当前位置:文档之家› 实验-伽尔顿板实验的模拟与验证

实验-伽尔顿板实验的模拟与验证

实验-伽尔顿板实验的模拟与验证
实验-伽尔顿板实验的模拟与验证

伽尔顿板实验的模拟与验证

光电0807班孔繁琦u200815321

一、实验背景

在一块竖直放置的板的上部,规则的钉有许多铁钉,下部用隔板划分为许多等宽度的狭槽,从装置顶上的漏斗中可将小球向下投放。若每次只投入一个小球,则发现小球每次落入哪个狭槽完全是偶然的。但连续重复许多次实验后发现:小球落入中间槽的次数多,落入两边槽的次数少。若把大量小球一次倒入,则可以看到,小球在各槽内的分布是不均匀的,以中间槽为最多,向两边逐渐减少,当一次倒入的小球总数足够多时,并且实验次数也足够多时,每次得到的分布曲线几乎相同。

(以上内容出自《大学物理(上)》(华中科技大学版)P169)

从有关书籍及概率论课上,我们得知这种分布曲线趋向于正态分布概率密度曲线。所以我们就想通过数学实验来验证这个结论。

二、实验方法及原理

因为对MA TLAB软件不熟悉,我们决定通过C语言编程来实现该过程,具体思路如下:1、小球每碰到一个铁钉,有两种结果,即向左落下和向右落下,可以用取随机数来模拟这

个随机事件。我们的想法是每次从0与1中随机取数,0表示小球向左,1表示小球向右。

2、经过一层层的选择,小球会掉入最底层的槽中。可对槽进行编号,从最左到最右,分别

为0,1,2,3…。

3、如果小球经过n层,即n次选择落入0号槽中,则该小球每次都是往左,有

0+0+0+0+…+0=0;如果落入1号槽,则小球有一次往右,有1+0+0+…0=1,由此类推。

可以将每次小球的选择加起来,得到的就是它将落入的槽的编号。

4、这样,假设有m层,即每次实验取m次随机数,将结果加起来得到一个值,根据这个

值,我们让对应的槽中小球数量加1。经过大量实验,就可以得到每个槽中小球的分布,算出小球落到每个槽中的概率。

5、得到这个离散型的概率分布,我们可以利用MA TLAB进行正态分布拟合优度测试,来

验证我们的假设(即小球的分布是正态分布)。另外通过一定的数学方法可以求出对应的概率密度曲线。

三、实验过程

1、编写C语言程序进行模拟实验

说明:①我们取槽的数量(M)为20,小球数(N)分别为5000、10000、30000做三次模

拟。

②最终得到的是每个槽中落入的小球数、球落入每个槽中的概率和概率取自然对数的

值。

程序如下:

#include

#include

#include

#define N 30000 \\小球数

#define M 20 \\槽的数目

void sort(int *p,int n,int m); \\产生随机数,并得出每个槽中的小球数

void gl_f(int *p,int n,float *gl,float *gl_log,int m);\\求概率和概率的对数

void output(int *p,float *gl,float *gl_log,int m);\\输出函数

void main()

{

float gl[M],gl_log[M];\\gl[M]存放概率,gl_log[M]存放概率的对数

int a[M]; \\存放槽中的小球数

sort(a,N,M);

gl_f(a,N,gl,gl_log,M);

output(a,gl,gl_log,M);

}

void sort(int *p,int n,int m)

{

int i;

int j,k;

k=0;

for(j=0;j

p[j]=0;

randomize();

for(i=0;i

{

for(j=0;j

k+=random(2);\\产生两个随机数0或1,存入k中

p[k]++;\\对应槽中小球数加一

k=0;

}

}

void gl_f(int *p,int n,float *gl,float *gl_log,int m)

{

float gl_n;

int i;

gl_n=n;

for(i=0;i

{

gl[i]=0;

gl[i]=p[i]/gl_n;

if(gl[i]>1e-6)

gl_log[i]=log(gl[i]);

else

gl_log[i]=0;\\若gl[i]=0就让gl_log[i]=0

}

}

void output(int *p,float *gl,float *gl_log,int m)

{

int i;

printf("box\t\tballs\t\tgailv\t\t log\n");

for(i=0;i

{

printf("%d\t\t%d\t\t%f\t\t%f\n",i,p[i],gl[i],gl_log[i]);

}

}

2、结果记录如下:

0.02

0.040.060.080.10.120.140.160.180.201234567891011121314151617181920

3、数据处理

① 用MATLAB进行正态分布拟合优度测试

我们选用jbtest 函数进行拟合优度测试

N=5000

>> X=[]; >> X=[0 0 0.0006 0.0012 0.0066 0.0194 0.0528 0.0974 0.149 0.1792 0.1726 0.144 0.0984 0.0492 0.0202 0.0078 0.0012 0.0002 0.0002 0];[H,P,JBSTAT,CV] = jbtest(X) H =

0 P =

0.0587

JBSTAT =

3.4091

CV =

3.8011

N=10000

>> X=[];

>> X=[0 0 0.003 0.0015 0.0064 0.0221 0.0494 0.0954 0.1411 0.1785 0.1785 0.1393 0.0983 0.0550 0.0226 0.0091 0.0018 0.0005 0.0002 0];[H,P,JBSTA T,CV] = jbtest(X)

H =

P =

0.0584

JBSTA T =

3.4232

CV =

3.8011

N=30000

>> X=[];

