行分析,再选择好相应的解题策略和 具体方法。
探求曲线轨迹的基本方法主要有:直接法、定义法、待定系数法、相关点法(代 入法)、参数法。
(1)已知A(2,3)且|PA|=7,则点P 的轨迹是 圆(2) 已知:ABC 的一边BC 的长为6,周长为16,则顶点A 的轨迹是什么?(椭圆,除去与 BC 边共线的两个顶点。
)若A( -1,0), B(5,0)且| MA | - | MB 4则点M 的轨迹是 双曲线右支(4) (5) 致是1 1b .0,因此--0,所以有:椭圆的焦点在 y 轴,抛物线的开口向左,得D 选项.a -a(6) 已知圆C : x 2 +y 2 +6x-91 =0及圆内一点P (3, 0),求过点P 且与已知圆内切的圆 的圆心M 的轨迹方程。
分析:(1 )圆C 的半径与圆心坐标可定。
(2) 两圆内切可得:外圆半径=内圆半径+连心距。
(3) 动点M 满足的等量关系:| MC| + | MP | = 10> | PC |(4) 由定义可确定动点 M 的轨迹为以P 、C 为焦点的椭圆。
(7) 已知动圆与圆 C 1 : (x 5)2 y^ 49和圆C 2: (x - 5)2 y 2 = 1都外切,求动圆圆心 P 的轨迹方程。
分析:(1 )从已知条件可以确定圆C 、G 的圆心与半径。
(2) 两圆外切可得:两圆半径和=圆心距 (3) 动圆半径r,依题意有r 1 + r = | P C 1 | , r 2 + r = | P C 2 |两式相减得:| PC 1 | -- | PC 2 | = r 1 -r 2 < | C 1 C 2|(3) b答案:D过点(2,3)且与y 轴相切的圆的圆心的轨迹是什么?(抛物线) a(a . b . 0)的曲线大=1, y^ -- x .因为b1(4)由双曲线定义得:点P的轨迹是C1、G以为焦点的双曲线的右支。
第六讲 求轨迹方程的六种常用技法1.直接法根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
例1.已知线段6=AB ,直线BM AM ,相交于M ,且它们的斜率之积是49,求点M 的轨迹方程。
练习:1.平面内动点P 到点(10,0)F 的距离与到直线4x =的距离之比为2,则点P 的轨迹方程是 。
2.设动直线l 垂直于x 轴,且与椭圆2224x y +=交于A 、B 两点,P 是l 上满足1PA PB ⋅=的点,求点P 的轨迹方程。
3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是 ( ) A .直线 B .椭圆 C .抛物线 D .双曲线 2.定义法通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。
例2.若(8,0),(8,0)B C -为ABC ∆的两顶点,AC 和AB 两边上的中线长之和是30,则ABC ∆的重心轨迹方程是_______________。
练习:4.方程|2|x y ++表示的曲线是 ( ) A .椭圆 B .双曲线 C .线段 D .抛物线3.点差法圆锥曲线中与弦的中点有关的问题可用点差法,其基本方法是把弦的两端点1122(,),(,)A x y B x y 的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得12x x +,12y y +,12x x -,12y y -等关系式,由于弦AB 的中点(,)P x y 的坐标满足122x x x =+,122y y y =+且直线AB 的斜率为2121y y x x --,由此可求得弦AB 中点的轨迹方程。
例3.椭圆22142x y +=中,过(1,1)P 的弦恰被P 点平分,则该弦所在直线方程为_________________。
圆锥曲线典型例题例1:已知一条直线l 和它上方的一个点F ,点F 到l 的距离是2,一条曲线也在l 的上方,它上面的每一点到F 的距离减去到l 的距离的差都是2,建立适当的坐标系,求这条曲线的方程.解:取直线l 为x 轴,过点F 且垂直于直线l 的直线为y 轴,建立坐标系xOy, 设点M(x,y)是曲线上任意一点,MB ⊥x 轴,垂足是B ,因为曲线在x 轴的上方,所以y >0, 所以曲线的方程是例2:已知线段AB 的端点B 的坐标是(4,3),端点A在圆4)1(22=++y x 上运动,求线段AB 的中点M 的轨迹方程。
解:设点M 的坐标是(x,y ),点A 的坐标是),(00y x 。
由于点B 的坐标是(4,3),且点M 是线段AB 的中点,所以,23,2400+=+=y y x x于是有.32,4200-=-=y y x x因为点A 在圆上,所以点A 的坐标满足方程4)1(22=++y x 即4)1(2020=++y x 1)23(234)32()142(2222=-+-=-++-∴y x y x )整理得(2MA MB ∴-=2y =218y x ∴=21(0)8y x x =≠所以,点M 的轨迹是以)23,23(为圆心,半径长是1的圆。
例3:在△ABC 中,BC =24,AC 、AB 的两条中线之和为39,求△ABC 的重心轨迹方程.解:以BC 所在直线为x 轴,BC 的中垂线为y 轴建立如图所示的平面直角坐标系,M 为重心,则|MB |+|MC |=32×39=26. 根据椭圆定义可知,点M 的轨迹是以B 、C 为焦点的椭圆,故所求椭圆方程为12516922=+y x (y ≠0)例4:已知F 1为椭圆的左焦点,A ,B 分别为椭圆的右顶点与上顶点,P 为椭圆上的点,当PF 1⊥F 1A ,PO ∥AB (O 为椭圆中心)时,求椭圆的离心率解:设椭圆方程为12222=+by a x (a >b >0),22b a c -=, F 1(-c ,0),则点),(2a b c P -,由PO ∥AB 得k AB =k OP 即ac b a b 2-=-,∴b=c ,故22=e 。
圆锥曲线之轨迹方程的求法(一)【复习目标】□1. 了解曲线与方程的对应关系,掌握求曲线方程的一般步骤;□2. 会用直接法、定义法、相关点法(坐标代换法)求方程。
【基础练习】1.到两坐标轴的距离相等的动点的轨迹方程是( )A .y x =B .||y x =C .22y x =D .220x y +=2.已知点(,)P x y 4,则动点P 的轨迹是( )A .椭圆B .双曲线C .两条射线D .以上都不对3.设定点1(0,3)F -、2(0,3)F ,动点P 满足条件129(0)PF PF a a a+=+>,则点P 的轨迹( ) A .椭圆 B .线段 C. 不存在 D .椭圆或线段4.动点P 与定点(1,0)A -、(1,0)B 的连线的斜率之积为1-,则P 点的轨迹方程为______________.【例题精选】一、直接法求曲线方程根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(两点距离公式、点到直线距离公式、夹角公式等)进行整理、化简。
