基因克隆载体-噬菌体
- 格式:ppt
- 大小:253.00 KB
- 文档页数:24
第2章基因克隆的载体——质粒和噬菌体载体:携带外源DNA进入宿主细胞的工具。
一、载体的功能:1.运送外源基因高效转入受体细胞2.为外源基因提供复制能力或整合能力3.为外源基因的扩增或表达提供条件二、载体应具备的条件:1.具有对受体细胞的可转移性2.具有与特定受体细胞相适应的复制位点或整合位点3.长度尽可能小,以提高其载装能力4.具有多种单一的酶切位点5.具有合适的选择性标记附图:图 3-1 自主复制型载体和附加载体的扩增方式2.1 质粒质粒是存在于细菌细胞质中独立于染色体而自主复制的共价、封闭、环状双链DNA分子(Covalently closed Circular DNA, ccc DNA),并不是细菌生长所必需的,但可以赋予细菌某些抵御外界环境因素不利影响的能力。
分子量在1-200kb之间。
一、质粒的基本特性:(一)自主复制性质粒DNA携带有自己的复制起始区(ori)以及一个控制质粒拷贝数的基因,因此它能独立于宿主细胞的染色体DNA而自主复制。
不同的质粒在宿主细胞内的拷贝数也不同,少则几个多则几百个不等,当然由于质粒上并没有复制酶的基因,所以其复制需要使用宿主细胞复制染色体DNA的多种酶群。
(二)不相容性利用同一复制系统的不同质粒(RNAI RNAII Rop因子)如果被导入同一细胞中,它们在复制及随后分配到子细胞的过程中,就会彼此竞争,它们在单细胞中的拷贝数也会有差异,拷贝多的复制更快,结果在细菌繁殖几代之后,细菌的子细胞中绝大多数都含有占优势的质粒,因而这两种质粒中只能有一种长期稳定地留在细胞中,这就是所谓的质粒不相容性。
(三)可扩增性质粒就其复制方式而言分为两类:松弛型复制及严谨型复制。
pMB1或ColEI 类质粒复制子的复制完全依靠宿主细胞提供的半衰期较长的复制酶及蛋白因子(DNA聚合酶I,III,RNA聚合酶以及dnaB、dnaC、dnaD、dnaZ的产物),因此在蛋白质合成中断时,质粒复制能持续合成,这样当用氯霉素抑制蛋白质合成并阻断细菌染色体复制时,带有pMB1或ColEI复制子的质粒将利用丰富的原料大量复制,最后每个细胞可以积聚2000-3000个拷贝,这叫做氯霉素扩增。
基因工程常用的三种载体基因工程是一门综合性的学科,其中一个关键方面是使用载体进行基因转移和操控。
载体是一种可以携带和传递特定基因的DNA分子。
在基因工程中,常用的载体有质粒、噬菌体和人工染色体。
下面将详细介绍这三种载体的相关信息。
1. 质粒(Plasmid)质粒是一种环状双链DNA分子,通常存在于细菌细胞内,也可通过人工方法导入其他生物体内。
质粒是最常用的基因工程载体,因其结构相对简单且易于操作,可以携带外源基因并通过转染等方法传递到细胞中。
质粒的大小通常在1-20千碱基对之间,具有自主复制和不受宿主基因组限制的能力。
质粒常用于基因克隆、表达以及基因敲除等研究。
例如,在基因克隆中,通过将目标基因插入质粒中的多克隆位点,可以将质粒转化到宿主细胞中进行扩增和分析。
质粒也常用于表达外源基因,可以将目标基因与促进其表达的启动子及调控元件结合在一起,构建表达载体进入目标细胞中,使其产生目标蛋白。
2. 噬菌体(Bacteriophage)噬菌体是一种寄生于细菌的病毒,是基因工程中另一常用的载体。
噬菌体具有高度选择性对细菌进行感染和复制的能力,因此可以利用噬菌体来转移和表达外源基因。
噬菌体载体通常比质粒大,可以携带更长的DNA序列。
噬菌体常用于噬菌体展示技术和抗体库构建。
噬菌体展示技术是一种用于筛选蛋白质相互作用、抗体或潜在药物靶点的方法。
通过将目标多肽或蛋白质与噬菌体表面蛋白基因融合,在噬菌体所感染的细菌中进行筛选。
另外,噬菌体也常用于构建噬菌体抗体库,通过大规模的筛选,筛选出具有特定抗体活性的噬菌体克隆。
3. 人工染色体(Artificial Chromosome)人工染色体是通过基因工程方法人为合成的染色体模拟体,在某些情况下可用于携带超长的DNA分子。