X=[0 0 0.000167 0.0022 0.006833 0.0238 0.052567 0.095167 0.146 0.172433 0.1769 0.145633 0.095667 0.051567 0.0209 0.0077 0.002167 0.000267 0.000033 0];

[H,P,JBSTA T,CV] = jbtest(X)

H =

0 P =

0.0594

JBSTA T =

3.3830 CV =

3.8011

②得出概率密度函数

通过对

()2

2

2)(21σ

μσ

π--

=

x e

x f 两边同时取对数,我们得到

σπσ

μ2ln

2)()(ln 2

2

---

=x x f ,即σπσ

μ

σ

μ

σ

2ln 222

22

2

2--

+

-

=x x

y 。

这样,就可以利用二次回归求出x 的一次项、二次项和常数项的系数,从而间接的求出σ与

μ。实验中,我们用计算器进行相关运算,结果如下: N=5000时,μ=9.503236493, σ=2.171502976 ; N=10000时,μ=,σ=; N=30000时,μ=,σ=;

四、 结果分析及结论表述

不同实验次数下测试结果H 都等于0,并且统计量JBSTA T 都小于接受假设的临界值CV ,这说明小球是符合正态分布的。并且随着小球数的增加,小球在槽中的分布越来越符合正态分布。

2、根据期望与标准差得出对应的正态分布概率密度函数图像,并与实验得到的图像进行比较:

N=5000

0.02

0.040.060.080.10.120.140.160.180.20

1

2

3

4

5

6

7

8

9

1011121314151617181920

实验值

N=10000

0.02

0.040.060.080.10.120.140.160.180.20

1

2

3

4

5

6

7

8

9

1011121314151617181920

实验值

N=30000

0.02

0.040.060.080.10.120.140.160.180.20

1

2

3

4

5

6

7

8

9

1011121314151617181920

实验值

可以看到,实验得到的曲线与正态分布曲线基本吻合。

3、 综上,我们可以得出结论,伽尔顿板实验中得到的小球分布是符合正态分布的。实验目

的达到。

五、 实验体会与总结

通过这次实验,我们都学到的许多东西。对MA TLAB 软件有了初步了解,对数学建模也是一次很好的尝试,另外还是一次成功的团队协作。虽然只是很简单的一个模拟,但在这个过程之中我们也遇到的许多困难。不过这过程是快乐的,因为我们真正体会到数学实验的乐趣,并逐渐产生了兴趣。这次的实验不仅仅是一次作业,对我们来说有着更多的意义,我们体会到了自己动手完成一件事情是多么的惬意!

高中物理《楞次定律》优质课教案、教学设计

G 教学设计 一、1、复习引入课堂, 2、实验导入新课二、 1、介绍研究感应电流方向的主要器材并让学生思考: (1) 、灵敏电流计的作用是什么?为什么用灵敏电流计而不用安培表? 答:灵敏电流计——(把灵敏电流计与干电池试触,演示指针偏转方向与电流流入方 向间的关系)电流从那侧接线柱流入,指针就向那侧偏转,因为灵敏电流计的量程较小,灵敏度较高,能测出螺线管中产生的微弱感应电流。 (2) 、为什么本实验研究的是螺线管中的感应电流,而不是单匝线圈或其它导体中的 感应电流? 答:因为穿过螺线管的磁通量发生变化,所以是螺线管中的感应电流,而螺线管中的 电流也就是单匝线圈中的电流。 2、实验内容: 灵 研究影响感应电流方向的因素按照图 敏 螺 所示连接电路,并将磁铁向线圈插入或从 电 线 线圈拔出等,分析感应电流的方向与哪些 流 管因素有关。 计 3、学生探究:研究感应电流的方向 (1) 、探究目标:找这两个磁场的方向关系的规律。 (2) 、探究方向:从磁铁和线圈有磁力作用入手。 (3) 、探究手段:分组实验(器材:螺线管,灵敏电流计,条形磁铁,导线) (4) 、探究过程 操 作 填写 内 方 法 容 N S 磁铁在管上静止不动时 磁铁在管中静止 不动时 插入 拔出 插入 拔出 N 在下 S 在下 N 在下 S 在下 原来磁场的方向 向下 向下 向上 向上 向下 向上 向下 向上 原来磁场的磁通量变化 增大 减小 增大 减小 不变 不变 不变 不变 感应磁场的方向 向上 向下 向下 向上 无 无 无 无 原磁场与感应磁 相反 相同 相反 相同 —— —— —— ——