即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。
例1.已知ABC ∆中,2,AB BC m AC==,试求A 点的轨迹方程,并说明轨迹是什么图形.练习:已知两点M (-1,0)、N (1,0),且点P 使MP MN ,PM PN ,NM NP 成公差小于零的等差数列。
点P 的轨迹是什么曲线?二定义法若动点轨迹满足已知曲线的定义,可先设定方程,再确定其中的基本量,求出动点的轨迹方程。
例1.⊙C :22(16x y +=内部一点0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于BQ R A P o yx P ,求点P 的轨迹方程.例2.设动点(,)(0)P x y x ≥到定点1(,0)2F 的距离比它到y 轴的距离大12。
记点P 的轨迹为曲线C 求点P 的轨迹方程;练习.若动圆与圆1)2(:221=++y x C 相外切,且与直线1=x 相切,则动圆圆心轨迹方程是 .三代入法有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的。
一.求离心率问题1.已知椭圆和直线,若过C 的左焦点和下顶点的直线与平行,则椭圆C 的离心率为()A. B. C. D.2.设椭圆E 的两焦点分别为F1,F2,以F1 为圆心,|F1F2|为半径的圆与E 交于P,Q 两点.若△PF1F2 为直角三角形,则E 的离心率为()A.﹣1 B. C. D.+13.在直角坐标系xOy 中,F 是椭圆C:=1(a>b>0)的左焦点,A,B 分别为左、右顶点,过点F 作x 轴的垂线交椭圆C 于P,Q 两点,连接PB 交y 轴于点E,连接AE 交PQ 于点M,若M 是线段PF 的中点,则椭圆C 的离心率为()A. B. C. D.4.过原点的一条直线与椭圆=1(a>b>0)交于A,B 两点,以线段AB 为直径的圆过该椭圆的右焦点F2,若∠ABF2∈[],则该椭圆离心率的取值范围为()A.[ )B.[ ] C.[)D.[ ]5.设F 为双曲线C:﹣=1(a>0,b>0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x2+y2=a2 交于P,Q 两点.若|PQ|=|OF|,则C 的离心率为()A. B. C.2 D.6.已知双曲线的右焦点为F,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A,B,若,则该双曲线的离心率为()A.B.C.D.7.若双曲线=1(a>0,b>0)的一条渐近线与直线x﹣3y+1=0 垂直,则该双曲线的离心率为()A.2 B. C. D.28.已知F1,F2 是双曲线的左、右焦点,若点F1 关于双曲线渐近线的对称点P 满足∠OPF2=∠POF2(O 为坐标原点),则双曲线的离心率为()A. B.2 C. D.二、圆锥曲线小题综合9.若抛物线y2=2px(p>0)的焦点是椭圆+=1 的一个焦点,则p=()A.2 B.3 C.4 D.810.已知抛物线x2=16y 的焦点为F,双曲线=1 的左、右焦点分别为F1、F2,点P是双曲线右支上一点,则|PF|+|PF1|的最小值为()A.5 B.7 C.9 D.1111.已知双曲线(a>0,b>0)与椭圆有共同焦点,且双曲线的一条渐近线方程为,则该双曲线的方程为()A. B.C. D.12.已知抛物线y2=2px(p>0)的焦点为F,其准线与双曲线﹣x2=1 相交于M,N两点,若△MNF 为直角三角形,其中F 为直角顶点,则p=()A.2 B. C.3 D.613.已知椭圆与双曲线有相同的焦点F1,F2,点P 是两曲线的一个公共点,且PF1⊥PF2,e1,e2 分别是两曲线C1,C2 的离心率,则的最小值是()A.4 B.6 C.8 D.1614.已知点M(1,0),A,B 是椭圆+y2=1 上的动点,且=0,则•的取值是()A.[ ,1] B.[1,9] C.[ ,9] D.[ ,3]15.已知双曲线的右焦点与抛物线y2=12x 的焦点相同,则此双曲线的渐近线方程为()A.B.C.D.16.已知抛物线y2=2px (p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线一条渐近线与直线AM 平行,则实数a 等于()A. B. C.3 D.917.已知椭圆E 的中心在坐标原点,离心率为,E 的右焦点与抛物线C:y2=8x 的焦点重合,A,B 是C 的准线与E 的两个交点,则|AB|=()A.3 B.6 C.9 D.1218.若双曲线的渐近线与抛物线y=x2+2 有公共点,则此双曲线的离心率的取值范围是()A.[3,+∞)B.(3,+∞)C.(1,3] D.(1,3)19.中心在原点,焦点在x 轴上的双曲线C1的离心率为e,直线l 与双曲线C1交于A,B 两点,线段AB 中点M 在一象限且在抛物线y2=2px(p>0)上,且M 到抛物线焦点的距离为p,则l 的斜率为()A. B.e2﹣1 C. D.e2+120.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是()A.B.C.D.三.求轨迹方程问题21.已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离比等于5.(Ⅰ)求点M 的轨迹方程,并说明轨迹是什么图形;(Ⅱ)记(Ⅰ)中的轨迹为C,过点A(﹣2,3)的直线l 被C 所截得弦长为8,求直线l 的方程.22.已知在平面直角坐标系xoy 中的一个椭圆,它的中心在原点,左焦点为F(﹣),右顶点为D(2,0),设点A(1,).(1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程.23.已知抛物线y2=4x,焦点为F,顶点为O,点P 在抛物线上移动,Q 是OP 的中点,M是FQ 的中点,求点M 的轨迹方程.24.在平面直角坐标系xOy 中,已知点A(﹣,0),B(),E 为动点,且直线EA与直线EB 的斜率之积为﹣.(Ⅰ)求动点E 的轨迹C 的方程;(Ⅱ)设过点F(1,0)的直线l 与曲线C 相交于不同的两点M,N.若点P 在y 轴上,且|PM|=|PN|,求点P 的纵坐标的取值范围.25.已知点A(﹣2,0),B(2,0),直线AP 与直线BP 相交于点P,它们的斜率之积为﹣,求点P 的轨迹方程(化为标准方程).四、直线和圆锥的关系问题26.已知椭圆E:=1(a>b>0)过点(2,0),且其中一个焦点的坐标为(1,0).(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l:x=my+1(m∈R)与椭圆交于两点A,B,在x 轴上是否存在点M,使得为定值?若存在,求出点M 的坐标;若不存在,请说明理由.27.已知椭圆的四个顶点围成的四边形的面积为,原点到直线的距离为.