第四章控制系统的频率特性
- 格式:ppt
- 大小:1.10 MB
- 文档页数:45
第四章控制系统的频域分析法 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 165 频率特性法本章是通过对系统的频率特性研究分析自动控制系统,是一种经典方法。
问题:什么是频率特性,如何描述?如何利用频率特性分析控制系统?5.1 频率特性5.1.1频率特性的基本概念我们知道,系统(包括开环系统和闭环系统)对正弦输入信号的稳态反应是用以描述系统性能的一种广泛应用的工程方法。
频率特性描述了系统在正弦输入信号作用下,其输出信号与输入信号之间的关系。
设系统的传递函数为又设其中:的振幅为常值:正弦函数的角频率有一般地A(s),B(s)为s的多项式;为的极点,包括实数和共扼复数对稳定的系统而言均具有负实部。
(设系统无重极点)其中,待定,是的共扼复数,为待定系数。
由拉氏反变换可得:则输出信号的稳态分量:(对于稳定的系统具有负实部)注:如果系统中含有k个重极点,则在中将会出现象(j=0,1,2,……,k-1)这样一些项,然而对于稳定的系统来说,由于具有负实部,所以各项都将随着趋于无穷大而趋于零。
因此具有重极点的稳定系统的稳态分量具有和上式相同的形式。
可按下式计算:(由留数公式)及其中为一复数,可表示为其中,模幅角同样可以证明,是的偶函数是的奇函数证明:设式中则有是的偶函数是的奇函数稳定的线性定常系统在正弦输入下的稳态响应为:可见:线性定常系统在正弦信作用下的稳态响应仍是与输入信号同频率的正弦信号。
其振幅是输入信号振幅R的倍,在相位上,正弦输出相对于输入的相移,同样是的函数,对确定的来说,振幅C及相移将是确定的。
综上:在正弦输入信号的作用下,线性定常系统的输出信号的稳态分量是和正弦输入信号同频率的正弦函数,其振幅C与输入正弦的振幅R 的比值C/R=是角频率的函数。
它描述系统对不同频率的输入信号在稳态情况下的衰减(或放大)特性,定义这种振幅比依赖于频率的函数为系统的幅频特性。
相对于输入信号r(t)的相移也是的函数,是系统输出信号的稳态分量对正弦输入信号r(t)的相移为该系统的相频特性,它描述系统的稳态输出对不同频率的正弦输入信号在相位上产生相角滞后或相角超前的特性。