(5)、学生带着问题分组讨论: 问题1、请你根据上表中所填写的内容分析一下,感应电流的磁场方向是否总是与原磁场的方向相反? 问题2、请你仔细分析上表,用尽可能简洁的语言概括一下,究竟如何确定感应电流的方向?并说出你的概括中的关键词语。 问题3、你能从导体和磁体相对运动的角度来确定感应电流的方向吗?如果能,请用简洁的语言进行概括,并试着从能量的转化与守恒角度去解释你的结论? 学生四人一组相互交流、分析、讨论,用最简洁的语言概括出本组的结论。师巡视各组的情况,然后指定某些组公布本组的成果在全班进行交流,师生共同讨论,形成结论。 教学中,学生概括多种多样,有的也非常准确到位,甚至于出乎意料,如:概括1:感应电流的磁场总是阻碍引起感应电流的磁通量的变化 概括2:感应电流在回路中产生的磁通量总是反抗(或阻碍)原磁通量的变化 概括3:感应电流的效果总是反抗(或阻碍)引起它的那个原因 (加点部分为学生提出的关键词) 教师应充分肯定他们的结论,并对出现的问题进行讨论、纠正, 总结规律:原磁通变大,则感应电流磁场与原磁场相反,有阻碍变大作用 原磁通变小,则感应电流磁场与原磁场相同,有阻碍变小作用 结论:增反减同 展示多媒体课件再次看看多媒体模拟的电磁感应中感应电流的产生过程。 投影展示楞次定律内容及其理解: 4、楞次定律——感应电流的方向 (1)、内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。 (师指出上述结论是物理学家楞次概括了各种实验结果提出的,并对楞次的物理 学贡献简单介绍) (2)、理解: ①、阻碍既不是阻止也不等于反向,增反减同 “阻碍”又称作“反抗”,注意不是阻碍原磁场而阻碍原磁场的变化 ②、注意两个磁场:原磁场和感应电流磁场 ③、学生在图中标出每个螺线管的感应电流产生的等效N 极和S 极。 根据标出的磁极方向总结规律: 感应电流的磁场总是磁体阻碍相对运动。“你来我不让你来,你走我不让你走” 强调:楞次定律可以从两种不同的角度来理解: a、从磁通量变化的角度看:感应电流总要阻碍磁通量的变化。

系统仿真测试平台

仿真测试系统 系统概述 FireBlade系统仿真测试平台基于用户实用角度,能够辅助进行系统方案验证、调试环境构建、子系统联调联试、设计验证及测试,推进了半实物仿真的理论应用,并提出了虚拟设备这一具有优秀实践性的设计思想,在航电领域获得了广泛关注和好评 由于仿真技术本身具备一定的验证功能,因此与现有的测试技术有相当的可交融性。在航电设备的研制和测试过程中,都必须有仿真技术的支持:利用仿真技术,可根据系统设计方案快速构建系统原型,进行设计方案的验证;利用仿真验证成果,可在系统开发阶段进行产品调试;通过仿真功能,还可对与系统开发进度不一致的子系统进行模拟测试等。 针对航电设备产品结构和研制周期的特殊性,需要建立可以兼顾系统方案验证、调试环境构建、子系统联调联试、设计验证及测试的系统仿真平台。即以半实物仿真为基础,综合系统验证、系统测试、设备调试和快速原型等多种功能的硬件平台和软件环境。 目前,众多研发单位都在思索着如何应对航电设备研制工作日益复杂的情况。如何采取高效的工程技术手段,来保证系统验证的正确性和有效性,是航电设备系统工程的重要研究内容之一,FireBlade 系统仿真测试平台正是在这种大环境下应运而生的。 在航电设备研制工程中的定位设备可被认为是航电设备研制工程中的终端输出,其质量的高低直接关系到整个航电设备系统工程目标能否实现。在传统的系统验证过程中,地面综合测试是主要的验证手段,然而,它首先要求必须完成所有分系统的研制总装,才能进行综合测试。如果能够结合面向设备的仿真手段,则可以解决因部分设备未赶上研发进度导致综合测试时间延长的问题。在以往的开发周期中,面向设备的仿真技术并没有真正得到重视: (1)仿真技术的应用主要集中在单个测试对象上,并且缺乏对对象共性的重用; (2)仿真技术缺乏对复杂环境与测试对象的模拟; (3)仿真技术的应用缺乏系统性,比如各个阶段中仿真应用成果没有实现共享,

物理演示实验

大连海事大学 《物理演示实验》课程教学大纲 Syllabus for INTRODUCTION OF PHYSICAL DEMONSTRATION EXPERIMENT 课程编号新 000000000 原13012200 学时/学分18/1 开课单位物理系考核方式考查 适用专业全校各专业执笔者牟恕德 编写日期 2008年3月 一、本课程的性质与任务 物理学是一门实验科学。所有物理定律的形成和发展都是建立在对客观自然现象的观察和研究的基础上,物理演示实验可以使学生加深对物理教学内容的理解,巩固记忆,激发兴趣,诱导思考,纠正错误观念,能使学生真实感地看到支配物理现象的规律如何起作用,通过对实验现象的观察分析,学习物理实验知识,从理论和实践的结合上加深对物理学原理的理解。 1、培养和提高学生基本的科学实验能力,其中包括: 自学能力:通过自行阅读实验教材和其它资料,能正确概括出实验内容、方法和要求,做好实验前的准备; 动手能力:借助教材《物理演示实验》和仪器说明书,正确调整和使用仪器;安排实验操作顺序,把握主要实验技能,排除实验故障;掌握常规物理实验仪器的使用,掌握科学实验的数据处理方法和科学实验报告的形成,为进一步学习和从事科学实验研究打下坚实的基础。 分析能力:运用所学物理知识,对实验现象和结果进行观察分析判断,得出结论; 表达能力:正确记录和处理实验数据,绘制曲线,正确表达实验结果,撰写合格的实验报告; 2、培养和提高学生科学实验素养:要求学生养成理论联系实际和实事求是的科学作风,严肃认真的工作态度,主动研究的探索精神和创新意识,遵守纪律、遵守操作规程、爱护公共材物、团结协作的优良品德。 物理演示实验是面向全校各年级学生的开放式实验选修课,共18学时;学生可自主安排在计划课表内任何时段来上课。 二、课程简介 《物理演示实验》将日常生活或生产实践中不易观察到的或习以为常而未引起注意的物理现象突出地显示出来,把实际较为复杂的现象,在课堂演示的条件下分解出有意义的部分,从兴趣和提高关注度出发,培养学生的探索精神,引导学生观察、思考、建立物理思想,培养学生根据物理原理分析解决实际问题的能力。演示实验片广开学生眼界,介绍现代科学技术前沿的新技术、新发明、新材料、新探索、新成果,分享现代科学技术飞跃发展的喜悦。 INTRODUCTION OF PHYSICAL DEMONSTRATION EXPERIMENT displays the physical phenomenon which is unobservable in daily life and production practice, or is accustomed and thus not given attention. It draws out the significative parts from real complex phenomenon through the demonstration in class. In view of the students' interest,physical demonstration experiement may cultivate students' exploring spirit and inducts them to observe and think so that they can found physical idea and possess the abilities to analyse and solve questions according the physical theories. Physical demonstration experiment introduces new technique, new invention, new exploration and new production in modern technology and so widen students' eyereach and make students enjoy the flying development of modern technology