(1)求椭圆C 的方程;(2)已知定点P(0,2),是否存在过P 的直线l,使l 与椭圆C 交于A,B 两点,且以|AB|为直径的圆过椭圆C 的左顶点?若存在,求出l 的方程;若不存在,请说明理由.28.已知椭圆C:=1(a>b>0)的一个焦点与上下顶点构成直角三角形,以椭圆C的长轴长为直径的圆与直线x+y﹣2=0 相切.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设过椭圆右焦点且不重合于x 轴的动直线与椭圆C 相交于A、B 两点,探究在x 轴上是否存在定点E,使得•为定值?若存在,试求出定值和点E 的坐标;若不存在,请说明理由.29.已知椭圆的左右顶点分别为A1,A2,右焦点F 的坐标为,点P 坐标为(﹣2,2),且直线PA1⊥x 轴,过点P 作直线与椭圆E 交于A,B 两点(A,B 在第一象限且点 A 在点B 的上方),直线OP 与AA2交于点Q,连接QA1.(1)求椭圆E 的方程;(2)设直线QA1 的斜率为k1,直线A1B 的斜率为k2,问:k1k2 的斜率乘积是否为定值,若是求出该定值,若不是,说明理由.30.已知抛物线C:y2=2px(p>0)的焦点为F(1,0),O 为坐标原点,A,B 是抛物线C上异于O 的两点.(I)求抛物线C 的方程;(Ⅱ)若直线OA,OB 的斜率之积为,求证:直线AB 过定点.31.已知椭圆C:(a>b>0)的左右焦点分别为F1,F2,离心率为,点A 在椭圆C 上,|AF1|=2,∠F1AF2=60°,过F2 与坐标轴不垂直的直线l 与椭圆C 交于P,Q 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)若P,Q 的中点为N,在线段OF2上是否存在点M(m,0),使得MN⊥PQ?若存在,求实数m 的取值范围;若不存在,说明理由.32.已知椭圆C:(a>b>0)的离心率为,且抛物线y2=4 x 的焦点恰好使椭圆C 的一个焦点.(1)求椭圆C 的方程(2)过点D(0,3)作直线l 与椭圆C 交于A,B 两点,点N 满足=(O 为原点),求四边形OANB 面积的最大值,并求此时直线l 的方程.33.已知椭圆C:+=1(a>b>0)的右焦点到直线x﹣y+3 =0 的距离为5,且椭圆C 的一个长轴端点与一个短轴端点间的距离为.(1)求椭圆C 的标准方程;(2)给出定点Q(,0),对于椭圆C 的任意一条过Q 的弦AB,+是否为定值?若是,求出该定值,若不是,请说明理由.34.已知椭圆C:+=1(a>b>0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为.(1)求椭圆C 的方程;(2)设F1,F2 是椭圆C 的左右焦点,若椭圆C 的一个内接平行四边形的一组对边过点F1和F2,求这个平行四边形的面积最大值.35.如图,已知椭圆C:=1(a>b>0)的离心率是,一个顶点是B(0,1).(Ⅰ)求椭圆C 的方程;(Ⅱ)设P,Q 是椭圆C 上异于点B 的任意两点,且BP⊥BQ.试问:直线PQ 是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.36.已知椭圆+=1(a>b>0)的离心率为,且过点(,).(1)求椭圆方程;(2)设不过原点O 的直线l:y=kx+m(k≠0),与该椭圆交于P、Q 两点,直线OP、OQ 的斜率依次为k1、k2,满足4k=k1+k2,试问:当k 变化时,m2 是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.37.在平面直角坐标系xOy 中,已知椭圆C:+=1(a>b>0)的离心率e=,直线l:x﹣my﹣1=0(m∈R)过椭圆C 的右焦点F,且交椭圆C 于A,B 两点.(1)求椭圆C 的标准方程;(2)已知点D(,0),连结BD,过点A 作垂直于y 轴的直线l1,设直线l1与直线BD 交于点P,试探索当m 变化时,是否存在一条定直线l2,使得点P 恒在直线l2上?若存在,请求出直线l2的方程;若不存在,请说明理由.38.已知动点P 到定点F(1,0)和直线l:x=2 的距离之比为,设动点P 的轨迹为曲线E,过点F 作垂直于x 轴的直线与曲线E 相交于A,B 两点,直线l:y=mx+n 与曲线E 交于C,D 两点,与线段AB 相交于一点(与A,B 不重合)(Ⅰ)求曲线E 的方程;(Ⅱ)当直线l 与圆x2+y2=1 相切时,四边形ACBD 的面积是否有最大值,若有,求出其最大值,及对应的直线l 的方程;若没有,请说明理由.39.已知椭圆C 的中心在坐标原点,焦点在x 轴上,其左、右焦点分别为F1,F2,短轴长为2.点P 在椭圆C 上,且满足△PF1F2 的周长为6.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点(﹣1,0)的直线l 与椭圆C 相交于A,B 两点,试问在x 轴上是否存在一个定点M,使得•恒为定值?若存在,求出该定值及点M 的坐标;若不存在,请说明理由.40.已知椭圆C:的离心率为,右焦点F2 到直线l1:3x+4y=0 的距离为.(Ⅰ)求椭圆C 的方程;(Ⅱ)过椭圆右焦点F2斜率为k(k≠0)的直线l 与椭圆C 相交于E、F 两点,A 为椭圆的右顶点,直线AE,AF 分别交直线x=3 于点M,N,线段MN 的中点为P,记直线PF2 的斜率为k′,求证:k•k′为定值.一.选择题(共20 小题)1.已知椭圆和直线,若过C 的左焦点和下顶点的直线与平行,则椭圆C 的离心率为()A. B. C. D.【分析】求出椭圆的左焦点与下顶点坐标连线的斜率,然后求解椭圆的离心率即可.【解答】解:椭圆和直线,若过C 的左焦点和下顶点的直线与平行,直线l 的斜率为,所以,又b2+c2=a2,所以,故选:A.【点评】本题考查椭圆的简单性质的应用,是基本知识的考查.2.设椭圆E 的两焦点分别为F1,F2,以F1 为圆心,|F1F2|为半径的圆与E 交于P,Q 两点.若△PF1F2 为直角三角形,则E 的离心率为()A.﹣1 B. C. D.+1【分析】如图所示,△PF1F2 为直角三角形,可得∠PF1F2=90°,可得|PF1|=2c,|PF2=2 c,利用椭圆的定义可得2c+2c=2a,即可得出.【解答】解:如图所示,∵△PF1F2为直角三角形,∴∠PF1F2=90°,∴|PF1|=2c,|PF2=2 c,则2c+2c=2a,解得e==﹣1.故选:A.【点评】本题考查了椭圆与圆的定义标准方程及其性质,考查了推理能力与计算能力,属于中档题.3.在直角坐标系xOy 中,F 是椭圆C:=1(a>b>0)的左焦点,A,B 分别为左、右顶点,过点F 作x 轴的垂线交椭圆C 于P,Q 两点,连接PB 交y 轴于点E,连接AE 交PQ 于点M,若M 是线段PF 的中点,则椭圆C 的离心率为()A. B. C. D.【分析】利用已知条件求出P 的坐标,然后求解E 的坐标,推出M 的坐标,利用中点坐标公式得到双曲线的离心率即可.