人工染色体被设计成可以稳定传递和复制的DNA分子,通常包括一个原核或真核的起始序列、一个中央控制区域和一个终止序列。
人工染色体在基因组学和基因治疗研究中发挥着重要作用。
克隆载体的名词解释克隆载体是分子生物学实验中常用的工具,用于携带并负载外源DNA片段,以实现基因克隆和基因工程。
克隆载体可由天然或人工合成的DNA构建而成,广泛用于基础研究、基因表达、基因治疗等领域。
本文将从克隆载体的定义、组成结构、常见类型以及应用等方面对其进行解释。
一、克隆载体的定义克隆载体是指用于将目标外源DNA导入到宿主细胞或有机体中,并在其中进行自主复制、表达和传递的DNA分子。
克隆载体具有一系列特定的序列和功能元件,包括起始子、终止子、选择标记、荧光蛋白等,以确保成功实现目标DNA的克隆和表达。
二、克隆载体的组成结构克隆载体通常由一个或多个元件组成,包括DNA序列、选择标记、表达载体以及复制起源,具体结构如下:1. DNA序列:克隆载体内含有目标外源DNA的序列,其大小和类型因实验需求而异。
DNA序列通常具有特定的限制性内切酶切位点,以便于将外源DNA片段定向插入到载体中的特定位置。
2. 选择标记:为了筛选成功克隆和转入宿主细胞的载体,克隆载体通常携带有选择标记基因,如抗生素抗性基因或荧光蛋白基因。
这些标记基因在宿主细胞中可以提供对抗生素的耐药性或特定荧光表达,从而方便筛选出含有目标外源DNA的成功克隆载体。
3. 表达载体:对于需要进行表达的克隆载体,其内部还包含有启动子、终止子以及表达宿主基因的相关元件。
这些元件协同作用,使得克隆载体能够在宿主细胞中进行基因的转录和翻译,从而实现目标基因的表达。
4. 复制起源:为了保证克隆载体能够在宿主细胞中独立复制,克隆载体通常还含有复制起源序列。
复制起源序列可以与宿主细胞的复制系统相互配合,使得克隆载体能够被复制并遗传到下一代细胞中。
三、克隆载体的常见类型克隆载体具有多种类型,根据其应用和特性的不同,常见的克隆载体包括质粒、噬菌体、合成DNA以及病毒载体等。
1. 质粒(Plasmid):质粒是环状的双链DNA分子,常见于细菌和真核生物中。
质粒通常具有小分子大小(约1-10 kb),较容易复制和操纵。
基因⼯程的载体种类基因⼯程的载体对于外源基因的复制、扩增、传代乃⾄表达⾄关重要,其必需具备以下条件:①具有有效运载能⼒,能够进⼊宿主细胞;②对多种限制酶有单⼀或较少的切点,最好是单⼀切点,即本⾝是⼀个复制⼦,携带外源基因前后均能在宿主细胞内⾃主复制,或者能够整合到宿主细胞中;③在宿主中能控制外源基因的表达活动;④要有筛选标记,鉴定⽅便,装卸⼿续简单;⑤容易控制,安全可靠。
在基因⼯程(DNA重组)中,使⽤的载体有:①克隆载体(clone vector),即以繁殖DNA分⼦为⽬的的载体;②穿梭载体(shuttle vecto),⽤于真核⽣物DNA⽚段在原核⽣物中增殖,然后在转⼊真核⽣物细胞宿主表达;③表达载体(express vector),⽤于⽬的基因的表达。
现在对载体提出了更⾼的要求,如:⾼拷贝数、具有强启动⼦和稳定的mRNA、具有⾼的分离稳定性和结构稳定性、转化频率⾼、宿主范围⼴、插⼊外源基因容量⼤且可以重新完整地复制与转录、和宿主细胞匹配等。
此外,载体在宿主不⽣长或低⽣长速率时仍能⾼⽔平地表达⽬的基因。
但达到上述要求的载体很少,尤其是当动物细胞作为宿主细胞时,⽬前能⽤的主要时病毒,进⼊宿主的⽬的基因⼀般只能是⼀个基因,⽽以基因组或多个基因同时进⾏重组还有⼀定困难。
⼀、质粒克隆载体除酵母杀伤质粒(killer plasmid)为RNA外,其他质粒多位环状DNA分⼦,每个质粒都有⼀段DNA复制起始点的序列,帮助实现质粒的复制。
质粒⼀般决定抗⽣素的抗性、产⽣抗⽣素酶系、糖酵解酶系、降解芳⾹族化合物酶系、肠毒素及限制-修饰酶系等。
