初中数学相似三角形(1)PPT课件
- 格式:ppt
- 大小:216.50 KB
- 文档页数:9
相似三角形ppt初中数学PPT课件目录CONTENCT •相似三角形基本概念与性质•相似三角形在几何图形中应用•相似三角形在解决实际问题中应用•相似三角形证明方法探讨•典型例题解析与练习•课堂小结与拓展延伸01相似三角形基本概念与性质01020304定义AAA 相似SAS 相似SSS 相似定义及判定方法如果两个三角形有两组对应边成比例且夹角相等,则这两个三角形相似。
如果两个三角形的三组对应角分别相等,则这两个三角形相似。
两个三角形如果它们的对应角相等,则称这两个三角形相似。
如果两个三角形的三组对应边成比例,则这两个三角形相似。
相似比与对应角关系相似比两个相似三角形的对应边之间的比值称为相似比。
相等角两个相似三角形的对应角相等。
补角两个相似三角形的非对应角互为补角。
两个相似三角形的对应边之间的比值相等。
对应边成比例两个相似三角形的对应高、中线、角平分线之间的比值也相等,且等于相似比。
对应高、中线、角平分线成比例两个相似三角形的面积之比等于相似比的平方。
面积比等于相似比的平方两个相似三角形的周长之比等于相似比。
周长比等于相似比性质总结02相似三角形在几何图形中应用平行线间距离问题利用相似三角形性质求解平行线间距离通过构造相似三角形,利用对应边成比例的性质,可以求解平行线间的距离。
平行线间距离与相似三角形关系平行线间距离与相似三角形的对应高成比例,因此可以通过相似三角形性质求解平行线间距离。
角度平分线问题利用相似三角形性质求解角度平分线问题通过构造相似三角形,利用对应角相等的性质,可以求解角度平分线问题。
角度平分线与相似三角形关系角度平分线将相邻两边按照相同比例分割,因此可以通过相似三角形性质求解角度平分线问题。
直角三角形中特殊应用利用相似三角形性质求解直角三角形中特殊应用在直角三角形中,通过构造相似三角形,利用对应边成比例的性质,可以求解一些特殊问题,如勾股定理、射影定理等。
直角三角形中特殊应用与相似三角形关系在直角三角形中,一些特殊应用可以通过构造相似三角形进行求解,这些应用与相似三角形的性质密切相关。
课时导入知识讲解随堂小测1.会证明相似三角形判定定理;(重点)2.运用相似三角形的判定定理解决相关问题.(难点)相似三角形的判定方法有哪些?(1)两角分别相等的两个三角形相似(2)两边成比例且夹角相等的两个三角形相似.(3)三边成比例的两个三角形相似.你能对它们进行证明吗?两角分别相等的两个三角形相似.数学表达:在△ABC与△A′B′C′中,∵∠A=∠A′,∠B=∠B′,∴△ABC∽△A′B′C′.知识点1 证明相似三角形的判定定理1已知:如图,△ABC 和△ A′B′C′中,∠A =∠A′,∠B =∠B′,求证 :△ABC ∽△A'B'C'.A BCA′B′C′D E证明:在△ABC 的边AB (或它的延长线)上截取AD =A′B′,过点D 作BC 的平行线,交AC 于点E ,则∠ADE =∠B ,∠AED =∠C ,.AD AE AB AC (平行于三角形一边的直线与其他两边相交,截得的对应线段成比例)F过点D 作AC 的平行线,交BC 于点F ,已知:如图,△ABC 和△ A′B′C′中,∠A =∠A′,∠B =∠B′,求证 :△ABC ∽△A'B'C'..AB AD CF CB =则(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例).AE CFAC CB∴=∵DE ∥BC ,DF ∥AC ,∴四边形DFCE 是平行四边形.∴DE =CF ..AE DE AC CB ∴=.AD AE DE AB AC BC∴==而∠ADE =∠B ,∠DAE =∠BAC ,∠AED =∠C ∴△ADE ∽△ABC∵∠A =∠A′,∠ADE =∠B =∠B′,AD =A′B′.∴△ADE ≌△A′B′C′∴△ABC ∽△A'B'C'A BCA′B′C′DEF两边成比例且夹角相等的两个三角形相似.数学表达:在△ABC 与△A′B′C′中,∵ ,∠A =∠A′,∴△ABC ∽△A′B′C′.==''''AB ACk A B A C知识点2 证明相似三角形的判定定理2ABCA′B′C′D E证明 :在△ABC 的边AB (或它的延长线)上截取AD =A′B′,过点D 作BC 的平行线,交AC 于点E ,则∠B =∠ADE ,∠C =∠AED ,已知:如图,△ABC 和△ A′B′C′中,∠A =∠A′,求证 :△ABC ∽△A'B'C'.AB ACA B A C =''''∴△ABC ∽△ADE.(两角分别相等的两个三角形相似).AB AC AD AE∴=,,AB AC AD A B A B A C ''==''''.AB ACAD A C ∴=''.AC AC AE A C ∴=''AE A C ''∴=而∠A =∠A′,∴△ADE ≌△A′B′C′∴△ABC ∽△A'B'C'知识点3 证明相似三角形的判定定理3三边成比例的两个三角形相似.数学表达:在△ABC 与△A′B′C′中,∵ ,∴△ABC ∽△A′B′C′.''===''''AB BC ACk A B B C ACA BCA′B′C′DE证明 :在△ABC 的边AB (或它的延长线)上截取AD =A′B′,AE =A′C′,连接DE .已知:如图,△ABC 和△ A′B′C′中,求证 :△ABC ∽△A'B'C'=.AB BC ACA B B C A C ='''''',,,AB AC AD A B AE A C A B A C ''''==='''' .AB AC AD AE∴=而∠BAC =∠DAE ,∴△ABC ∽△ADE (两边成比例且夹角相等的两个三角形相似).AB BC AD DE ∴=,,AB BCAD AB A B BC ''==''''又.AB BC AD B C ∴=''.BC BCDE B C ∴=''.DE B C ''∴=∴△ADE ≌△A′B′C′∴△ABC ∽△A'B'C'1.判断(1)所有的等边三角形都相似. ( )(2)所有的直角三角形都相似. ( )(3)所有的等腰三角形都相似. ( )(4)所有的等腰直角三角形都相似. ( )×√×√2. 如图4,AD ⊥BC 于点D , CE ⊥AB 于点 E ,且交AD 于点F , 你能从中找出几对相似三角形?BC A ED FB CA E D FBC ED FB AE DF B C A E DF D CF EA3.已知:如图,在四边形ABCD 中,∠B =∠ACD , AB =6,BC =4,AC =5,CD = ,求AD 的长. 172A B CD 解: ∵ AB =6,BC =4,AC =5,CD = ∴ 又∠B =∠ACD ,∴△ABC ∽△DCA ,∴ ∴AD =17.2.AB CD BC AC =.BC AC AC AD =.254定理2:两边成比例且夹角相等的两个三角形相似.定理1:两角分别相等的两个三角形相似.定理3:三边成比例的两个三角形相似.定理证明相似三角形判定定理的证明定理的运用1.从课后习题中选取;2.完成练习册本课时的习题。