【解答】解:可令F(﹣c,0),由x=﹣c,可得y=±b =±,由题意可设P(﹣c,),B(a,0),可得BP 的方程为:y=﹣(x﹣a),x=0 时,y=,E(0,),A(﹣a,0),则AE 的方程为:y=(x+a),则M(﹣c,﹣),M 是线段PF 的中点,可得2•(﹣)=,即2a﹣2c=a+c,即a=3c,可得e==.故选:C.【点评】本题考查椭圆的简单性质的应用,考查转化思想以及计算能力.4.过原点的一条直线与椭圆=1(a>b>0)交于A,B 两点,以线段AB 为直径的圆过该椭圆的右焦点F2,若∠ABF2∈[],则该椭圆离心率的取值范围为()A.[ )B.[ ] C.[)D.[ ] 【分析】由题意画出图形,可得四边形AF2BF1 为矩形,则AB=F1F2=2c,结合AF2+BF2=2a,AF2=2c•sin∠ABF2,BF2=2c•cos∠ABF2,列式可得e 关于∠ABF2 的三角函数,利用辅助角公式化积后求解椭圆离心率的取值范围.【解答】解:如图,设椭圆的另一焦点为F1,连接AF1,AF2,BF1,则四边形AF2BF1 为矩形,∴AB=F1F2=2c,∵AF2+BF2=2a,AF2=2c•sin∠ABF2,BF2=2c•cos∠ABF2,∴2c•sin∠ABF2+2c•cos∠ABF2=2a,得e==.∵∠ABF2∈[ ],∴,则∈[].则椭圆离心率的取值范围为[].故选:B.【点评】本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,考查数学转化思想方法,训练了三角函数最值的求法,是中档题.5.设F 为双曲线C:﹣=1(a>0,b>0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x2+y2=a2 交于P,Q 两点.若|PQ|=|OF|,则C 的离心率为()A. B. C.2 D.【分析】由题意画出图形,先求出PQ,再由|PQ|=|OF|列式求C 的离心率.【解答】解:如图,由题意,把x=代入x2+y2=a2,得PQ=,再由|PQ|=|OF|,得,即2a2=c2,∴,解得e=.故选:A.【点评】本题考查双曲线的简单性质,考查数形结合的解题思想方法,是中档题.6.已知双曲线的右焦点为F,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A,B,若,则该双曲线的离心率为()A. B. C. D.【分析】不妨设直线l 的斜率为﹣,∴直线l 的方程为y=﹣(x﹣c),联立直线方程与双曲线方程,化为关于y 的一元二次方程,求出两交点纵坐标,由题意列等式求解.【解答】解:如图,不妨设直线l 的斜率为﹣,∴直线l 的方程为y=﹣(x﹣c),联立,得(b2﹣a2)c2y2﹣2ab3cy+a2b4=0.∴.由题意,方程得(b2﹣a2)c2y2﹣2ab3cy+a2b4=0 的两根异号,则a>b,此时<0,>0.则,即a=2b.∴a2=4b2=4(c2﹣a2),∴4c2=5a2,即e=.故选:B.【点评】本题考查双曲线的简单性质,考查计算能力,是中档题.7.若双曲线=1(a>0,b>0)的一条渐近线与直线x﹣3y+1=0 垂直,则该双曲线的离心率为()A.2 B. C. D.2【分析】渐近线与直线x+3y+1=0 垂直,得a、b 关系,再由双曲线基本量的平方关系,得出a、c 的关系式,结合离心率的定义,可得该双曲线的离心率.【解答】解:∵双曲线=1(a>0,b>0)的一条渐近线与直线x﹣3y+1=0 垂直.∴双曲线的渐近线方程为y=±3x,∴=3,得b2=9a2,c2﹣a2=9a2,此时,离心率e==.故选:C.【点评】本题给出双曲线的渐近线方程,求双曲线的离心率,考查了双曲线的标准方程与简单几何性质等知识,属于基础题.8.已知F1,F2 是双曲线的左、右焦点,若点F1 关于双曲线渐近线的对称点P 满足∠OPF2=∠POF2(O 为坐标原点),则双曲线的离心率为()A. B.2 C. D.【分析】连接OP,运用等边三角形的定义和垂直平分线的性质,以及点到直线的距离公式,可得|OP|=c,O 到PF1的距离为a,再由锐角三角函数的定义可得所求离心率的值.【解答】解:连接OP,可得|OP|=|OF1|=|OF2|=|PF2|=c,F1到渐近线bx+ay=0 的距离为d==b,在等腰三角形OPF1 中,O 到PF1 的距离为a,即sin∠OPF1=sin30°==,可得e==2.故选:B.【点评】本题考查双曲线的方程和性质,主要是渐近线方程和离心率的求法,考查垂直平分线的性质以及化简运算能力,属于基础题.9.若抛物线y2=2px(p>0)的焦点是椭圆+=1 的一个焦点,则p=()A.2 B.3 C.4 D.8【分析】根据抛物线的性质以及椭圆的性质列方程可解得.【解答】解:由题意可得:3p﹣p=()2,解得p=8.故选:D.【点评】本题考查了抛物线与椭圆的性质,属基础题.10.已知抛物线x2=16y 的焦点为F,双曲线=1 的左、右焦点分别为F1、F2,点P是双曲线右支上一点,则|PF|+|PF1|的最小值为()A.5 B.7 C.9 D.11【分析】由双曲线方程求出a 及c 的值,利用双曲线定义把|PF|+|PF1|转化为|PF1|+|PF2|+2a,连接FF2 交双曲线右支于P,则此时|PF|+|PF2|最小等于|FF2|,由两点间的距离公式求出|FF2|,则|PF|+|PF1|的最小值可求.【解答】解:如图由双曲线双曲线=1,得a2=3,b2=5,∴c2=a2+b2=9,则c=3,则F2(3,0),∵|PF1|﹣|PF2|=4,∴|PF1|=4+|PF2|,则|PF|+|PF1|=|PF|+|PF2|+4,连接FF2交双曲线右支于P,则此时|PF|+|PF2|最小等于|FF2|,∵F 的坐标为(0,4),F2(3,0),∴|FF2|=5,∴|PF|+|PF1|的最小值为5+4=9.故选:C.【点评】本题考查双曲线的标准方程,考查了双曲线的简单性质,训练了双曲线中最值问题的求法,体现了数学转化思想方法,是中档题.11.已知双曲线(a>0,b>0)与椭圆有共同焦点,且双曲线的一条渐近线方程为,则该双曲线的方程为()A. B.C. D.【分析】求出双曲线的渐近线方程可得,①求出椭圆的焦点坐标,可得c=2 ,即a2+b2=8,②,解方程可得a,b 的值,进而得到双曲线的方程.【解答】解:曲线(a>0,b>0)的一条渐近线方程为,可得,①,椭圆的焦点为(±2 ,0),可得c=2,即a2+b2=8,②由①②可得a=,b=,则双曲线的方程为.故选:D.【点评】本题考查双曲线的方程的求法,注意运用双曲线的渐近线方程和椭圆的焦点,考查运算能力,属于基本知识的考查.12.已知抛物线y2=2px(p>0)的焦点为F,其准线与双曲线﹣x2=1 相交于M,N两点,若△MNF 为直角三角形,其中F 为直角顶点,则p=()A.2 B. C.3 D.6【分析】利用抛物线方程求出准线方程,然后代入双曲线方程求出M,N.