PCB实验报告

课程设计报告 利用Altium Designer设计单片机实验系统PCB板 学院城市轨道交通学院 专业电气工程与自动化 班级10控制工程 学号1042402057 姓名方玮 指导老师刘文杰 完成时间2013-05-21

目录 一、设计目的 (2) 二、设计方案 2.1、设计流程图 (2) 2.2、板层选择 (2) 2.3、元件封装 (3) 2.4、布线方案 (4) 三、原理图的绘制 3.1创建新的PCB工程 (4) 3.2创建新的电气原理图 (5) 3.3添加电路原理图到工程当中 (5) 3.4设置原理图选项 (5) 3.5电路原理图绘制 (6) 3.5.1 加载库和元件 (6) 3.5.2 放置元件 (7) 3.5.3 绘制电路 (9) 3.5.4 注意事项 (11) 3.6编译工程 (14) 四、PCB板的绘制 4.1创建新的PCB文件 (15) 4.2在工程中添加新的PCB (16) 4.3 将原理图的信息导入PCB (17) 4.4 PCB的绘制 (17) 4.4.1元件放置 (17) 4.4.2规则设置 (18) 4.4.3手动布线 (19) 4.4.4规则检查 (21) 五、实验心得体会 (23) 六、附录1 原理图 (24) 七、附录2 PCB图 (25)

利用Altium Designer 设计单片机实验 系统PCB板 一、设计目的 1.培养学生掌握、使用实用电子线路、计算机系统设计、仿真软件的能力。2.提高学生读图、分析线路和正确绘制设计线路、系统的能力。 3.了解原理图设计基础、了解设计环境设置、学习 Altium Designer 软件的功能及使用方法。 4.掌握绘制原理图的各种工具、利用软件绘制原理图。 5.掌握编辑元器件的方法构造原理图元件库。 6.熟练掌握手工绘制电路版的方法。 7.掌握绘制编辑元件封装图的方法,自己构造印制板元件库。 8.了解电路板设计的一般规则、利用软件绘制原理图并自动生成印制板图。 二、设计方案 2.1 设计流程图 2.2板层选择 根据层数分类,印制电路板可分为单面板、双面板和多层板。 (1)单面板 单面印制电路板只有一面有导电铜箔,另一面没有。在使用单面板时,通常在没有导电铜箔的一面安装元件,将元件引脚通过插孔穿到有导山铜箔的一面,导电铜箔将元件引脚连接起来就可以构成电路或电子设备。单面板成本低,但因为只有一面有导电铜箔,不适用于复杂的电子设备。 (2)双面板 双面板包括两层:顶层(Top Layer)和底层(Bottom Layer)。与单面板不同,双面板的两层都有导电铜箔,其结构示意图如图2-1所示。双面板的每层都

高中物理楞次定律实验教案

高中物理楞次定律实验教案 第三节:楞次定律教案 【教学目标】 1、知识与技能: (1)、理解楞次定律的内容。 (2)、能初步应用楞次定律判定感应电流方向。 (3)、理解楞次定律与能量守恒定律是相符的。 (4)、理解楞次定律中“防碍”二字的含义。 2、过程与方法 (1)、通过观察演示实验,探索和总结出感应电流方向的一般规律 (2)、通过实验教学,感受楞次定律的实验推导过程,培养学生观察 实验,分析、归纳、总结物理规律的水平。 3、情感态度与价值观 (1)、使学生学会由个别事物的个性来理解一般事物的共性的理解事 物的一种重要的科学方法。 (2)、培养学生的空间想象水平。 (3)、让学生参与问题的解决,培养学生科学的探究水平和合作精神。【教学重点】应用楞次定律(判感应电流的方向) 【教学难点】理解楞次定律(“防碍”的含义) 【教学方法】实验法、探究法、讨论法、归纳法 【教具准备】

