《平面的基本性质与推论》教案
- 格式:doc
- 大小:57.00 KB
- 文档页数:4
平面基本性质及推论1.2.1平面基本性质与推论一、教学目标确立依据(一)课程标准要求及解读1、课程标准要求借助长方体模型,解空间点线面的基础上,抽象出空间点线面位置关系的定义,并了解如下可以作为推理依据的公理和定理。
基本性质1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内.基本性质2:经过不在同一直线上的三点,有且只有一个平面基本性质3:如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线。
2、课程标准解读平面的基本性质1给出了判断直线在平面内的方法,引出了直线在平面内的定义。
平面的基本性质2及平面的基本性质的三个推论,说明了怎样的条件可以确定一个平面,从而我们知道什么条件下可以画出确定的平面,什么条件下两个平面互相重合,这些都是研究空间图形时首先需要明确的。
平面的基本性质3主要说明了两个相交平面的特征,对我们确定或画出两个平面的交线有重要的指导作用。
平面的基本性质的推论用以确定平面的依据。
(二)教材分析本节课在必修二中是第一张第二节内容,是整个立体几何的基础和工具。
是立体几何的起始课,平面的概念和平面的性质是立体几何全部理论的基础。
平面是把三维空间图形转化为二维平面图形的主要媒介,在立体几何平面化的过程中具有重要的桥梁作用。
通过对平面基本性质的学习,有助于学生更好的学习立体几何的其他知识本节的重点是平面的基本性质及三种语言的转换。
难点是平面的基本性质的理解与应用。
课前要充分观察理解教室里的点、线、面,来理解点、线、面及位置关系。
知识结构图基本性质1 推论1平面的基本性质基本性质2 推论2基本性质3 推论3(三)学情分析通过第一章空间几何体的学习,学生对于点线面之间的位置关系有初步认识,本节要求学生能够用集合语言表示点线面之间的位置关系,引导学生对空间中点线面的位置关系可各种可能性进行分类和研究。
对于证明学生可能感觉难度较大。
二、教学目标1、在直观认识和理解空间点线面的基础上,能抽象出空间点线面位置关系的定义。
平面的基本性质教学目的:1.能够从日常生活实例中抽象出数学中所说的“平面”.2.理解平面的无限延展性.3.正确地用图形和符号表示点、直线、平面以及它们之间的关系.4.初步掌握文字语言、图形语言与符号语言三种语言之间的转化.5.理解公理一、三,并能运用它解决点、线共面问题.6.理解公理二,并能运用它找出两个平面的交线及“三线共点”和“三点共线”问题.教学重点:1.掌握点-直线-平面间的相互关系,并会用文字-图形-符号语言正确表示理解平面的无限延展性.2.平面基本性质的三条公理及其作用.教学难点:1.理解平面的无限延展性.2.集合概念的符号语言的正确使用.3.对“有且只有一个”语句的理解.4.确定两相交平面的交线.授课类型:新授课课时安排:1课时教学过程:一、复习引入在初中,我们主要学习了平面图形的性质.平面图形就是由同一平面内的点、线所构成的图形.平面图形以及我们学过的长方体、圆柱、圆锥等都是空间图形,空间图形就是由空间的点、线、面所构成的图形.当我们把研究的范围由平面扩大到空间后,一些平面图形的基本性质,在空间仍然成立例如三角形全等、相似的充要条件,平行线的传递性等.有些性质在研究范围扩大到空间后,是否仍然成立呢?例如,过直线外一点作直线的垂线是否仅有一条?到两定点距离相等的点的集合是否仅是连结两定点的线段的一条垂直平分线?二、讲解新课1.平面的两个特征:①无限延展②平的(没有厚度)平面是没有厚薄的,可以无限延伸,这是平面最基本的属性一个平面把空间分成两部分,一条直线把平面分成两部分2.平面的画法:通常画平行四边形来表示平面(1)一个平面:水平放置和直立;当平面是水平放置的时候,通常把平行四边形的锐角画成45 ,横边画成邻边的2倍长,如图1(1).(2)直线与平面相交,如图1(2)、(3);(3)两A(1)个相交平面:画两个相交平面时,若一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画(如图2).3平面的画法及其表示方法: (1)在立体几何中,常用平行四边形表示平面.当平面水平放置时,通常把平行四边形的锐角画成45°,横边画成邻边的两倍画两个平面相交时,当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画.(2)一般用一个希腊字母α、β、γ、……来表示,还可用平行四边形的对角顶点的字母来表示如平面α,平面AC 等.4.空间图形是由点、线、面组成的.空间图形的基本元素是点、直线、平面从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此它们之间的关系除了用文字和图形表示外,还可借用集合中的符号语言来表示.规定直线用两个大写的英文字母或一个小写的英文字母表示,点用一个大写的英文字母表示,而平面则用一个小写的希腊字母表示.点、线、面的基本位置关系如下表所示:用于直线与直线、直线与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用a βαB A βB A αβB A ααβa 图 2几何语言.(平面α外的直线a )表示α⊄a (平面α外的直线a )表示aα=∅或a A α=.例1将下列符号语言转化为图形语言:(1)A α∈,B β∈,A l ∈,B l ∈;(2)a α⊂,b β⊂,//a c ,b c p =,c αβ=.解:说明:画图的顺序:先画大件(平面),再画小件(点、线).例2 将下列文字语言转化为符号语言:(1)点A 在平面α内,但不在平面β内;(2)直线a 经过平面α外一点M ;(3)直线l 在平面α内,又在平面β内(即平面α和β相交于直线l .)解:(1)A ∈α,A ∉β; (2)M ∈a ,M ∉α;(3)l ⊂α,l ⊂β(即α β=l )例3 在平面α内有A ,O ,B 三点,在平面β内有B ,O ,C 三点,试画出它们的图形 答案:右图 三、课堂练习: 1.判断下列命题的真假,真的打“√”,假的打“×” (1)可画一个平面,使它的长为4cm ,宽为2cm . ( )(2)一条直线把它所在的平面分成两部分,一个平面把空间分成两部分.