利用三角形是直角三角形,转化求解即可.1 2 1 21 2 1 2 【解答】解:由题设知抛物线 y 2=2px 的准线为 x =﹣ ,代入双曲线方程﹣x 2=1 解得 y =±,由双曲线的对称性知△MNF 为等腰直角三角形,∴∠FMN =,∴tan ∠FMN = =1,∴p 2=3+ ,即 p =2 ,故选:A .【点评】本题考查抛物线的定义及抛物线的几何性质,双曲线方程的应用,考查计算能力.13. 已 知 椭 圆 与 双 曲 线有相同的焦点 F 1,F 2,点 P 是两曲线的一个公共点,且 PF 1⊥PF 2,e 1,e 2 分别是两曲线 C 1,C 2 的离心率,则的最小值是( )A .4B .6C .8D .16【分析】由题意设焦距为 2c ,椭圆长轴长为 2a 1,双曲线实轴为 2a 2,令 P 在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出 a 2+a 2=2c 2,由此能求出 9e 2+e 2 的最小值.【解答】解:由题意设焦距为 2c ,椭圆长轴长为 2a 1,双曲线实轴为 2a 2, 令 P 在双曲线的右支上,由双曲线的定义|PF 1|﹣|PF 2|=2a 2,① 由椭圆定义|PF 1|+|PF 2|=2a 1,② 又∵PF 1⊥PF 2, ∴|PF 1|2+|PF 2|2=4c 2,③①2+②2,得|PF 1|2+|PF 2|2=2a 2+2a 2,④将④代入③,得 a 2+a 2=2c 2,∴9e 12+e 22=+=5++≥8,即的最小值是 8.1 2 故选:C .【点评】本题考查 9e 2+e 2的最小值的求法,是中档题,解题时要熟练掌握双曲线、椭圆的定义,注意均值定理的合理运用. 14. 已知点 M (1,0),A ,B 是椭圆+y 2=1 上的动点,且=0,则 • 的取值是()A .[ ,1]B .[1,9]C .[ ,9]D .[,3]【分析】利用=0,可得 •=•(﹣)=,设 A (2cos α,sin α),可得=(2cos α﹣1)2+sin 2α,即可求解数量积的取值范围.【解答】解:∵=0,可得•=•(﹣)=,设 A (2cos α,sin α), 则=(2cos α﹣1)2+sin 2α=3cos 2α﹣4cos α+2=3(cos α﹣ )2+,∴cos α= 时, 的最小值为;cos α=﹣1 时,的最大值为 9,故选:C .【点评】本题考查椭圆方程,考查向量的数量积运算,考查学生分析解决问题的能力, 属于中档题. 15. 已知双曲线的右焦点与抛物线 y 2=12x 的焦点相同,则此双曲线的渐近线方程为( ) A .B .C .D .【分析】由已知条件求出双曲线的一个焦点为(3,0),可得 m +5=9,求出 m =4,由此能求出双曲线的渐近线方程.【解答】解:∵抛物线 y 2=12x 的焦点为(3,0), ∴双曲线的一个焦点为(3,0),即 c =3.双曲线可得∴m +5=9,∴m =4,∴双曲线的渐近线方程为:.故选:A.【点评】本题主要考查圆锥曲线的基本元素之间的关系问题,同时双曲线、椭圆的相应知识也进行了综合性考查.16.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线一条渐近线与直线AM 平行,则实数a 等于()A. B. C.3 D.9【分析】根据抛物线的焦半径公式得1+=5,p=8.取M(1,4),双曲线的左顶点为A(﹣a,0),AM 的斜率为,双曲线的渐近线方程是,由已知得,由双曲线一条渐近线与直线AM 平行能求出实数a.【解答】解:∵抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,∴抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其准线的距离为5,根据抛物线的焦半径公式得1+=5,p=8.∴抛物线y2=16x,∴M(1,±4),∵m>0,∴取M(1,4),∵双曲线的左顶点为A(﹣,0),∴AM 的斜率为,双曲线的渐近线方程是,由已知得,解得a=.故选:A.【点评】本题考查圆锥曲线的综合应用,解题时要认真审题,仔细解答,注意双曲线和抛物线性质的灵活运用.17.已知椭圆E 的中心在坐标原点,离心率为,E 的右焦点与抛物线C:y2=8x 的焦点重合,A,B 是C 的准线与E 的两个交点,则|AB|=()A.3 B.6 C.9 D.12【分析】利用椭圆的离心率以及抛物线的焦点坐标,求出椭圆的半长轴,然后求解抛物线的准线方程,求出A,B 坐标,即可求解所求结果.【解答】解:椭圆E 的中心在坐标原点,离心率为,E 的右焦点(c,0)与抛物线C:y2=8x 的焦点(2,0)重合,可得c=2,a=4,b2=12,椭圆的标准方程为:,抛物线的准线方程为:x=﹣2,由,解得y=±3,所以A(﹣2,3),B(﹣2,﹣3).|AB|=6.故选:B.【点评】本题考查抛物线以及椭圆的简单性质的应用,考查计算能力.18.若双曲线的渐近线与抛物线y=x2+2 有公共点,则此双曲线的离心率的取值范围是()A.[3,+∞)B.(3,+∞)C.(1,3] D.(1,3)【分析】先根据双曲线方程表示出渐近线方程与抛物线方程联立,利用判别式等于0 求得 a 和 b 的关系,进而求得 a 和 c 的关系,则双曲线的离心率可得.【解答】解:依题意可知双曲线渐近线方程为y=±x,与抛物线方程联立消去y 得x2± x+2=0∵渐近线与抛物线有交点∴△=﹣8≥0,求得b2≥8a2,∴c=≥3a∴e=≥3.则双曲线的离心率 e 的取值范围:e≥3.故选:A.【点评】本题主要考查了双曲线的简单性质和圆锥曲线之间位置关系.常需要把曲线方程联立根据判别式和曲线交点之间的关系来解决问题.19.中心在原点,焦点在x 轴上的双曲线C1的离心率为e,直线l 与双曲线C1交于A,B 两点,线段AB 中点M 在一象限且在抛物线y2=2px(p>0)上,且M 到抛物线焦点的距离为p,则l 的斜率为()A. B.e2﹣1 C. D.e2+1【分析】利用抛物线的定义,确定M 的坐标,利用点差法将线段AB 中点M 的坐标代入,即可求得结论.【解答】解:∵M 在抛物线y2=2px(p>0)上,且M 到抛物线焦点的距离为p,∴M 的横坐标为,∴M(,p)设双曲线方程为(a>0,b>0),A(x1,y1),B(x2,y2),则,两式相减,并将线段AB 中点M 的坐标代入,可得∴∴故选:A.【点评】本题考查双曲线与抛物线的综合,考查点差法的运用,考查学生的计算能力,属于中档题.20.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是()A.B.C.D.【分析】根据抛物线的定义,可得点M 到抛物线的准线x=﹣的距离也为5,即即|1+|=5,解可得p=8,可得抛物线的方程,进而可得M 的坐标;根据双曲线的性质,可得A 的坐标与其渐近线的方程,根据题意,双曲线的一条渐近线与直线AM 平行,可得=,解可得a 的值,即可得答案.