噬菌体载体
- 格式:ppt
- 大小:1.90 MB
- 文档页数:55
λ噬菌体载体是一种广泛应用于分子生物学和基因工程领域的载体,用于将外源DNA序列引入细菌细胞中。
噬菌体是一种寄生性病毒,可以感染细菌并在其内部复制。
而λ噬菌体是其中最为常见和常用的一种。
λ噬菌体载体通常由数万个碱基对的环状DNA组成,其中包含了多个重要的功能区域。
其中,最重要的功能区域是Origins of Replication(ORI),即复制起始点,负责引导DNA的复制。
此外,载体还包含了选择性标记基因,如抗生素抗性基因,以便在细菌培养基中筛选带有该载体的细菌。
λ噬菌体载体还含有多个限制内切酶切位点,这些切位点可以用于将外源DNA序列插入到载体的特定位置上。
通过将外源DNA与载体进行限制性内切酶切割,然后使用DNA连接酶进行连接,可以将外源DNA序列插入到载体的DNA链上。
这一过程称为重组。
一旦重组完成,λ噬菌体载体可以通过转化的方式引入到宿主细菌中。
转化是指将外源DNA 导入到细菌细胞中的过程。
一旦载体进入到细菌细胞中,它会在细菌细胞内部复制,并产生大量的噬菌体颗粒。
这些噬菌体颗粒可以感染其他细菌细胞,并将携带的外源DNA序列传递给它们。
λ噬菌体载体在分子生物学和基因工程研究中具有广泛的应用。
它可以用于构建基因文库,即将外源DNA序列插入到载体上,并通过转化的方式导入到细菌细胞中。
这样,研究人员就可以通过筛选和分析细菌细胞中的载体来获得感兴趣的外源DNA序列。
此外,λ噬菌体载体还可以用于基因表达,即将外源DNA序列插入到载体的表达位点上,以便在细菌细胞中大量产生特定的蛋白质。
总之,λ噬菌体载体是一种在分子生物学和基因工程领域中被广泛使用的载体。
它具有多个重要的功能区域,可以用于将外源DNA序列引入到细菌细胞中,并在其中进行复制和表达。
通过利用λ噬菌体载体,研究人员可以进行基因库构建、基因表达和其他相关研究,为生物技术的发展提供了重要的工具和平台。
3、λ噬菌体载体的优缺点:•优点:包装的λ噬菌体感染大肠杆菌要比质粒转化细菌的效率高。
•缺点:λ噬菌体载体的克隆操作要比质粒载体复杂。
•用途:λ噬菌体载体比质粒载体能插入的DNA长得多,常用于构建cDNA文库或基因组文库。
第一章分子克隆的工具酶和载体•第八节噬菌体载体•一、λ噬菌体•(一)λ噬菌体•(二)λ噬菌体载体的改造•(三)λ噬菌体载体举例(三)λ噬菌体载体举例•Lambda gt10•Lambda gt11•EMBL3和EMBL4Lambda gt10概述:•Lambda gt10是一种插入载体。
•在噬菌体阻遏基因cI内有单一的EcoRⅠ克隆位点。
用于插入小的cDNA片段(约6kb),构建cDNA文库或基因文库。
•该载体克隆效率很高。
•在构建cDNA文库时,利用Oligo(dT)或随机引物合成的cDNA经过EcoRⅠadaptors或Linkers修饰后,就可以和λgt10连接起来。
•克隆到λgt10的噬菌体,可用核酸探针进行筛选。
Lambda gt10map宿主:•建议用C600 and C600hf1作受体菌。
筛选:•如果有外源DNA插入,cI基因失活,该噬菌体进入裂解生长途径,在培养皿形成噬菌斑。
反之,若无插入,cI基因表达,噬菌体进入溶原生长途径,不形成噬菌斑。
•核酸探针杂交。
Insertional cloning•Insertional cloning into the cI gene of thelambda -gt10 cDNA cloning vector (DNA inserts of ~1-5 kb) can be selected in hfl (highfrequency of lysogeny ) mutant strains of E. coli. In hflA strains of E. coli, expression of the lambda cII gene is elevated, resulting in transcriptional induction of the lambda cI repressor gene which promotes lysogeny . Disruption of the lambda cI codingsequence by DNA insertion into the unique EcoRI site of the lambda gt10 cDNA cloningvector, blocks the lysogenic pathway leading to cell lysis and plaque formation.Lambda gt11•λgt 载体系列:是插入型载体。