( )(3)一个平面的面积为20 cm 2. ( )(4)经过面内任意两点的直线,若直线上各点都在这个面内,那么这个面是平面.( ) 答案:(1)×(2)√(3)×(4)√2.观察(1)、(2)、(3)三个图形,模型说明它们的位置关系有什么不同,并用字母表示各个平面.3.请将以下四图中,看得见的部分用实线描出. 4.如图所示,用符号表示以下各概念:①点A 、B 在直线a 上 ;②直线a 在平面?内 ;点C 在平面?内 ;③点O 不在平面?内 ;直线b 不在平面?内 . 答案:①,A a B a ∈∈ ②,a C αα⊂∈ ③,O b αα∉⊄ 5.①一条直线与一个平面会有几种位置关系 .②如图所示,两个平面?、?,若相交于一点,则会发生什么现象.③几位同学的一次野炊活动,带去一张折叠方桌,不小心弄坏了桌脚,有一生提议可将几根一样长的木棍,在等高处用绳捆扎一下作桌脚(如图所示),问至少要几根木棍,才可能使桌面稳定?答案: ①3种 ②相交于经过这个点的一条直线 ③至少3根二、讲解新课(3)(2)(1)4 .平面的基本性质立体几何中有一些公理,构成一个公理体系.人们经过长期的观察和实践,把平面的三条基本性质归纳成三条公理.公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内. 推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 或者:∵,A B αα∈∈,∴AB α⊂应用:这条公理是判定直线是否在平面内的依据,也可用于验证一个面是否是平面,如泥瓦工用直的木条刮平地面上的水泥浆.①判定直线在平面内;②判定点在平面内模式:a A A a αα⊂⎧⇒∈⎨∈⎩. 公理1说明了平面与曲面的本质区别.通过直线的“直”来刻划平面的“平”,通过直线的“无限延伸”来描述平面的“无限延展性”,它既是判断直线在平面内,又是检验平面的方法.公理 2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线推理模式:A A l A ααββ∈⎫⇒∈=⎬∈⎭如图示: 或者:∵,A A αβ∈∈,∴,l A l αβ=∈应用:①确定两相交平面的交线位置;②判定点在直线上.公理2揭示了两个平面相交的主要特征,是判定两平面相交的依据,提供了确定两个平面交线的方法.指出:今后所说的两个平面(或两条直线),如无特殊说明,均指不同的平面(直线).公理3 经过不在同一条直线上的三点,有且只有一个平面推理模式:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合.或者:∵,,A B C 不共线,∴存在唯一的平面α,使得,,A B C α∈.应用:①确定平面;②证明两个平面重合“有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证.实例:(1)门:两个合页,一把锁;(2)摄像机的三角支架;(3)自行车的撑脚.公理3及其下一节要学习的三个推论是空间里确定一个平面位置的方法与途径,而确定平面是将空间问题转化为平面问题的重要条件,这个转化使得立体几何的问题得以在确定的平面内充分使用平面几何的知识来解决,是立体几何中解决相当一部分问题的主要的思想方法.例1 求证:三角形是平面图形已知:三角形ABC求证:三角形ABC 是平面图形证明:∵三角形ABC 的顶点A 、B 、C 不共线∴由公理3知,存在平面α使得A 、B 、C α∈再由公理1知,AB 、BC 、CA α⊂∴三角形ABC 上的每一个点都在同一个平面内∴三角形ABC 是平面图形例2 点A ∉平面BCD ,,,,E F G H 分别是,,,AB BC CD DA 上的点,若EH 与FG 交于P (这样的四边形ABCD 就叫做空间四边形)求证:P 在直线BD 上证明:∵EH FG P =,∴P EH ∈,P FG ∈,∵,E H 分别属于直线,AB AD ,∴EH ⊂平面ABD ,∴P ∈平面ABD ,同理:P ∈平面CBD ,又∵平面ABD 平面CBD BD =, 所以,P 在直线BD 上.四、课堂练习:1.下面是一些命题的叙述语(A 、B 表示点,a 表示直线,α、β表示平面)A .∵αα∈∈B A ,,∴α∈AB . B .∵βα∈∈a a ,,∴a =βα .C .∵α⊂∈a a A ,,∴A α∈.D .∵α⊂∉a a A ,,∴α∉A .其中命题和叙述方法都正确的是( )2.下列推断中,错误的是( )A .ααα⊂⇒∈∈∈∈lB l B A l A ,,,B .AB B B A A =⇒∈∈∈∈βαβαβα ,,,C .αα∉⇒∈⊄A l A l ,D .βα∈∈C B A C B A ,,,,,,且A 、B 、C 不共线βα,⇒重合3.一个平面把空间分成____部分,两个平面把空间最多分成____部分,三个平面把空间最多分成____部分.4.判断下列命题的真假,真的打“√”,假的打“×”(1)空间三点可以确定一个平面 ( )(2)两条直线可以确定一个平面 ( )(3)两条相交直线可以确定一个平面 ( )(4)一条直线和一个点可以确定一个平面 ( )(5)三条平行直线可以确定三个平面 ( )(6)两两相交的三条直线确定一个平面 ( )(7)两个平面若有不同的三个公共点,则两个平面重合 ( )(8)若四点不共面,那么每三个点一定不共线 ( )5.看图填空(1)AC ∩BD = (2)平面AB 1∩平面A 1C 1=(3)平面A 1C 1CA ∩平面AC =(4)平面A 1C 1CA ∩平面D 1B 1BD = (5)平面A 1C 1∩平面AB 1∩平面B 1C = (6)A 1B 1∩B 1B ∩B 1C 1=答案:1. C 2. C 3. 2,4,8 4. ⑴×⑵×⑶√⑷×⑸×⑹×⑺×⑻√5.⑴O ⑵A 1B 1⑶O ⑷OO 1⑸B 1⑹B 1五、小结 :1.平面的概念;2.平面的画法、表示方法及两个平面相交的画法;3.点、直线、平面间基本关系的文字语言,图形语言和符号语言之间关系的转换4.平面的基本性质三条公理中公理1用于判定直线是否在平面内,公理2用于判定两平面相交,公理3是确定平面的依据.“确定一个平面”与“有且只有一个平面”是同义词.“有”即“存在”,“只有一个”即“唯一” .所以证明有关“有且只有一个”语句的命题时,要证两方面——存在性和唯一性.证明的方法是反证法和同一法.A 1。