【解答】解:根据题意,抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,则点M 到抛物线的准线x=﹣的距离也为5,即|1+ |=5,解可得p=8;即抛物线的方程为y2=16x,易得m2=2×8=16,则m=4,即M 的坐标为(1,4)双曲线的左顶点为A,则a>0,且A 的坐标为(﹣,0),其渐近线方程为y=±x;而K AM=,又由若双曲线的一条渐近线与直线AM 平行,则有=,解可得a=;故选:B.【点评】本题综合考查双曲线与抛物线的性质,难度一般;需要牢记双曲线的渐近线方程、定点坐标等.二.解答题(共20 小题)21.已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离比等于5.(Ⅰ)求点M 的轨迹方程,并说明轨迹是什么图形;(Ⅱ)记(Ⅰ)中的轨迹为C,过点A(﹣2,3)的直线l 被C 所截得弦长为8,求直线l 的方程.【分析】(Ⅰ)直接利用距离的比,列出方程即可求点M 的轨迹方程,然后说明轨迹是什么图形;(Ⅱ)设出直线方程,利用圆心到直线的距离,半径与半弦长满足的勾股定理,求出直线l 的方程.【解答】解:(1)由题意坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离之比等于5,得=5,即=5,化简得x2+y2﹣2x﹣2y﹣23=0.即(x﹣1)2+(y﹣1)2=25.∴点M 的轨迹方程是(x﹣1)2+(y﹣1)2=25,所求轨迹是以(1,1)为圆心,以5 为半径的圆.(Ⅱ)当直线l 的斜率不存在时,过点A(﹣2,3)的直线l:x=﹣2,此时过点A(﹣2,3)的直线l 被圆所截得的线段的长为:2=8,∴l:x=﹣2 符合题意.当直线l 的斜率存在时,设过点A(﹣2,3)的直线l 的方程为y﹣3=k(x+2),即kx﹣y+2k+3=0,圆心到l 的距离d=,由题意,得()2+42=52,解得k=.∴直线l 的方程为x﹣y+ =0.即5x﹣12y+46=0.综上,直线l 的方程为x=﹣2,或5x﹣12y+46=0.【点评】本题考查曲线轨迹方程的求法,直线与圆的位置关系的应用,考查计算能力,属于中档题.22.已知在平面直角坐标系xoy 中的一个椭圆,它的中心在原点,左焦点为F(﹣),右顶点为D(2,0),设点A(1,).(1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程.【分析】(1)由左焦点为F(﹣),右顶点为D(2,0),得到椭圆的半长轴a,半焦距c,再求得半短轴b,最后由椭圆的焦点在x 轴上求得方程.(2)设线段PA 的中点为M(x,y),点P 的坐标是(x0,y0),由中点坐标公式可知,将P 代入椭圆方程,即可求得线段PA 中点M 的轨迹方程【解答】解:(1)由题意可知:椭圆的焦点在x 轴上,设+ =1(a>b>0),由椭圆的左焦点为F(﹣,0),右顶点为D(2,0),即a=2,c=,则b2=a2﹣c2=1,∴椭圆的标准方程为:+y2=1(2)设线段PA 的中点为M(x,y),点P 的坐标是(x0,y0),由中点坐标公式可知,整理得:,由点P 在椭圆上,∴+(2y﹣)2=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣(10 分)∴线段PA 中点M 的轨迹方程是:(x﹣)2+4(y﹣)2=1.【点评】本题考查椭圆的标准方程与性质,考查轨迹方程的求法,中点坐标公式的应用,考查计算能力,属于中档题.23.已知抛物线y2=4x,焦点为F,顶点为O,点P 在抛物线上移动,Q 是OP 的中点,M是FQ 的中点,求点M 的轨迹方程.【分析】欲求点M 的轨迹方程,设M(x,y),只须求得坐标x,y 之间的关系式即可.再设P(x1,y1),Q(x2,y2),易求y2=4x 的焦点F 的坐标为(1,0)结合中点坐标公式即可求得x,y 的关系式.【解答】解:设M(x,y),P(x1,y1),Q(x2,y2),易求y2=4x 的焦点F 的坐标为(1,0)∵M 是FQ 的中点,∴⇒,又Q 是OP 的中点∴⇒,∵P 在抛物线y2=4x 上,∴(4y)2=4(4x﹣2),所以M 点的轨迹方程为【点评】本题主要考查了直线与圆锥曲线的综合问题.考查了学生综合运用基础知识解决问题的能力.24.在平面直角坐标系xOy 中,已知点A(﹣,0),B(),E 为动点,且直线EA与直线EB 的斜率之积为﹣.(Ⅰ)求动点E 的轨迹C 的方程;(Ⅱ)设过点F(1,0)的直线l 与曲线C 相交于不同的两点M,N.若点P 在y 轴上,且|PM|=|PN|,求点P 的纵坐标的取值范围.【分析】(Ⅰ)设动点E 的坐标为(x,y),由点A(﹣,0),B(),E 为动点,且直线EA 与直线EB 的斜率之积为﹣,知,由此能求出动点E 的轨迹C 的方程.(Ⅱ)设直线l 的方程为y=k(x﹣1),将y=k(x﹣1)代入,得(2k2+1)x2﹣4k2x+2k2﹣2=0,由题设条件能推导出直线MN 的垂直平分线的方程为y+=﹣,由此能求出点P 纵坐标的取值范围.【解答】解:(Ⅰ)设动点E 的坐标为(x,y),∵点A(﹣,0),B(),E 为动点,且直线EA 与直线EB 的斜率之积为﹣,∴,整理,得,x≠,∴动点E 的轨迹C 的方程为,x .(Ⅱ)当直线l 的斜率不存在时,满足条件的点P 的纵坐标为0,当直线l 的斜率存在时,设直线l 的方程为y=k(x﹣1),将y=k(x﹣1)代入,并整理,得(2k2+1)x2﹣4k2x+2k2﹣2=0,△=8k2+8>0,设M(x1,y1),N(x2,y2),则,x1x2=,设MN 的中点为Q,则,,∴Q(,﹣),由题意知k≠0,又直线MN 的垂直平分线的方程为y+=﹣,令x=0,得y P=,当k>0 时,∵2k+ ,∴0<;当k<0 时,因为2k+≤﹣2 ,所以0>y P≥﹣=﹣.综上所述,点P 纵坐标的取值范围是[﹣].【点评】本题考查动点的轨迹方程的求法,考查点的纵坐标的取值范围的求法,解题时要认真审题,仔细解答,注意直线与椭圆位置的综合运用.25.已知点A(﹣2,0),B(2,0),直线AP 与直线BP 相交于点P,它们的斜率之积为﹣,求点P 的轨迹方程(化为标准方程).【分析】利用斜率的计算公式即可得出.【解答】解:设点P(x,y),则直线AP 的斜率,直线BP 的斜率.由题意得.化简得:.∴点P 的轨迹方程是椭圆.【点评】熟练掌握斜率的计算公式及椭圆的标准方程是解题的关键.只有去掉长轴的两个端点.26.已知椭圆E:=1(a>b>0)过点(2,0),且其中一个焦点的坐标为(1,0).(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l:x=my+1(m∈R)与椭圆交于两点A,B,在x 轴上是否存在点M,使得为定值?若存在,求出点M 的坐标;若不存在,请说明理由.【分析】(Ⅰ)利用已知条件求解a,b,然后求解椭圆的方程.(Ⅱ)假设存在点M(x0,0),使得为定值,联立,设A(x1,y1),B(x2,y2),利用韦达定理,结合向量的数量积,转化求解即可.【解答】解:(Ⅰ)由已知得a=2,c=1,∴,则E 的方程为;… ....................... (4 分)(Ⅱ)假设存在点M(x0,0),使得为定值,联立,得(3m2+4)y2+6my﹣9=0…(6 分)设A(x1,y1),B(x2,y2),则,… ...... (7 分),∴。