第八讲单链噬菌体载体及噬菌粒载体吴乃虎中国科学院遗传与发育生物学研究所第八讲单链噬菌体载体及噬菌粒载体一、单链噬菌体的一般生物学1.单链噬菌体的优越性2.M13噬菌体的生物学特性二、M13克隆体系1.M13克隆体系2.M13克隆体系-半乳糖苷酶的显色反应原理3.M13载体系列的发展4.M13载体系列的优点三、噬菌体展示载体1.噬菌体展示载体的构建原理2.噬菌体展示载体3.噬菌体表面展示文库4.应用噬菌体展示载体分离有关蛋白质的实例四、噬菌粒载体1.M13噬菌体载体克隆的若干难点2.噬菌粒3.若干常用的噬菌粒载体4.pBluescript噬菌粒载体5.pUC118和pUC119噬菌粒载体第八讲单链噬菌体载体一、单链噬菌体一般生物学大肠杆菌丝状单链DNA噬菌体有M13噬菌体、f1噬菌体及fd 噬菌体,它们均含有分子量约为6400个核苷酸的单链闭环DNA分子。
1.单链DNA phage的优越性A.具有双链的复制型DNA(RF DNA),可如质粒质粒一样进行遗传操作;RF DNA:Replication Form DNA。
B.RF DNA和ssDNA均可感染感受态的寄主细胞——形成phaque或colony。
C.不受包装的限制。
因为单链DNA phage的大小是受其DNA 多寡制约的。
D.可容易地测出外源DNA的插入取向。
E.可产生大量的含有外源DNA的单链DNA分子,这种单链DNA分子有如下用途(作为模板):*1用作双脱氧链终止法进行DNA测序*2制备单链的放射性标记的杂交用DNA探针*3利用寡核苷酸进行定点突变2.M13 phage的生物学特性A.M13 phage同f1 phage亲缘关系十分密切,例如:①基因组组织形式相同;②病毒颗粒大小、形状相近;③DNA同源性高达98%以上。
B.在M13 phage颗粒中只有(+)链DNA,感染具F性须的大肠杆菌菌株,因此M13噬菌体是雄性E.coli特有的;M13噬菌体的(+)链DNA,又称为感染性单链DNA。
噬菌体载体的应用原理1. 背景介绍噬菌体(Phage)作为一类侵染细菌的病毒,不仅是微生物学研究的重要对象,还被广泛应用于分子生物学研究和基因工程领域。
噬菌体载体(Phage vector)则是指将噬菌体进行基因改造,使其能够携带外源基因,并在细菌中进行复制和表达的工具。
噬菌体载体具有高度稳定性、高效载带能力以及可控的基因表达特点,因此在基因工程、基因治疗等领域得到了广泛应用。
2. 噬菌体载体的构建噬菌体载体的构建主要包括以下几个步骤:2.1 基因插入首先,需要选择合适的噬菌体作为载体,并在其基因组中选择一个合适的位点进行基因插入。
一般而言,选择的位点应该具有低于正常表达基因的水平,以避免影响载体的稳定性和复制效率。
将目标基因构建为重组DNA片段,并将其连接到载体DNA的适当位点上,通常使用酶切和连接技术。
2.2 载体包装插入目标基因之后,需要将噬菌体载体进行包装,以使其能够感染目标细菌并进行复制。
噬菌体包装一般通过混合目标基因与噬菌体DNA前体,然后加入相应的包装酶,通过体外反应来完成。
这样一来,就可以得到包含目标基因的噬菌体颗粒。
3. 噬菌体载体的应用噬菌体载体的应用可分为以下几个方面:3.1 基因工程研究噬菌体载体在基因工程研究中被广泛用于基因克隆、基因转染和基因表达等方面。
通过将目标基因插入噬菌体载体中,并利用噬菌体的感染和复制能力,可以高效地将外源基因导入到细菌中,并进行大规模扩增和表达。
此外,噬菌体载体还可以用于构建和筛选基因文库,以便进行基因功能的研究和探索。
3.2 基因治疗噬菌体载体作为基因传递工具,被广泛应用于基因治疗领域。