《平面的基本性质》教学设计第1课时◆教学目标了解平面的基本事实与推论,能用图形、文字、符号三种语言描述三个基本事实,理解三个基本事实的地位与作用;会用平面的基本事实正面点共线、线共点、点线共面三个典型问题,熟悉符号语言、文字语言、图形语言之间的转换.◆教学重难点◆教学重点:掌握平面的基本事实及推论.教学难点:能用图形、文字、符号三种语言描述平面的基本事实,并能解决空间线面的位置关系问题.◆课前准备PPT课件.◆教学过程一、问题导入前面我们通过几何体的学习,已经直观地认识了点、线、面之间的位置关系,从本节开始,我们将在直观认识的基础上来论证它们之间的关系,以期进一步培养大家的空间想象能力和逻辑能力.问题1:观察如图11-2-2,的凳子,把凳子看成一个平面,思考(1)如果把一个平面固定在空间中,至少需要固定几个点?(2)有多少个平面能通过空间中指定的一点?有多少平面能通过空间中指定制定的两点?引语:要解决这个问题,就需要进一步学习平面的基本事实与推论.(板书:平面的基本事实与推论)【新知探究】问题2:确定平面的依据是什么?师生活动:学生分析解题思路,给出答案.追问:基本事实1的作用是什么?预设的答案:基本事实1: 文字表示:经过不在一条直线上的3个点,有且只有一个平面.符号表示:A ,B ,C 三点不共线⇒存在唯一的平面α使A ,B ,C ∈α图形表示:注:(1)可以简单地说成“不共线的3点确定一个平面”(2)过不共线的3点A ,B ,C 的平面,通常记作平面ABC ,用图象直观地表示平面时,为了增加立体感,习惯上讲平面用平行四边形表示.(3)如图的平面α可以看成由不共线的3点A ,B ,C 确定的,此时显然有:,,A B C ααα∈∈∈(4)如果给定的3个点同在一直线上,那么有无数个平面通过这3个点,也就是说,此时这三个点不能“确定”一个平面,例如,如果给定的3个点都在长方体的一条棱上,那么过这三个点就会有无数个平面.作用:①确定平面的依据;②判定点、线共面设计意图:通过对生活简单事实出发,通过观察分析归纳出平面基本事实.发展学生数学抽象和直观想象的核心素养.问题3:尝试与发现:这就是说,如果A B αα∈∈, ,那么直线AB α∈,如图11-2-4所示.师生活动:学生分析解题思路,给出答案追问:基本事实2的作用是什么?预设的答案:基本事实2:文字表示:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内. 符号表示:A ∈α,B ∈α⇒AB ⊂α图形表示:作用:①判定直线是否在平面内;②判断一个面是否是平面注:基本事实2可以作为判断一个面是否是平面的依据:如果一个面内的任意两点所确定的直线都在这个平面内,那么这个面就是平面.例如,球面不是一个平面,因为球面上任意两点所确定的直线中,只有两个点在球面上.设计意图:培养学生分析和归纳的能力.问题4:如图11-2-6所示,当用裁纸刀裁纸时,可以认为刀锋是在一个平面内运动的.(1)裁纸刀裁出的是什么样的痕迹?(2)两个平面相交时,公共点具有什么特点?师生活动:学生分析解题思路,给出答案追问:基本事实3的作用是什么?预设的答案:基本事实3:文字表示:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号表示:P∈α,且P∈β⇒α∩β=l,且P∈l图形表示:注:(1)基本事实3说明,两个不重合的平面,只要有一个公共点,就一定有无数个公共点,而且这无数个公共点能构成一条直线,这条直线通常也称为两个平面的交线,如图所示,有,A a a αβ∈=;(2)在画两个平面相交时,其中一个平面被另一个平面遮住的部分应该画出虚线或不画,如图所示;(3)根据基本事实3可知,棱柱中,有公共棱的两个面所在的平面一定是相交的,而且公共棱是交线的一部分.作用:①判定两个平面相交的依据;②判定点在直线上设计意图:培养学生分析和归纳的能力. 【巩固练习】例1. 用符号语言表示下列语句,并画出图形:(1)三个平面α、β、γ相交于一点P ,且平面α与平面β交于P A ,平面α与平面γ交于PB ,平面β与平面γ交于PC ;(2)平面ABD 与平面BCD 相交于BD ,平面ABC 与平面ADC 交于AC .师生活动:学生分析解题思路,给出答案.预设的答案: (1)符号语言表示:α∩β∩γ=P ,α∩β=P A ,α∩γ=PB ,β∩γ=PC .用图形表示如图①.(2)符号语言表示:平面ABD ∩平面BDC =BD .平面ABC ∩平面ADC =AC .图形表示如图②.设计意图:用符号语言表示语句. 例2. 证明:两两相交且不过同一个点的3条直线必在同一个平面内.师生活动:学生分析解题思路,给出答案.预设的答案:证明:设直线,,AB BC AC 两两相交,交点分别是,,A B C显然,,,A B C 3点不共线,因此它们能确定一个平面α.因为,,A B αα∈∈ 那么直线AB α⊂同理,AC BC αα⊂⊂即直线,,AB BC AC 都在平面α内.设计意图:基本事实1的运用.例3. 如图所示的正方体1111ABCD A B C D -中,E 是棱1CC 上的一点,试说明1,,D A E 3点确定的平面与平面ABCD 相交,并画出这两个平面的交线.师生活动:学生分析解题思路,给出答案.预设的答案:因为A ∈面1D AE ,A ∈面ABCD所以面1D AE ABCD ≠∅,即面1D AE 与面ABCD 相交.延长1D E 与DC ,设它们相交于F ,如图所示,则:F ∈直线1D E ,直线1D E ⊂面1D AE .F ∈直线DC ,直线DC ⊂面ABCD .则F ∈面1D AE 面ABCD ,从而AF 为面1D AE 与面ABCD 的交线,如图所示.设计意图:基本事实3的运用.【课堂小结】问题:(1)三个基本事实的作用有哪些?(2)证明几点共线的方法有哪些?(3)证明证明多线共点的方法有哪些?师生活动:学生尝试总结,老师适当补充.预设的答案:1.三个基本事实的作用基本事实1——判定点共面、线共面的依据;基本事实2——判定直线在平面内的依据;基本事实3——判定点共线、线共点的依据.2.证明几点共线的方法:先考虑两个平面的交线,再证有关的点都是这两个平面的公共点.或先由某两点作一直线,再证明其他点也在这条直线上.3.证明多线共点的方法:先证两线共点,再证这个点在其他直线上,而“其他”直线往往归结为平面与平面的交线.