灵敏电流计,线圈(外面有明显的绕线标志),导线若干,条形磁铁, 线圈 【教学过程】 一、复习提问: 1、要产生感应电流必须具备什么样的条件? 答:穿过闭合回路的磁通量发生变化,就会在回路中产生感应电流。 2、磁通量的变化包括哪情况? 答:根据公式Φ=BS sinθ(θ是B与S之间的夹角)可知,磁通量Φ 的变化包括B的变化,S的变化,B与S之间的夹角的变化。这些变化 都能够引起感应电流的产生。 二、引入新课 提出问题:如图,在磁场中放入一线圈,若磁场B变大或变小,问 ①有没有感应电流?(有,因磁通量有变化); ②感应电流方向如何? 本节课我们就来一起探究感应电流与磁通量的关系。 三、实行新课 1、介绍研究感应电流方向的主要器材并让学生思考: (1)、灵敏电流计的作用是什么?为什么用灵敏电流计而不用安培表? 答:灵敏电流计——(把灵敏电流计与干电池试触,演示指针偏转方 向与电流流入方向间的关系)电流从那侧接线柱流入,指针就向那侧 偏转,因为灵敏电流计的量程较小,灵敏度较高,能测出螺线管中产 生的微弱感应电流。

第十七章 波粒二象性 复习教案讲课教案

第十七章 波粒二象性 复习教案 17.1 能量量子化 知识与技能 (1)了解什么是热辐射及热辐射的特性,了解黑体与黑体辐射。 (2)了解黑体辐射的实验规律,了解黑体热辐射的强度与波长的关系。 (3)了解能量子的概念。 教学重点:能量子的概念 教学难点:黑体辐射的实验规律 教学过程: 1、黑体与黑体辐射 (1)热辐射现象 固体或液体,在任何温度下都在发射各种波长的电磁波,这种由于物体中的分子、原子受到激发而发射电磁波的现象称为热辐射。所辐射电磁波的特征与温度有关。 (2)黑体 概念:能全部吸收各种波长的电磁波而不发生反射的物体,称为绝对黑体,简称黑体。 2、黑体辐射的实验规律 黑体热辐射的强度与波长的关系:随着温度的升高,一方面,各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。 提出1:怎样解释黑体辐射的实验规律呢? 在新的理论诞生之前,人们很自然地要依据热力学和电磁学规律来解释。德国物理学家维恩和英国物理学家瑞利分别提出了辐射强度按波长分布的理论公式。结果导致理论与实验规律不符,甚至得出了非常荒谬的结论,当时被称为“紫外灾难”。(瑞利--金斯线,) 3、能量子: 1900年,德国物理学家普朗克提出能量量子化假说:辐射黑体分子、原子的振动可看作谐振子,这些谐振子可以发射和吸收辐射能。但是这些谐振子只能处于某些分立的状态,在这些状态中,谐振子的能量并不象经典物理学所允许的可具有任意值。相应的能量是某一最小能量ε(称为能量子)的整数倍,即:ε, 1ε,2ε,3ε,... n ε,n 为正整数,称为量子数。对于频率为ν的谐振子最小能量为: 0 1 2 3 4 6 (μ e 实验结果

17.4《概 率 波》教学案

新课程人教版物理选修模块3-5(2007年3月第2版) 17.4 概率波 泰安第三中学李克君 【教学目标】 ★知识与技能 1.知道经典粒子与经典波的基本特性。 2.知道经典的粒子与经典的波的区别与联系。 3.知道光是一种概率波,物质波也是一种概率波。 4.理解什么是概率波。 ★过程与方法 理解什么是概率波,并能用概率波的概念解释干涉,衍射等现象。 ★情感态度与价值观 1.体会科学理论的建立过程,体会科学发展的无限性。 2.培养学生的科学素质及学习科学热爱科学精神。 【教学重点、难点】 重点:人类对光波物质波的认识发展过程。 难点:理解什么是概率波。 【教具准备】多媒体Powerpoint课件 ▼教学过程: 【前置复习】:什么是物质波? 【新课导入】 教师:通过上节课的学习我们知道,光具有波动性,实物粒子也具有波动性,那么光波和物质波到底是什么样的波?(设置悬念,抓住学生的注意力) 教师:这就是我们今天要解决的问题。(多媒体板书:17.4 概率波) 【讲解过程】 教师:分析物理现象、建立科学理论时,经常要建立模型,研究光波和物质波怎样建立模型?为了解决这个问题,先看一下经典物理学怎样建立模型解释问题的。(板书:一经典的粒子和经典的波) 教师:请同学们阅读第40页1-4自然段,然后思考回答幻灯片上的几个问题。(多媒体打出如下问题:1:经典物理学建立了几种模型?2:回顾学过的运动,那些运动以粒子模型方式处理?那些运动以波动模型方式处理?3:经典的粒子模型基本特征是什么?有何缺陷?4:经典的波动模型基本特征是什么?)(学生阅读课本后马上思考提出的问题,并同学之间交流讨论,教师巡视指导学生) (学生开始积极回答问题) 学生:经典物理学建立了2种模型,粒子模型和波动模型。 学生:以粒子模型处理的有:匀变速直线运动,自由落体运动,平抛运动,匀速圆周运动,简谐运动…………,以波动模型处理的有:绳波,水波,声波等机械波,电磁波…………学生:经典的粒子模型基本特征是:有一定的的空间大小,有一定的质量,有的有电荷。只要知道物体的初始条件(初始位置、初速度)以及受力情况,由牛顿第二定律可知,就能确定它们以后任意时刻的位置和速度,进而确定它们在空间中的运动轨迹。缺陷:有些问题想着简单处理起来很麻烦。 学生:经典的波动模型基本特征是:其特征是具有波长和频率,具有时间和空间的周期性。例如声波,电磁波,水波可用波长和频率周期性变化的物理量来描述,具有干涉、衍射、偏振等现象。