圆锥曲线练习题一、填空题1. 一个动点到两个定点A ,B 的距离的差为定值(小于两个定点A ,B 的距离),则动点的轨迹为________.2. (2011·海安中学模拟)若椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点F 分成5∶3的两段,则此椭圆的离心率为________.3. 已知动圆过定点(0,-1),且与定直线y =1相切,则动圆圆心的轨迹方程为________.4. (2010·天津)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点与抛物线y 2=16x 的焦点相同,则双曲线的方程为________.5. 已知P 为抛物线y 2=4x 的焦点,过P 的直线l 与抛物线交于A ,B 两点,若Q 在直线l 上,且满足|AP →|·|QB →|=|AQ →|·|PB →|,则点Q 总在定直线x =-1上.试猜测:如果P 为椭圆x 225+y 29=1的左焦点,过P 的直线l 与椭圆交于A ,B 两点,若Q 在直线l 上,且满足|AP →|·|QB →|=|AQ →|·|PB →|,则点Q 总在定直线________上.6. 过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________.7. (2010·重庆)已知以F 为焦点的抛物线y 2=4x 上的两点A 、B 满足AF →=3FB →,则弦AB 的中点到准线的距离为________.8. 已知过椭圆的左焦点F 1且倾斜角为60°的直线交椭圆于A 、B 两点,若F 1A =2F 1B ,则椭圆的离心率为________.二、解答题9. 抛物线的顶点在原点,它的准线过双曲线x 2a 2-y 2b2=1的一个焦点,且与双曲线实轴垂直,已知抛物线与双曲线的交点为⎝⎛⎭⎫32,6.求抛物线与双曲线的方程.10. 如图,已知过抛物线y 2=2px (p >0)的焦点的直线x -my +m =0与抛物线交于A 、B 两点,且△OAB (O 为坐标原点)的面积为22,求m 6+m 4的值.O lxyA B F ·M第17题 11. 如图,已知抛物线:C 22(0)y px p =>的准线为l ,焦点为F .⊙M 的圆心在x 轴的正半轴上,且与y 轴相切.过原点O 作倾斜角为3π的直线n ,交l 于点A , 交⊙M 于另一点B ,且2AO OB ==.(Ⅰ)求⊙M 和抛物线C 的方程;(Ⅱ)若P 为抛物线C 上的动点,求PM PF ⋅的最小值; (Ⅲ)过l 上的动点Q 向⊙M 作切线,切点为,S T ,求证:直线ST 恒过一个定点,并求该定点的坐标.12. 如图,已知椭圆x 2a 2+y 2b2=1(a >b >0)的长轴为AB ,过点B 的直线l 与x 轴垂直.直线(2-k )x -(1+2k )y +(1+2k )=0(k ∈R )所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率e=32. (1)求椭圆的标准方程;(2)设P 是椭圆上异于A 、B 的任意一点,PH ⊥x 轴,H 为垂足,延长HP 到点Q 使得HP=PQ ,连结AQ 延长交直线l 于点M ,N 为MB 的中点.试求OQ →·NQ →的值,并由此判断直线QN 与以AB 为直径的圆O 的位置关系.参考答案1. 双曲线的一支 解析:由双曲线的定义可知是双曲线的一支,故填双曲线的一支.2. 255 解析:由题意可知FF 2=38F 1F 2,即c -b 2=38⨯2c ,化简得c =2b ,所以c 2=4(a 2-c 2),此椭圆的离心率e =c a =255.3. x 2=-4y 解析:圆心到定点(0,-1)的距离与到定直线y =1的距离相等,都等于圆的半径,由抛物线的定义可知,动圆圆心的轨迹是以定点为焦点,定直线为准线的抛物线,其方程为x 2=-4y .4. x 24-y 212=1 解析:由渐近线方程可知ba =3,① 因为抛物线的焦点为(4,0),所以c =4,② 又c 2=a 2+b 2,③联立①②③,解得a 2=4,b 2=12,所以双曲线的方程为x 24-y 212=1.5. x =-254解析:x =-1是抛物线的准线,应用类比推理可知点Q 所在的定直线为椭圆的左准线,其方程为x =-254.6. 2 解析:由题意可知过焦点的直线方程为y =x -p 2,联立有⎩⎪⎨⎪⎧y 2=2px ,y =x -p 2⇒x 2-3px +p 24=0, 由AB =x 1+x 2+p =8,得4p =8⇒p =2. 7. 83解析:如图,过点A 、B 作准线的垂线交准线于A 1B 1,过B 作BC ⊥AA 1于C ,设BF =m ,由抛物线的定义知AA 1=3m ,BB 1=m ,∴△ABC 中,AC =2m ,AB =4m ,k AB =3,直线AB 方程为y =3(x -1),与抛物线方程联立消y 得3x 2-10x +3=0,所以AB 中点到准线距离为x 1+x 22+1=53+1=83.8. 23解析:如图,过B 作AC 的垂线,垂足为E ,由题意和椭圆第二定义可知E 为AC 的中点,cos 60︒=AE AB =DB 3BF 1=13e ,故e =23.9. 由题意知,抛物线焦点在x 轴上,开口方向向右,可设抛物线方程为y 2=2px (p >0),将交点⎝⎛⎭⎫32,6代入得p =2,故抛物线方程为y 2=4x ,焦点坐标为(1,0),这也是双曲线的一个焦点,则c =1.又点⎝⎛⎭⎫32,6也在双曲线上,因此有94a 2-6b2=1.又a 2+b 2=1,解得a 2=14,b 2=34,因此,双曲线的方程为4x 2-4y 23=1.10. 设A (x 1,y 1),B (x 2,y 2),由题意可知,p2=-m ,将x =my -m 代入抛物线方程整理得y 2-2pmy +2pm =0,由韦达定理得y 1+y 2=2pm ,y 1y 2=2pm ,∴(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=(2pm )2-8pm =16m 4+16m 2,又△OAB 的面积 S =12⨯p 2|y 1-y 2|=12⨯(-m )⨯4m 4+m 2=22,两边平方即可得m 6+m 4=2. 11.解:(Ⅰ)因为1cos602122p OA =⋅=⨯=,即2p =,所以抛物线C 的方程为24y x = 设⊙M 的半径为r ,则122cos 60OB r =⋅=, 所以M 的方程为22(2)4x y -+=(Ⅱ)设(,)(0)P x y x ≥,则(2,)(1,)PM PF x y x y ⋅=----=222322x x y x x -++=++ 所以当0x =时, PM PF ⋅有最小值为2(Ⅲ)以点Q 为圆心,QS 为半径作⊙Q,则线段ST 即为⊙Q 与⊙M 的公共弦设点(1,)Q t -,则22245QS QM t =-=+,所以⊙Q 的方程为222(1)()5x y t t ++-=+ 从而直线TS 的方程为320x ty --=(*)因为230x y ⎧=⎪⎨⎪=⎩一定是方程(*)的解,所以直线TS 恒过一个定点,且该定点坐标为2(,0)312. (1)将(2-k )x -(1+2k )y +(1+2k )=0整理得 (-x -2y +2)k +2x -y +1=0.解方程组⎩⎪⎨⎪⎧-x -2y +2=0,2x -y +1=0,得直线所经过的定点(0,1),所以b =1.由离心率e =32得a =2,所以椭圆的标准方程为x 24+y 2=1.。