设计意图:通过梳理本节课的内容,能让学生更加明确平面的基本事实的有关知识.布置作业:【目标检测】1. 下列说法正确的是()A.三点可以确定一个平面B.若直线上有一个点在一个平面内,则这条直线在这个平面内C.把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面相交于一点D.如果两个平面有三个不共线的点,那么这两个平面重合设计意图:基本事实的运用.2. 若A ∈平面α,B ∈平面α,C ∈直线AB ,则( )A .C ∈αB .C ∉α C .AB ⊄αD .AB ∩α=C设计意图:用符号语言表示语句.3. 经过空间任意三点作平面( )A .只有一个B .可作二个C .可作无数多个D .只有一个或有无数多个设计意图:基本事实的运用.4. 如图所示,在正方体1111ABCD A B C D 中.画出平面1AC 与平面1BC D 及平面1ACD 与平面1BDC 的交线.设计意图:基本事实的运用.5. 如图,已知E ,F ,G ,H 分别是四面体A -BCD 的棱AB ,BC ,CD ,DA 的中点.求证:E ,F ,G ,H 四点共面.设计意图:基本事实的运用.参考答案: 1. D A 错误,不共线的三点可以确定一个平面;B 错误,直线上的两个点在一个平面内,则这条直线在这个平面内;C 错误,三角板所在平面与桌面所在平面相交于一条直线;D 正确,过不共线的三个点有且只有一个平面.2. A 因为A ∈平面α,B ∈平面α,所以AB ⊂α.又因为C ∈直线AB ,所以C ∈α.3. D 当三点在一条直线上时,过这三点的平面能作无数个;当三点不在同一条直线上时,过这三点的平面有且只有一个.4. 如图,∵AC BD O ⋂=,1C DC E ⋂=.∴O ∈平面1AC ,O ∈平面1BC D .又1C ∈平面1AC ,1C ∈平面1BC D .∴平面 1AC ⋂平面11BC D OC =.同理平面1ACD ⋂平面1BDC OE =.A A 15. 在△ABD 中,∵E ,H 分别是AB ,AD 的中点,∴EH ∥BD .同理FG ∥BD ,则EH ∥FG .故E ,F ,G ,H 四点共面.。
平面的基本性质与推论一、教学目标:1、知识与技能(1)利用生活中的实物对平面进行描述;(2)掌握平面的表示法及水平放置的直观图;(3)掌握平面的基本性质及作用;(4)培养学生的空间想象能力。
2、过程与方法(1)通过师生的共同讨论,使学生对平面有了感性认识;(2)让学生归纳整理本节所学知识。
3、情感与价值使用学生认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣。
二、教学重点、难点重点:1、平面的概念及表示;2、平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言。
难点:平面基本性质的掌握与运用。
三、教学过程(一)引入课题问题1:生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象,你们能举出更多例子吗?问题2:平面的含义是什么呢?(这就是我们这节课所要学习的内容。
)(二)研探新知1、平面含义以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出来的,但是,几何里的平面是无限延展的。
2、平面的画法及表示问题3:在平面几何中,怎样画平面?平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成45°,且横边画成邻边的2倍长(如图)问题4:在平面几何中,平面如何表示?平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。
如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成虚线或不画(打出投影片)问题5:平面与点的关系如何表示?平面内有无数个点,平面可以看成点的集合。
点A在平面α内,记作:A∈α点B在平面α外,记作:B α3、平面的基本性质思考教材P41的思考题,让学生充分发表自己的见解。
把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上,用事实引导学生归纳出以下公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为公理1作用:判断直线是否在平面内.生活中,我们看到三脚架可以牢固地支撑照相机或测量用的平板仪等等……引导学生归纳出公理2公理2:过不在一条直线上的三点,有且只有一个平面。
1.2.1平面基本性质与推论一、教学目标确立依据(一)课程标准要求及解读1、课程标准要求借助长方体模型,解空间点线面的基础上,抽象出空间点线面位置关系的定义,并了解如下可以作为推理依据的公理和定理.基本性质1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内.基本性质2:经过不在同一直线上的三点,有且只有一个平面基本性质3:如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线.2、课程标准解读平面的基本性质1给出了判断直线在平面内的方法,引出了直线在平面内的定义. 平面的基本性质2及平面的基本性质的三个推论,说明了怎样的条件可以确定一个平面,从而我们知道什么条件下可以画出确定的平面,什么条件下两个平面互相重合,这些都是研究空间图形时首先需要明确的.平面的基本性质3主要说明了两个相交平面的特征,对我们确定或画出两个平面的交线有重要的指导作用.平面的基本性质的推论用以确定平面的依据.(二)教材分析本节课在必修二中是第一张第二节内容,是整个立体几何的基础和工具.是立体几何的起始课,平面的概念和平面的性质是立体几何全部理论的基础.平面是把三维空间图形转化为二维平面图形的主要媒介,在立体几何平面化的过程中具有重要的桥梁作用.通过对平面基本性质的学习,有助于学生更好的学习立体几何的其他知识本节的重点是平面的基本性质及三种语言的转换.难点是平面的基本性质的理解与应用.课前要充分观察理解教室里的点、线、面,来理解点、线、面及位置关系.