楞次定律实验设计

“楞次定律”实验教学设计 学习目标 1、通过实验探究归纳总结出楞次定律。 2、理解楞次定律,并会运用楞次定律判断感应电流的方向 3、通过实验探究,提高学生的分析、归纳、概括、及表述的能力 实验的中心问题:闭合回路中Φ变化产生的感应电流的方向如何判别。 实验器材:(1) 判别电流表指针偏转与电流流向间的关系:干电池一节、灵敏电流计、导线。 (2) 判别感应电流的方向:条形磁铁、灵敏电流表、螺线管、导线两根。 教学方法:实验探究式教学法。 教学过程设计: (一)设置情景、提出问题: [演示实验]: 如下图所示,当磁铁向上或向下运动时, 电流表的指针发生了偏转. [提出问题] 1、电流表指针偏转有规律吗? 2、怎样判断出感应电流的方向? (二)解决实验中心问题、形成新知识。 (1)解决中心问题的方法 [教师指导]:回想以前学过的方法,有实验探究、理论分析等 [提出方案]:实验探究法。 (2)选择易行方案解决中心问题: [教师点拔引导]:电流方向通过电流表指针偏转方向来显示,故应先判别电流方向与电流表指 针偏转方向之间的关系, 如何判别? [提出方案]:连接电路(灵敏电流计、干电池、导线)判别指针偏转与电流方向间关系。 1、弄清电流方向、电流表指针偏转方向与电流表红、黑接线柱的关系:{ 将电流表的左右接 线柱分别与干电池的正负极相连(试触法),观察电流流向与指针偏向的关系} 结论:当电流由流入时,表针向偏转。 2、根据灵敏电流计的偏转方向结合线圈导线绕向把电流流向。用标签贴出来,由此判断感应 电流的方向

[实验]:探究感应电流的方向 [教师示范演示]:教师按上图第一种情况演示实验, 1·磁铁的运动方向,磁铁产生的磁场方向; 2·引导学生实验中须注意电流表指针偏转方向, 用标签在螺线管上标出感应电流的方向, 3·用右手判断感应电流产生的磁场方向; 4·螺线管内的磁通量的变化, 5·关注螺线管内磁铁产生的磁场方向与感应电流产生的磁场方向的关系。 [设计表格]:表格中的内容由学生填写。

(完整word版)PCB实验报告

《电子线路印刷版(PCB)设计CAD》 实践报告 题目:单片机最小系统PCB设计 姓名: 学号: 系别:信息工程系 专业:通信工程 年级:09 级 2013年1月9日 一、设计的任务与要求 学习掌握一种电路设计与制板软件(课堂主要使用Protel 99SE,或其他软

件Altium Designer 、PADS、OrCAD、Proteus 等),掌握软件使用的基本技巧的基础,结合专业相关电路方面知识来设计PCB板。根据参考系统设计一个小型的单片机系统,以89C51 为核心单片机,具备如下主要功能模块:电源模块、ISP(In-System Programming)下载模块,时钟和复位模块、AD 采集模块、键盘模块、数码管和LED显示模块等,画出SCH原理图和对应的PCB 印刷电路板。 主要设计内容: 1、根据需要绘制或创建自己的元件符号,并在原理图中使用; 2、SCH原理图设计步骤与编辑技巧总结; 3、绘制或创建和元件封装,并在原理图中调用; 4、生成项目的BOM(Bill of Material); 5、设置PCB 设计规则(安全距离、线宽、焊盘过孔等等),以及PCB 设 计步骤和布局布线思路和技巧总结; 6、最终完整的SCH电路原理图; 7、元器件布局图; 8、最终完整的PCB 版图。 二、实验仪器 PC机,Protel 99SE软件 三、原理图元件库设计 3.1 6段数码管模块 LED数码管(LED Segment Displays)是由多个发光二极管封装在一起组成“8”字型的器件,引线已在内部连接完成,只需引出它们的各个笔划,公共电极。LED数码管有八个小LED发光二极管,常用段数一般为7段有的另加一个小数点,通过控制不同的LED的亮灭来显示出不同的字形。数码管又分为共阴极和共阳极两种类型,其实共阴极就是将八个LED的阴极连在一起,让其接地,这样给任何一个LED的另一端高电平,它便能点亮。而共阳极就是将八个LED的阳极连在一起。

楞次定律难点解析

“楞次定律”教学难点的突破方法 高中物理教学中楞次定律是高考的热点、重点、难点之一,其内容是:感应电流的磁场,总是要阻碍引起感应电流的磁通量的变化。该定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况。要让学生学好这个定律,突破这一定律难点,除做好演示实验外,教学中还应注意让学生从以下几点着手学习。 一、分四步理解楞次定律 1.明白谁阻碍谁──感应电流的磁通量阻碍产生产感应电流的磁通量。 2.弄清阻碍什么──阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。 3.熟悉如何阻碍──原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。 4.知道阻碍的结果──阻碍并不是阻止,结果是增加的还增加,减少的还减少。 二、学会楞次定律的另一种表述 有人把它称为对楞次定律的深层次理解。 1.表述内容:感应电流总是反抗产生它的那个原因。 2.表现形式有三种: a.阻碍原磁通量的变化; b.阻碍物体间的相对运动,有的人把它称为“来拒去留”; c.阻碍原电流的变化(自感)。 注意:分析磁通量变化时关键在于对有关磁场、磁感线的空间分布要有足够清楚的了解,有些问题应交替利用楞次定律和右手定则分析。 三、能正确区分楞次定律与右手定则的关系 导体运动切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的特例。用右手定则能判定的,一定也能用楞次定律判定,只是不少情况下,不如用右手定则判定来得方便简单。反过来,用楞次定律能判定的,并不是用右手定则都能判断出来。如闭合圆形导线中的磁场逐渐增强,用右手定则就难以判定感应电流的方向;相反,用楞次定律就很容易判定出来。 四、理解楞次定律与能量守恒定律 楞次定律在本质上就是能量守恒定律。在电磁感应现象中,感应电流在闭合电路中流动时将电能转化为内能,根据能量守恒定律,能量不能无中生有,这部分能量只能从其他形式的能量转化而来。例如,当条形磁铁从闭合线圈中插进与拔出的过程中,按照楞次定律,把磁铁插入线圈或从线圈中拔出,都必须克服磁