通过将治疗相关基因插入噬菌体载体中,可以使其能够有效地传递到患者的细胞中,并在细胞内进行表达,以达到治疗的目的。
噬菌体载体具有较高的基因载载能力和感染效率,这使得其成为一种理想的基因传递工具,对于遗传性疾病、肿瘤等疾病的治疗具有重要意义。
3.3 基因筛选与定向进化噬菌体载体被广泛用于基因筛选和定向进化等研究领域。
噬菌体作为载体的使用流程1. 简介噬菌体是一种可以感染细菌的病毒,它可以被利用作为生物学研究和生物工程领域的载体。
在使用噬菌体作为载体时,有一系列的流程需要遵循以确保实验的成功进行。
本文将介绍噬菌体作为载体的使用流程。
2. 噬菌体的培养和扩增在使用噬菌体作为载体之前,首先需要培养和扩增噬菌体。
以下是噬菌体的培养和扩增流程:•准备培养基:根据实验需求,选择适合噬菌体生长的培养基,并准备好所需的培养基。
•制备噬菌体接种物:选择适当的宿主细菌,如大肠杆菌等,并将其在培养基中进行培养,直至细菌达到适当的生长状态。
•加入噬菌体:将培养好的噬菌体加入到宿主细菌培养物中,使其与细菌发生感染。
•培养噬菌体:将噬菌体和宿主细菌混合物在恰当的条件下进行培养,如温度、pH等。
•扩增噬菌体:通过适当的培养时间和培养条件,使噬菌体扩增至所需的数量。
3. 分离和纯化噬菌体在培养和扩增噬菌体后,需要对其进行分离和纯化,以获得纯净的噬菌体溶液。
以下是噬菌体的分离和纯化流程:•离心分离:将培养物进行离心,以分离噬菌体颗粒和残留的细菌细胞。
•滤过分离:通过使用合适的孔径滤膜,将噬菌体溶液进行滤过分离,去除杂质。
•超速离心:利用超速离心技术进一步分离噬菌体颗粒和溶液中的其他组分。
•超滤:通过使用适当的分子量切割膜,将噬菌体颗粒从溶液中分离出来。
•冻干与储存:将纯化的噬菌体溶液进行冻干处理,并储存于适当的条件下。
4. DNA插入纯化的噬菌体作为载体可以用于DNA插入。
以下是噬菌体的DNA插入流程:•DNA准备:从源中提取目标DNA,并进行适当的处理,如限制性酶切。
•DNA连接:将目标DNA与噬菌体载体DNA进行连接,通过适当的连接酶进行连接。
•转化:将连接好的DNA转化到适当的宿主细菌中,使其得到插入噬菌体的DNA。
•选择与筛选:通过选择性培养基或筛选方法,选出携带目标DNA的宿主细菌。
5. 噬菌体的扩增和提取将DNA插入噬菌体后,需要对其进行扩增和提取,以获得足够的目标DNA量。
第七讲噬菌体载体与柯斯载体吴乃虎中国科学院遗传与发育生物学研究所2005年8月目录一、噬菌体的一般问题1.何谓噬菌体2.噬菌体效价测定与双层平板法3.噬菌体的生命周期4.噬菌体的溶源生命周期5.超感染免疫6.溶源性的诱发7.Campbell模型二、λ噬菌体载体1.λ噬菌体的生物学概述2.λ噬菌体载体的构建(1)λ噬菌体载体构建的基本原理(2)插入型载体(3)替换型载体3.λ噬菌体载体的改良(1)Spi-正选择的λ噬菌体载体(2)具有内删除特性的λ噬菌体载体4.λ重组体DNA分子的体外包装(1)λ重组体DNA的转染作用(2)λ噬菌体的体外包装5.λ噬菌体DNA的包装限制问题(1)包装限制的概念(2)包装限制与λ噬菌体的克隆能力(3)包装限制的生物学意义6.λ重组体分子的选择方法(1)cI基因功能选择法(2)lacZ基因功能选择法(3)Spi-选择法三、柯斯质粒载体1.柯斯质粒的定义及其构建(1) 噬菌体的克隆能力(2)柯斯质粒载体定义(3)柯斯质粒pHC79的构建(4)柯斯质粒克隆能力及其组成2.柯斯质粒载体的特点3.柯斯质粒载体的改良4.柯斯克隆(1)定义(2)理论依据(3)柯斯质粒包装条件(4)柯斯克隆程序(5)柯斯克隆的优点5.柯斯克隆的改良(1)柯斯克隆的局限性及其克服办法(2)Ish-Horowicz-Burke克隆方案(3)Bates-Swift克隆方案噬菌体载体与柯斯质粒载体一、噬菌体的一般问题1.何谓噬菌体?(1)定义噬菌体英文名为Bacteriophage,简称phage,来源于希腊文“phages”,系指吞食之意,乃是一类细菌病毒的总称需要指出的是,“phage”这个英文单词既是单数又是复数形式。
作单数使用时是指一个噬菌体,如试管中含1个T4 phage;而用作复数使用时,则是指同一种噬菌体的众多颗粒,如试管中含有上百个的T4 phage。