知识结构图基本性质1 推论1平面的基本性质基本性质2 推论2基本性质3 推论3(三)学情分析通过第一章空间几何体的学习,学生对于点线面之间的位置关系有初步认识,本节要求学生能够用集合语言表示点线面之间的位置关系,引导学生对空间中点线面的位置关系可各种可能性进行分类和研究.对于证明学生可能感觉难度较大.二、教学目标1、在直观认识和理解空间点线面的基础上,能抽象出空间点线面位置关系的定义.2、图形语言符号语言表示点线面之间的位置关系,3.通过第一节课学习,在掌握平面的三个基本性质的基础上,进一步掌握平面基本性质的三个推论;三、评价设计目标1评价:能说出线不在面内的情况,并用图形表示.能说出两个平面的位置关系.目标2评价:学生对基本性质及推论能说出条件及结论是什么,并会用图形语言及符号语言表示.目标3评价:经过小组讨论会证明平面基本性质的三个推论;四、教学方法学生从直观认识平面到理性的理解平面,有一个抽象的过程.通过这个过程可培养学生的抽象能力.要让学生认识平面的三条基本性质的直观背景.学完这三条基本性质,学生营养成用性质理解平面的习惯,学会用直线和皮面的基本性质进行推理.五、教学过程温故知新,导入新课.1.平面有哪些性质呢?2.一条直线和平面有哪几种关系呢?两个平面呢?教学重点、难点的学习与完成过程师:立体几何中有一些公理,构成一个公理体系.人们经过长期的观察和实践,把平面的三条基本性质归纳成三条公理.请同学们思考下列问题(用幻灯显示).问题1:直线l上有一个点P在平面α内,直线l是否全部落在平面α内?问题2:直线l上有两个点P、Q在平面α内,直线l是否全部落在平面α内?(用竹针穿过纸板演示问题1,用直尺紧贴着玻璃黑板演示问题2,学生思考回答后教师归纳.)【设计意图】:形象直观,学生易于接受.这就是基本性质1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内..这里的条件是什么?结论是什么?生:条件是直线(a)上有两点(A、B)在平面(α)内,结论是:直线(a)在平面(α)内.师:把条件表示为A∈a,B∈b且A∈α,B∈α,把结论表示.【设计意图】:学生学会符号语言.这条公理是判定直线是否在平面内的依据,也可用于验证一个面是否是平面,如泥瓦工用直的木条刮平地面上的水泥浆.在这里,我们用平行四边形来表示平面,那么平面是不是只有平行四边形这么个范围呢?生:不是,因为平面是无限延展的.师:对,根据基本性质1,直线是可以落在平面内的,因为直线是无限延伸的,如果平面是有限的,那么无限延伸的直线又怎么能在有限的平面内呢?所以平面具有无限延展的特征.现在我们根据平面的无限延展性来观察一个现象:两个纸板交叉师:两个平面会不会只有一个公共点?生甲:只有一个公共点.生乙:因为平面是无限延展的,应当有很多公共点.师:生乙答得对,正因为平面是无限延展的,所以有一个公共点,必有无数个公共点.那么这无数个公共点在什么位置呢?(教师随手一压,一块纸板随即插入另一块纸板上事先做好的缝隙里).可见,这无数个公共点在一条直线上.这说明,如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线.【设计意图】:形象直观,学生易于接受.此时,就说两平面相交,交线就是公共点的集合这就是基本性质3其条件和结论分别是什么?生:条件是两平面(α、β)有一公共点(A),结论是:它们有且只有一条过这个点的直线.师:条件表示为A∈α,A∈β,结论表示为:α∩β=a,A∈a,图形表示基本性质3判定两平面相交的依据,提供了确定相交平面的交线的方法.下面请同学们思考下列问题(用幻灯显示):问题1:经过空间一个已知点A可能有几个平面?问题2:经过空间两个已知点A、B可能有几个平面?问题3:经过空间三个已知点A、B、C可能有几个平面?【设计意图】:以问题串的形式引出基本性质2.(教师演示给学生看,学生思考后回答,教师归纳).这说明,经过不在同一直线上的三点,有且只有一个平面,即基本性质2其条件、结论分别是什么?生:条件是:不在同一直线上的三点(A、B、C),结论是:过这三点(A、B、C)有且只有一个平面(α).基本性质2是确定平面位置的依据之一.推论师:确定一个平面的依据,除基本性质2外,还有它的三个推论.推论1:经过一条直线和这条直线外的一点,有且只有一个平面.说出推论1的条件和结论并证明.生:条件是:一条直线和直线外一点,结论是:经过这条直线和这一点有且只有一个平面求证:经过a和A有且只有一个平面.∉已知:A l求证:经过点A和直线l有且只有一个平面.【设计意图】:学生学会将文字叙述改写为数学语言.证明:①存在性:如图(1)在直线l上任取两点B,C,据题意A、B、C三点不共线,根据基本性质2,经过不共线的三点A、B、C有一个平面αα∈B ,α∈C ∴α⊂l (基本性质1)所以平面α就是经过直线l 和点A 的平面.②唯一性: B l ∈ ,C l ∈ ,∴ 任何经过点A 和l 的平面一定经过点A 、B 、C ,三点A 、B 、C 不共线,根据基本性质2,这样的平面只有一个,由①②可知:经过一条直线和直线外一点有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.其条件、结论分别是什么?生:条件是:两条直线相交,结论是:经过这两条直线有且只有一个平面. 师(板书)已知:a ∩b =A求证:经过a 和b 有且只有一个平面.证明:①存在性: 如图(2)在a 上任取一点B ,且B ∉b,根据推论1, 经过一条直线b 和直线外一点B 有一个平面α∵A ∈a ,B ∈a ∴a α⊂所以平面α就是经过相交直线a 和b 的平面.②唯一性:∵B ∈a∴任何经过直线a 和b 的平面一定经过点B 和直线b ,∵根据推论1,这样的平面只有一个,由①②可知:经过两条相交直线,有且只有一个平面.推论3 经过两条平行直线,有且只有一个平面.已知:a∥b求证:经过a和b有且只有一个平面.证明:①存在性:如图(3)∵a∥b∴根据平行线的定义,a和b在同一平面α内.②唯一性:在a上任取一点A,在b上任取一点B,连接点A,B作直线c,∵A∈α,B∈α,∴c在α内,∵a∩c=A,b∩c=B,∴根据推论2 ,a和c在唯一的平面内,b和c在唯一的平面内.又a和b在同一平面内,则a,b,c在唯一的一个平面内.由①②可知:经过两条平行直线,有且只有一个平面.证明线共面例题:已知:a,b,c,d是不共点且两两相交的四条直线,求证:a,b,c,d共面.