电路原理图与电路板设计实验报告

电路原理图与电路板设计实验报告 学院: 班级: 专业: : 学号:

指导老师: 河南工业大学实验报告专业班级 学号 同组者姓名完成日期 成绩评定 实验题目:(一)原理图设计环境画原理图实验 实验目的: 1.熟练PROTEL99se的原理图编辑环境。 2.掌握常用管理器,菜单的使用,电气规则检查。 3.掌握元器件的调用,属性含义。 实验内容: 教材: 1.1,1.2,1.3,1.4环境熟悉 2.1,2.2工具条对象,器件调用 2.3,2.4菜单使用,元件属性修改 4.2练习1---练习8 实验仪器:PROTEL99se软件

实验步骤: (1)放置元件:就是在元件库中找元件,然后用元件管 理器的Place按钮将元件放在原理图中。 放置元件时需要使用如下所示快捷键: 空格键:每单击一次空格键使元件逆时针旋转90度。 TAB键:当元件浮动时,单击TAB键就可以显示属性编辑窗口。 X键:元件水平镜像。 Y键:元件垂直镜像。 (2)连接导线。使用划线工具连接导线。 (3)放置电源,地线和网络标记。放置电源和地线标记前要显示电源地线工具箱。 (4)自动元件编号:使用菜单Tool/Annotate对元件自动编号。 (5)编辑元件属性。单击元件,在弹出的属性窗口中输入元件的属性,注意一定要输入元件封装。(6)电气规则检查。使用Tool/ERC菜单,对画好的原理图进行电气规则检查,检查完毕后,出现报 表信息,就可以进行下一步。

(7)原件图元件列表。使用Edit/Export to Spread菜单,按照向导提示进行操作。 (8)建立网络表。使用菜单Design/Netlist。 实验截图:

第四章 气体动理论 总结

第四章 气体动理论 单个分子的运动具有无序性 布朗运动 大量分子的运动具有规律性 伽尔顿板 热平衡定律(热力学第零定律) 实验表明:若 A 与C 热平衡 B 与C 热平衡 则 A 与B 热平衡 意义:互为热平衡的物体必然存在一个相同的 特征--- 它们的温度相同 定义温度:处于同一热平衡态下的热力学系统所具有的共同的宏观性质,称为温度。 一切处于同一热平衡态的系统有相同的温度。 理想气体状态方程: 形式1: mol M PV =RT =νRT M 形式2: 2 2 2111T V p T V p =形式3: nkT P = n ----分子数密度(单位体积中的分子数) k = R/NA = 1.38*10 –23 J/K----玻耳兹曼常数 在通常的压强与温度下,各种实际气体都服从理想气体状态方程。 §4-2 气体动理论的压强公式 V N V N n ==d d 1)分子按位置的分布是均匀的 2)分子各方向运动概率均等、速度各种平均值相等 k j i iz iy ix i v v v v ++=分子运动速度 单个分子碰撞器壁的作用力是不连续的、偶然的、不均匀的。从总的效果上来看,一个持续的平均作用力。 2213 212()323 p nmv p n mv n ω === v----摩尔数 R--普适气体恒量 描述气体状态三个物理量: P,V T 压 强 公 式

12 2 ω=mv 理想气体的压强公式揭示了宏观量与微观量统计平均值之间的关系,说明压强具 有统计意义; 压强公式指出:有两个途径可以增加压强 1)增加分子数密度n 即增加碰壁的个数 2)增加分子运动的平均平动能 即增加每次碰壁的强度 思考题:对于一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大(玻意耳定律);当体积不变时,压强随温度的升高而增大(查理定律)。从宏观来看,这两种变化同样使压强增大,从微观(分子运动)来看,它们有什么区 别? 对一定量的气体,在温度不变时,体积减小使单位体积内的分子数增多,则单位时间内与器壁碰撞的分子数增多,器壁所受的平均冲力增大,因而压强增大。而当体积不变时,单位体积内的分子数也不变,由于温度升高,使分子热运动加剧,热运动速度增大,一方面单位时间内,每个分子与器壁的平均碰撞次数增多; 另一方面,每一次碰撞时,施于器壁的冲力加大,结果压强增大。 §4-3 理想气体的温度公式 nkT p =23 p =n ω 1322 2 ω=mv =kT 1. 反映了宏观量 T 与微观量w 之间 的关系 ① T ∝ w 与气体性质无关;② 温度具有统计意义,是大量分子集 体行为 ,少数分子的温度无意义。2. 温度的实质:分子热运动剧烈程度的宏观表现。3. 温度平衡过程就是能量平衡过程。 二.气体分子运动的方均根速率 kT v m 2 32 1 2 = ?2 m ol 3kT 3R T v = =m M 在相同温度下,由两种不同分子组成的混合气体,它们的方均根速率与其质量的平方根成正比 当温度T=0时,气体的平均平动动能为零,这时气体分子的热运动将停止。然而事实上是绝对零度是不可到达的(热力学第三定律),因而分子的运动是永不停息 的。 μRT m kT v v x = ==22 31 分子平均平动动能 温度的微观本质:理想气体的温度是分子平均平动动能的量度 摩尔质量