其中严紧型复制控制质粒的复制与宿主染⾊体同步,并与宿主蛋⽩质合成有关,与DNA聚合酶I活性⽆关,蛋⽩质合成停⽌,质粒与宿主染⾊体复制亦停⽌,故只有1个或少数⼏个拷贝;⽽松弛型复制控制质粒的复制与宿主染⾊体复制不同步,与蛋⽩质合成⽆关,与DNA聚合酶I活性有关,蛋⽩质合成停⽌,质粒仍可复制,故可以在宿主有10—206个拷贝。
第二章 DNA重组克隆的单元操作练习题噬菌体载体(练习题)一、填空题1.噬菌体之所以被选为基因工程载体,主要有两方面的原因:一是;二是。
2.第一个报道的全测序的单链DNA 噬菌体是φX174,DNA 长5386 个碱基对,共个基因,为一环状DNA 分子,基因组的最大特点是。
3.λ噬菌体的基因组DNA 为kb,有多个基因。
在体内,它有两种复制方式,扩增时(早期复制)按复制,成熟包装(晚期复制)则是按复制。
它有一个复制起点,进行向复制。
λ噬菌体的DNA 既可以以线性存在又可以环状形式存在,并且能够自然成环。
其原因主要是在λ噬菌体线性DNA 分子的两端各有一个个碱基组成的天然黏性末端。
这种黏性末端可以自然成环。
成环后的黏性末端部位就叫做位点。
4.根据噬菌体的包装能力,将野生型λ噬菌体的基因组DNA 改造成插入型载体,该载体的最小分子大小约为kb,插入的外源片段最大不超过kb。
5.野生型的M13 不适合用作基因工程载体,主要原因是和。
6.黏粒(cosmid)是质粒—噬菌体杂合载体,它的复制子来自、COS 位点序列来自,最大的克隆片段达到kb。
7.有两类改造型的λ噬菌体载体,即插入型和取代型。
从酶切点看,插入型为个,取代型为个。
8.野生型的丸噬菌体DNA 不宜作为基因工程载体,原因是:(1) (2) (3) 。
9.M13 单链噬菌体的复制分为三个阶段:(1) (2) (3) 。
10.噬菌粒是由质粒和噬菌体DNA 共同构成的,其中来自质粒的主要结构是,而来自噬菌体的主要结构是。
11 .M13 单链噬菌体基因2 和基因4 之间的IG 区有三个最重要的功能,即(1)(2) (3) 。
12.野生型的M13 有10 个基因,分为三个功能集团,其中与复制有关的两个基因是:和。
13.以λ噬菌体载体和黏粒载体构建文库时,起始DNA 的长度是不同的,前者为kb,后者为kb。
14.λ噬菌体载体由于受到包装的限制,插入外源DNA 片段后,总的长度应在噬菌体基因组的的范围内。
基因载体名词解释基因载体是指用于携带、传递和复制基因的分子或生物体。
在基因工程和生物技术领域,基因载体通常是指能够容纳外源DNA序列的DNA分子或细胞,常被用于基因克隆、基因表达、基因转移等实验和应用中。
常见的基因载体包括质粒、噬菌体、噬菌体样粒子、大肠杆菌、酵母、昆虫细胞等。
这些载体被广泛用于基因工程实验和技术,在研究和应用中起到了至关重要的作用。
质粒是最常用的基因载体之一,是一种小型环状DNA分子,可以自主复制和传递,对于分子克隆和基因表达都非常有用。
质粒通常具有选择性标记基因(如抗生素抗性基因),可以通过选择性培养来筛选出带有目标基因的质粒。
此外,质粒还可以携带其他附加基因元件,如启动子、终止子、启动子和信号序列等,在基因表达中发挥重要作用。
另一种常见的基因载体是噬菌体,是一种感染细菌的病毒。
噬菌体可以携带外源DNA序列,并在细菌中进行复制和表达。
噬菌体可以用于高效地产生大量目标蛋白,因此在基因表达和蛋白生产中具有广泛应用。
此外,还有噬菌体样粒子,它是由噬菌体的基因组包裹在蛋白质壳中构成的粒子,可以携带大片的外源DNA序列,并在细胞中进行复制和表达,常用于基因克隆和基因转移实验。
在真核生物中,常用的基因载体包括酵母和昆虫细胞。
酵母是一种单细胞真核生物,具有较高的基因组稳定性和蛋白表达能力,在基因工程和蛋白生产中被广泛运用。
昆虫细胞也具有较高的蛋白表达能力,被广泛用于重组蛋白的产生和应用。
总的来说,基因载体是在基因工程和生物技术领域中不可或缺的工具,能够携带外源DNA序列,并在细胞中进行复制、传递和表达。
基因载体的选择和设计对于实现特定的实验目标和应用需求至关重要。