分析:弄清楚四条直线不共点且两两相交的含义:四条直线不共点,包括有三条直线共点的情况;两两相交是指任何两条直线都相交.在此基础上,根据平面的性质,确定一个平面,再证明所有的直线都在这个平面内.证明1º若当四条直线中有三条相交于一点,不妨设a,b,c相交于一点A∴直线d和A确定一个平面α.又设直线d与a,b,c分别相交于E,F,G,则A,E,F,G∈α.∵A,E∈α,A,E∈a,∴aα.同理可证bα,cα.∴a,b,c,d在同一平面α内.2º当四条直线中任何三条都不共点时,如图.∵这四条直线两两相交,则设相交直线a,b确定一个平面α.设直线c与a,b分别交于点H,K,则H,K∈α.又∵H,K∈c,∴cα.同理可证dα.∴a,b,c,d四条直线在同一平面α内.点评:证明若干条线(或若干个点)共面的一般步骤是:首先由题给条件中的部分线(或点)确定一个平面,然后再证明其余的线(或点)均在这个平面内.本题最容易忽视“三线共点”这一种情况.因此,在分析题意时,应仔细推敲问题中每一句话的含义.证明线共点例题. 如图,已知平面α,β,且α∩β=l.设梯形ABCD中,AD∥BC,且ABα,CDβ,求证:AB,CD,l共点(相交于一点).分析:AB,CD是梯形ABCD的两条腰,必定相交于一点M,只要证明M在l上,而l是两个平面α,β的交线,因此,只要证明M∈α,且M∈β即可.证明:∵梯形ABCD中,AD∥BC,∴AB,CD是梯形ABCD的两条腰.∴AB,CD必定相交于一点,设AB∩CD=M.又∵ABα,CDβ,∴M∈α,且M∈β.∴M∈α∩β.l,∴M∈l,即AB,CD,l共点.又∵α∩β=点评:证明多条直线共点时,与证明多点共线是一样的.当堂检测:1、下列命题是否正确.1.不共线的三点确定一个平面.(√)2.有三个公共点的两个平面重合.(√)3.三角形一定是平面图形.(√)4.平行四边形一定是平面图形.(√)5.四边形一定是平面图形.(×)6.不共线的四点确定一个平面.(×)2、P38练习B组第6题用符号语言表示.3、P38练习B组第2题.【设计意图】:检测基本性质及推论的理解及应用.归纳总结:请同学将3个平面基本性质及3个推论用图形语言及符号语言表述. 【设计意图】:学生会将自然语言、数学语言和符号语言相互转化.。
人教版高中必修2(B版)1.2.1平面的基本性质与推论课程设计一、教材简介《人教版高中数学必修2(B版)》是由人民教育出版社编写的高中数学教材。
本教材较好地体现出了素质教育的理念,强调数学知识在实际生活和各学科中的应用和综合应用能力培养。
其中1.2.1节《平面的基本性质与推论》是初学平面几何的基础,是学好初中数学和高中数学重要的一环。
二、教学目标看完本节课后,学生应该能够:1.掌握平面几何中的各种基本概念;2.熟练掌握平面内直线、角的性质和各种基本定理;3.了解射线和线段的概念及其基本性质;4.在各种问题中熟练运用平面几何中的基本知识和定理。
三、教学内容(一)平面几何基本概念1.区分平面和空间;2.点、直线和角的概念;3.“相交”、“平行”概念及其性质。
(二)平面内的直线和角1.直线的分类及性质,包括垂直、平行、相交的直线性质;2.角的基本概念和性质,特别是对顶角、平行线夹角和同旁内角、反向角的研究;3.五线定理、角平分线定理、中垂线定理等基本定理的探究。
(三)线段和射线1.线段和射线的概念及相关性质,包括延长线及其相关性质、异面直线的关系等。
(四)平面几何的基本性质探究1.角的外延:定义、性质、本质;2.端点与线段的关系:交叉性、重叠性、并列性等;3.线段的中点;4.垂足点:定义、性质。
(五)平面几何的实际应用1.利用平面几何的知识解决一些测量问题;2.利用平面几何的知识理解衣服尺码的相关知识;3.平面几何在建筑、设计和美术中的应用。
四、教学重点1.掌握平面内直线、角的性质和各种基本定理;2.了解射线和线段的概念及其基本性质;3.在各种问题中熟练运用平面几何中的基本知识和定理。
五、教学建议1.建立直观感受:通过学生自身的经验,探究点、直线、角和平面以及它们之间的关系;2.图象教学法:在教学中使用动态图象或幻灯片,通过图象去描绘这些点、线段、射线、任意线和角的相互关系,从而加深学生的理解;3.创设问题:通过贴近实际的问题,让学生去运用所掌握的知识,培养学生的问题解决能力;4.课后扩展:提供丰富的课外资料,引导学生去了解平面几何知识在各个领域中的实际应用。
《平面的基本性质与推论》教案教学目标1、了解平面的基本性质与推论,并能运用这些公理及推论去解决有关问题,会用集合语言来描述点、直线和平面之间的关系以及图形的性质。
2、以所学过的作为推理依据的一些公理和定理为基础,通过直观感知,操作确认,思辨论证,归纳出空间中线、面平行的有关判定定理和性质定理。
3、能运用已获得的结论证明一些空间位置关系的简单命题。
教学重难点重点:平面的基本性质与推论以及它们的应用;线线平行及平行线的传递性和面面平行的定义与判定。
难点:自然语言与数学图形语言和符号语言间的相互转化与应用;如何由平行公理以及其他基本性质推出空间线、线,线、面和面、面平行的判定和性质定理,并掌握这些定理的应用。
教学过程一、导入生活中的图形由哪些元素组成?点线面作为基本图形,他们之间有什么关系呢?二、平面的基本性质1、关于公理1(1)三种数学语言表述:文字语言表述:如果一条直线上的两点在一个平面内,那么这条直线上所有点都在这个平面内。
图形语言表述:如图1所示图1符号语言表述:(2)内容剖析:公理1的内容反映了直线与平面的位置关系,条件“线上两点在平面内”是公理的必须条件,结论“线上所有点都在面内”。
这个结论阐述两个观点,一是整个直线在平面内,二是直线上所有点都在平面内。
(3)公理1的作用:既可判定直线是否在平面内,点是否在平面内,又可用直线检验平面。
2、关于公理2(1)公理2的三种数学语言表述:文字语言表述:过不在同一直线上的三点,有且只有一个平面。
图形语言表述:如图2所示图2符号语言表述:A、B、C三点不共线有且只有一个平面α,使.(2)内容剖析:公理2的条件是“过不在同一直线上的三点”,结论是“有且只有一个平面”。
条件中的“三点”是条件的骨干,不会被忽视,但“不在同一直线上”这一附加条件则易被遗忘,如舍之,结论就不成立了,因此绝对不能遗忘.同时还应认识到经过一点、两点或在同一直线上的三点可有无数个平面;过不在同一直线上的四点,不一定有平面,因此要充分重视“不在同一直线上的三点”这一条件的重要性。