圆锥曲线轨迹的例题和练习(优秀)
专题:圆锥曲线轨迹
首先,准备第一场战斗。
直接法(五部分法):
如果运动点所满足的几何条件本身是某些几何量的等价关系,或者这些几何条件简单、明了、易于表达,我们只需要将这种关系“转化”为包含方程,就可以得到曲线的轨迹方程。
这种寻找轨迹的方法叫做直接法。
2.定义方法:
如果运动点轨迹的条件满足基本轨迹的定义(如圆、椭圆、双曲线和抛物线的定义),则运动点的轨迹方程可以根据定义直接计算。
3.坐标转移法(替代法):
在一些问题中,移动点满足的条件不容易在方程中列出,但是移动点随着另一个移动点(称为相关点)移动。
如果相关点满足的条件是明显的或可分析的,那么我们可以用移动点的坐标来表示相关点的坐标。
根据相关点所满足的方程,我们可以得到运动点的轨迹方程。
这种寻找轨迹的方法也称为坐标转移法或替代法。
4.参数方法: 有时很难找出一个运动点应该满足的几何条件,并且没有明显的相关点,但是更容易发现(或者可以通过分析找到)这个运动点的运动经常受到另一个变量(角度、斜率、比率、截距或时间等)的限制。
),也就是说,移动点的坐标随着另一个变量的变化而变化。
我们可以将这个变量设置为一个参数,并建立轨迹的参数方程。
这种方法称为参数方法。
如果我们需要得到轨迹的一般方程,我们只需要消除参数变
量。
5.钢轨穿越方法:
在寻找运动点轨迹的过程中,有时会出现需要两条运动曲线相交的轨迹问题。
这类问题通常可以通过求解方程来获得带参数的交点坐标,然后消除参数来获得期望的轨迹方程来解决。
这个方法被称为交集方法。
(2)小型试验手术刀1把。
已知的M轨迹(-圆锥曲线)
首先,准备第一场战斗。
直接法(五部分法):
如果运动点所满足的几何条件本身是某些几何量的等价关系,或者这些几何条件简单、明了、易于表达,我们只需要将这种关系“转化”为包含方程,就可以得到曲线的轨迹方程。
这种寻找轨迹的方法叫做直接法。
2.定义方法:
如果运动点轨迹的条件满足基本轨迹的定义(如圆、椭圆、双曲线和抛物线的定义),则运动点的轨迹方程可以根据定义直接计算。
3.坐标转移法(替代法):
在一些问题中,移动点满足的条件不容易在方程中列出,但是移动点随着另一个移动点(称为相关点)移动。
如果相关点满足的条件是明显的或可分析的,那么我们可以用移动点的坐标来表示相关点的坐标。
根据相关点所满足的方程,我们可以得到运动点的轨迹方程。
这种寻找轨迹的方法也称为坐标转移法或替代法。
4.参数方法: 有时很难找出一个运动点应该满足的几何条件,并且没有明显的相关点,但是更容易发现(或者可以通过分析找到)这个运动点的运动
经常受到另一个变量(角度、斜率、比率、截距或时间等)的限制。
),也就是说,移动点的坐标随着另一个变量的变化而变化。
我们可以将这个变量设置为一个参数,并建立轨迹的参数方程。
这种方法称为参数方法。
如果我们需要得到轨迹的一般方程,我们只需要消除参数变量。
5.钢轨穿越方法:
在寻找运动点轨迹的过程中,有时会出现需要两条运动曲线相交的轨迹问题。
这类问题通常可以通过求解方程来求解,以获得与参数相交的坐标,然后消除
⊙圆o的切线长度与M(2,0)点∴两个圆与两个圆的内公共切线上的圆的点切线长度相等,因此,运动点p的轨迹是两个圆的内公共切线,其方程为3。
给定椭圆,m是椭圆上的移动点,是椭圆的左焦点,分析线段中点P的轨迹方程:
让P从中点坐标公式导出:
点在椭圆∴上,所以中点p的轨迹方程是4。
众所周知,a、b和c是不在同一条直线上的三个点,o是平面ABC中的一个点,p是一个移动点。
如果是这样,点p的轨迹必须经过三角形的重心。
分析:
点D是公元前的中点。
很明显,P点的轨迹是光线。
因此,轨迹必须通过三角形的重心。
三、展示自己的才华
1、直接方法示例
1.穿过点P(x,Y)的直线分别在点A和B处与X轴的正半轴和Y 轴的正半轴相交。
点Q和点P关于Y轴对称。
如果是,点P的轨迹方程是一个解:
假设点和点彼此对称,点的坐标是,所以这个方程是期望的轨迹方程。
变体
1.给定两点M(-所以轨迹方程是2。
给定圆的方程,圆的方程是,从运动点P到两个圆的切线长度相等,然后分析运动点P的轨迹方程: ⊙圆o的切线长度与M(2,0)点∴两个圆与两个圆的内公共切线上的圆的点切线长度相等,因此,运动点p的轨迹是两个圆的内公共切线,其方程为3。
给定椭圆,m是椭圆上的移动点,是椭圆的左焦点,分析线段中点P的轨迹方程:
让P从中点坐标公式导出:
点在椭圆∴上,所以中点p的轨迹方程是4。
众所周知,a、b和c是不在同一条直线上的三个点,o是平面ABC中的一个点,p是一个移动点。
如果是这样,点p的轨迹必须经过三角形的重心。
分析:
点D是公元前的中点。
很明显,P点的轨迹是光线。
因此,轨迹必须通过三角形的重心。
三、展示自己的才华
1、直接方法示例
1.穿过点P(x,Y)的直线分别在点A和B处与X轴的正半轴和Y
轴的正半轴相交。
点Q和点P关于Y轴对称。
如果是,点P的轨迹方程是一个解:
假设点和点彼此对称,点的坐标是,所以这个方程是期望的轨迹方程。
变体
1.两点m(:已知,轨迹方程简化如下:
2.法律的定义
2.圆的方程被称为点B(-
2.法律的定义
2.已知圆a的方程是点b(:圆a的半径是10,所以点p的轨迹基于固定点A(3,0) B(-圆a的半径是10),所以点p的轨迹由固定点A(3,0) B求解(:集合P (x0,y0),Q (x,y),∫a(-a,0),B (a,0),QB ⊥Pb,QA ⊥Pa (i)解3:
让p (x0,y0),q (x,y),∫pa⊥QA∴…(1)连接PQ,取PQ的中点R1
7.如右图所示,给出了固定点A(a,0) (a > 0)和直线l:
X=-1。
b是直线l上的移动点,并且∠BOA的角平分线在c处与AB相交以找到点c的轨迹方程,并且讨论由该方程表示的曲线类型与a的值之间的关系。
根据问题的含义,记住b (-1,b)(b∈R),那么直线OA和OB的方程分别是y=0和y=-bx。
如果点C(x,y)被设置,那么有0 ≤ x。