“phages”是噬菌体的复数词,是指多种不同的噬菌体。
基因工程常用的三种载体基因工程是一门综合性的学科,其中一个关键方面是使用载体进行基因转移和操控。
载体是一种可以携带和传递特定基因的DNA分子。
在基因工程中,常用的载体有质粒、噬菌体和人工染色体。
下面将详细介绍这三种载体的相关信息。
1. 质粒(Plasmid)质粒是一种环状双链DNA分子,通常存在于细菌细胞内,也可通过人工方法导入其他生物体内。
质粒是最常用的基因工程载体,因其结构相对简单且易于操作,可以携带外源基因并通过转染等方法传递到细胞中。
质粒的大小通常在1-20千碱基对之间,具有自主复制和不受宿主基因组限制的能力。
质粒常用于基因克隆、表达以及基因敲除等研究。
例如,在基因克隆中,通过将目标基因插入质粒中的多克隆位点,可以将质粒转化到宿主细胞中进行扩增和分析。
质粒也常用于表达外源基因,可以将目标基因与促进其表达的启动子及调控元件结合在一起,构建表达载体进入目标细胞中,使其产生目标蛋白。
2. 噬菌体(Bacteriophage)噬菌体是一种寄生于细菌的病毒,是基因工程中另一常用的载体。
噬菌体具有高度选择性对细菌进行感染和复制的能力,因此可以利用噬菌体来转移和表达外源基因。
噬菌体载体通常比质粒大,可以携带更长的DNA序列。
噬菌体常用于噬菌体展示技术和抗体库构建。
噬菌体展示技术是一种用于筛选蛋白质相互作用、抗体或潜在药物靶点的方法。
通过将目标多肽或蛋白质与噬菌体表面蛋白基因融合,在噬菌体所感染的细菌中进行筛选。
另外,噬菌体也常用于构建噬菌体抗体库,通过大规模的筛选,筛选出具有特定抗体活性的噬菌体克隆。
3. 人工染色体(Artificial Chromosome)人工染色体是通过基因工程方法人为合成的染色体模拟体,在某些情况下可用于携带超长的DNA分子。
人工染色体被设计成可以稳定传递和复制的DNA分子,通常包括一个原核或真核的起始序列、一个中央控制区域和一个终止序列。
人工染色体在基因组学和基因治疗研究中发挥着重要作用。
噬菌体载体第三章噬菌体载体一、填空1.噬菌体之所以被选为基因工程载体,主要有两方面的原因:一是―-----------―;二是----------――。
2.首次报道的完整测序的单链DNA噬菌体是фX174,含有5386个碱基对的DNA和一个基因,是一个环状DNA分子。
基因组的最大特征是----------------。
3.λ噬菌体的基因组dna为―――――――kb,有――多个基因。
在体内,它有两种复制方式,扩增时(早期复制)按―-----―复制,成熟包装(晚期复制)则是按―--------―复制。
它有一个复制起点,进行―-------―向复制。
λ噬菌体的dna既可以以线性存在又可以环状形式存在,并且能够自然成环。
其原因主要是在λ噬菌体线性dna分子的两端各有一个――个碱基组成的天然黏性末端。
这种黏性末端可以自然成环。
成环后的黏性末端部位就叫做――――――位点。
4.根据噬菌体的包装能力,将噬菌体基因组DNA转化为野生型λ插入载体。
该载体的最小分子量约为――KB,插入的最大外源片段不超过――KB。
5.野生型的m13不适合用作基因工程载体,主要原因是――――和--------------―。
6.Cosmid是一种质粒噬菌体杂合载体。
它的复制子来自---,cos位点序列来自---,最大的克隆片段达到----KB。
7.有两类改造型的λ噬菌体载体,即插入型和取代型。
从酶切点看,插入型为――个,取代型为――个。
8.野生型λ噬菌体DNA不应被用作基因工程载体,原因如下:(1)-----(2)-----(3)------。
9.m13单链噬菌体的复制分为三个阶段:(1)――――――――(2)―-------------―,(3)―――――――――――。
10.噬菌体颗粒由质粒和噬菌体DNA组成,其中质粒的主要结构是---------,而噬菌体的主要结构是---------。
11.m13单链噬菌体基因2和基因4之间的ig区有三个最重要的功能,即(1)―――――(2)―------------―(3)―-------------―。