§1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论【学习要求】1.理解平面的基本性质与推论.2.能运用平面的基本性质及推论去解决有关问题.3.会用集合语言来描述点、直线和平面之间的关系以及图形的性质.【学法指导】通过桌面、黑板、地面等有形的实物,对平面有个感性认识,进而抽象出平面的概念及平面的基本性质及推论,感受我们所处的世界是一个三维空间,进而增强学习的兴趣,培养空间想象能力.填一填:知识要点、记下疑难点1.连接两点的线中,线段最短;过两点有一条,并且只有一条直线.2.平面基本性质1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内.这时我们说,直线在平面内或平面经过直线 .3.基本性质2:经过不在同一条直线上的三点,有且只有一个平面.或简单说成:不共线的三点确定一个平面.4.基本性质3:如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线.5.基本性质的推论:推论1 :经过一条直线和直线外的一点,有且只有一个平面;推论2 :经过两条相交直线,有且只有一个平面;推论3 :经过两条平行直线,有且只有一个平面.6.异面直线:既不相交也不平行的直线叫做异面直线.与一平面相交于一点的直线与这个平面内不经过交点的直线是异面直线.研一研:问题探究、课堂更高效[问题情境]在《西游记》中,如来佛对孙悟空说:“你一个跟头虽有十万八千里,但不会跑出我的手掌心”.结果孙悟空真没有跑出如来佛的手掌心,如果把孙悟空看作是一个点,他的运动成为一条线,大家说如来佛的手掌像什么?探究点一平面的基本性质问题1在初中我们学习的点与直线的基本性质有哪些?问题2生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象,你们能举出更多例子吗?那么,平面的含义是什么呢?问题3实际生活中,我们有这样的经验:把一根直尺边缘上的任意两点放到桌面上,可以看到,直尺的整个边缘就落在了桌面上.从经验中我们能得到什么结论呢?问题4直线和平面都可以看成点的集体,那么点、直线、平面的位置关系怎样用集合的符号表示?问题5如何用符号语言表示基本性质1?基本性质1有怎样的用途?问题6生活中经常看到用三角架支撑照相机;测量员用三角架支撑测量用的平板仪;有的自行车后轮旁只安装一只撑脚.上述事实和类似经验可以归纳出平面怎样的性质?问题7如何用符号语言表示基本性质2?基本性质2有怎样的用途?问题8基本性质2中“有且只有一个”的含义是什么?问题9如图所示,直线BC外一点A和直线BC能确定一个平面吗?为什么?问题10如图所示,两条相交直线能不能确定一个平面?为什么?问题11如图所示,两条平行直线能不能确定一个平面?为什么?问题12回顾第1.1节的内容,我们已经看到各种棱柱、棱锥的每两个相交的面之间的交线都是直线段,由此你能总结出怎样的结论?问题13在画两个平面相交时,如果其中一个平面被另一个平面遮住,应该怎样处理才有立体感?探究点二空间中两直线的位置关系问题1空间中的几个点或几条直线,如果都在同一平面内,我们就说它们共面.如果两条直线共面,那么两条直线有怎样的位置关系?问题2如图,直线AB与平面α相交于点B,点A在α外,那么直线l与直线AB能不能在同一个平面内?为什么?直线l与直线AB的位置关系是怎样的?小结:我们把这类既不相交又不平行的直线叫做异面直线.例1如图中的△ABC,若AB、BC 在平面α内,判断AC 是否在平面α内?小结:要判断或证明直线在平面内,只需要直线上的两点在平面内即可.跟踪训练1求证:两两平行的三条直线如果都与另一条直线相交,那么这四条直线共面.已知:a∥b∥c,l∩a=A,l∩b=B,l∩c=C.求证:直线a、b、c和l共面.例2如图,正方体AC1中,对角线A1C和平面BDC1交于O,AC与BD交于点M,求证:点C1、O、M共线.小结:证明点共线问题常用方法:(1)先找出两个平面,再证明这三个点都是这两个平面的公共点,根据基本性质3从而判定他们都在交线上;(2)选择两点确定一条直线,再证另一点在这条直线上.跟踪训练2空间四边形ABCD中,E、F、G、H分别是AB、AD、BC、CD上的点,已知EF和GH相交于点M,求证:点B、D、M共线.练一练:当堂检测、目标达成落实处1.若点M在直线b上,b在平面β内,则M、b、β之间的关系可记作()A.M∈b∈β B.M∈b⊂βC.M⊂b⊂β D.M⊂b∈β2.空间中可以确定一个平面的条件是()A.两条直线B.一点和一直线C.一个三角形D.三个点3.“a、b为异面直线”是指:①a∩b=∅,且a b;②a⊂面α,b⊂面β,且a∩b=∅;③a⊂面α,b⊂面β,且α∩β=∅;④a⊂面α,b⊄面α;⑤不存在面α,使a⊂面α,b⊂面α成立.上述结论中,正确的是()A.①④⑤正确B.①③④正确C.仅②④正确D.仅①⑤正确课堂小结:1.证明几点共线的方法:先考虑两个平面的交线,再证有关的点都是这两个平面的公共点.或先由某两点作一直线,再证明其他点也在这条直线上.2.证明点线共面的方法:先由有关元素确定一个基本平面,再证其他的点(或线)在这个平面内;或先由部分点线确定平面,再由其他点线确定平面,然后证明这些平面重合.注意对诸如“两平行直线确定一个平面”等依据的证明、记忆与运用.3.证明几线共点的方法:先证两线共点,再证这个点在其他直线上,而“其他”直线往往归结为平面与平面的交线。
《平面的基本性质与推论》教案
教学目标
1、了解平面的基本性质与推论,并能运用这些公理及推论去解决有关问题,会用集合语言来描述点、直线和平面之间的关系以及图形的性质。
2、以所学过的作为推理依据的一些公理和定理为基础,通过直观感知,操作确认,思辨论证,归纳出空间中线、面平行的有关判定定理和性质定理。
3、能运用已获得的结论证明一些空间位置关系的简单命题。
教学重难点
重点:平面的基本性质与推论以及它们的应用;线线平行及平行线的传递性和面面平行的定义与判定。
难点:自然语言与数学图形语言和符号语言间的相互转化与应用;如何由平行公理以及其他基本性质推出空间线、线,线、面和面、面平行的判定和性质定理,并掌握这些定理的应用。
教学过程
一、导入
生活中的图形由哪些元素组成?点线面作为基本图形,他们之间有什么关系呢?
二、平面的基本性质
1、关于公理1
(1)三种数学语言表述:
文字语言表述:如果一条直线上的两点在一个平面内,那么这条直线上所有点都在这个平面内。
图形语言表述:如图1所示
图1
符号语言表述:
(2)内容剖析:
公理1的内容反映了直线与平面的位置关系,条件“线上两点在平面内”是公理的必须条件,结论“线上所有点都在面内”。
这个结论阐述两个观点,一是整个直线在平面内,二是直线上所有点都在平面内。
(3)公理1的作用:既可判定直线是否在平面内,点是否在平面内,又可用直线检验平
面。
2、关于公理2
(1)公理2的三种数学语言表述:
文字语言表述:过不在同一直线上的三点,有且只有一个平面。
图形语言表述:如图2所示
图2
符号语言表述:A、B、C三点不共线有且只有一个平面α,使.
(2)内容剖析:
公理2的条件是“过不在同一直线上的三点”,结论是“有且只有一个平面”。
条件中的“三点”是条件的骨干,不会被忽视,但“不在同一直线上”这一附加条件则易被遗忘,如舍之,结论就不成立了,因此绝对不能遗忘.同时还应认识到经过一点、两点或在同一直线上的三点可有无数个平面;过不在同一直线上的四点,不一定有平面,因此要充分重视“不在同一直线上的三点”这一条件的重要性。
公理2中的“有且只有一个”含义要准确理解。
这里的“有”是说图形存在。
“只有一个”是说图形惟一,本公理强调的是存在和惟一两个方面。
因此“有且只有一个”必须完整的使用,不能仅用“只有一个”来替代“有且只有一个”,否则就没有表达存在性。
“确定一个平面”中的“确定”是“有且只有”的同义词,也是指存在性和惟一性这两方面的,这个术语今后也会常常出现,要理解好。
(3)公理2的作用:
作用一是确定平面;
作用二是可用其证明点、线共面问题。
3、关于公理3
(1)公理3的三种数学语言表述:
文字语言表述:如果不重合的两个平面有一个公共点,那么它们有且只有一条过该点的公共直线。
图形语言表述:如图3所示。
图3
符号语言表述:
(2)公理3的剖析:
公理3的内容反映了平面与平面的位置关系。
公理2的条件简言之是“两面共一点”,结论是“两面共一线,且过这一点,线惟一”。
对于本公理应强调对于不重合的两个平面,只要它们有公共点,它们就是相交的位置关系,交集是一条直线。
(3)公理3的作用:
其一它是判定两个平面是否相交的依据,只要两个平面有一个公共点,就可以判定这两个平面必相交于过这点的一条直线;其二它可以判定点在直线上,点是某两个平面的公共点,线是这两个平面的公共交线,则这点在交线上。
三、平面的基本性质的推论
推论1:经过一条直线和这条直线外的一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
请同学们想一想:
三个推论的图形语言如何表示呢?
三个推论的符号语言如何表述呢?
三个推论有何作用呢?
推论2的证明
推论2:经过两条相交直线,有且只有一个平面。
已知:直线
求证:经过直线a、b有且只有一个平面α。
【证明】(1)如图4所示,在直线a,b上分别取不同于点A的点C、B,得不在同一直线上的三点A、B、C,过这三个点有且只有一个平面α(公理2)。
图4
又(公理1)
平面α是过相交直线a,b的平面。
(2)如果过直线a和b还有另一平面β,那么A,B,C三点也一定都在平面β内,这样过不在一条直线上的三点A,B,C就有两个平面α、β了,这与公理3矛盾。
所以过直线a,b的平面只有一个。
综上知,过直线a、b有且只有一个平面。
3.用集合语言来描述点、直线和平面之间的关系以及图形的性质
(1)点与平面的位置关系:点A在平面α内,记作A∈α;点A不在α内,记作;
(2)直线与平面的位置关系:直线m在平面α内,记作;直线m不在平面α内,记作;
(3)平面α与平面β相交于直线a,记作;
(4)直线m和n相交于点A,记作。
4.几种常见题型的解法
(1)证明直线在平面内的方法:证明直线上有两点在平面内。
(2)证明直线共面的方法:先证明其中两条直线确定一个平面,再证明其余直线都在这个平面内。
(3)证明点在直线上的方法:首先确定这条直线是哪两个平面的交线,然后证明这个点是这两个平面的公共点。
四、课后反思
学习本节课要注意正确的作图,恰当的作图有利于培养我们的空间想象能力.在平面几何中,辅助线一般要画成虚线,而立体几何中则不同,一般是将看不见的线画成虚线,与它是否是辅助线无关,这一点同学们一定要注意。
在平时的训练中要养成多动手、勤画图的习惯,必须熟练掌握空间图形的直观图的画法—斜二测画法。
要注意重视几何语言的训练和书写,尽可能熟记有关公理及推论的几何语言的叙述。
五、课后作业
课后习题A、B。
六、板书设计
1.平面的基本性质
图形语言例题练习小结
符号语言
注意事项。