高中物理-楞次定律实验教学案例

高中物理-楞次定律实验教学案例 这一节研究的是判断感应电流方向的一般规律,是本章教学的重点和难点。一是其涉及的因素多(磁场方向、磁通量的变化,线圈绕向、电流方向等),关系复杂;二是规律比较隐蔽,其抽象性和概括性很强。如果不明确指出各物理量之间的关系,使学生有一个清晰的思路,势必造成学生思路混乱,影响学生对该定律的理解。因此,学生理解楞次定律有较大的难度。为此笔者不按教材的思路进行实验,而是另辟蹊径,进了一些创新实验,具体设计如下: 一、复习知识引出课题 教师:1820年奥斯特发现电能生磁,1831年法拉第发现磁也能生电,我们把利用磁场产生的电流叫做感应电流。那么感应电流产生的条件是什么? 学生:闭合回路的磁通量发生变化。 实验1(教师演示)(如图1) 磁铁N极靠近与电流计连接的闭合线圈,磁通量增加,回路有感应电流;磁铁N 极远离与电流计连接的闭合线圈,磁通量减少,回路有感应电流。 教师:前后两次电流计指针偏转方向不同,意味着感应电流方向不同。那么感应电流的方向与什么因素有关?如果没有电流计我们将如何判断感应电流方向?实验设计目的: 1.复习感应电流产生的条件 2.引出感应电流的方向与什么因素有关这一课题 图1 二、实验探究,总结规律 实验2. 磁铁吸铝环(教师演示) 教师:磁铁能吸引铁钴镍等金属,能否吸引金属铝? 学生:不能 教师:将铝环与强磁铁接触释放,铝环掉落。 教师:演示实验2(如图2) 将闭合铝环平放,强磁铁N极靠近铝环,然后 迅速往上移动,结果铝环被吸引起来。 学生:惊讶 图2

教师:为什么磁铁能够把铝环吸引起来呢? 学生:磁铁离开铝环,通过铝环的磁通量发生变化产生感应电流,感应电流的磁场与磁铁的磁场发生了作用。 教师:很好,那么环形电流的磁场类似于何种磁体的磁场分布情况呢? 学生:条形磁铁。 教师:那么刚才用强磁铁吸引铝环可不可以看做磁铁吸引磁铁呢? 学生:可以。 教师:我刚才的强磁铁的下端为N 极,那么能否判断出铝环感应电流产生的磁场分布情况呢?(如图3) 学生:可以,铝环上端是S 极,下端是N 极。 教师:那么我们能否根据所判断的极性来确定感应电流的方向呢?依据是什么? 学生:可以,用安培定则。 教师:为此,我们若要判断感应电流的方向,可以先判断感应电流磁场的方向。 那么感应电流的磁场方向如何来判断呢?有没有相应的规律呢?我们通过实验进一步来探究。 实验设计目的:让学生能够将感应电流的方向与磁场的方向通过安培定则紧密地联系在一起,从而为进一步探究规律明确了方向。 实验3 探究楞次定律(学生分组) 教师:若将铝环竖直放置,再将磁铁远离,铝环又会做出怎样的反应呢?(展示实验装置,如图4)铝环与磁铁之间一定是引力么?与磁铁的极性有没有关系呢? 师生共同归纳得出四种实验情形,N 极靠近、N 极远离、S 极靠近、S 极远离.(如图5)。 N S v N S v N S v N S v N S v 图3 图5 图4

Matlab与系统仿真试题及答案

Matlab 与系统仿真试题及答案 一、填空题(每空2分,共30分) 1、单位取样序列定义为________________。 2、单位阶跃序列定义为__________________。 3、取样定理中,采样频率和原始信号频率之间至少应该满足公式_______________。 4、实现IIR 滤波器可以采用三种不同的结构:_______________、__________________和_______________。 5、对于理想的滤波特性()jw H e ,相应的()d h n 一般为无限时宽,从而使非因果的。为此,使显示一般通过如下公式__________实现加窗处理,相应的傅里叶表达形式为_________________。 6、设计IIR 滤波器的基础是设计模拟低通滤波器的原型,这些原型滤波器有:_________、________和______________低通滤波器。 7、实现FIR 滤波器可以采用以下4中结构: ________________,_______________,______________和____________。 二、阅读下列Matlab 程序,并回答完成的功能(每题5分,共10分) 1、f=[00.60.61]; m=[1100]; b=fir2(30,f,m); [h ,w]=freqz(b,1,128); Plot(f,m,w/pi,abs) 本段程序的功能是:

2、[b ,a]=butter(9,300/500,’high’); Freqz(b,a,128,1000) 本段程序的功能是: 三、用Matlab 语言编程实现下列各小题(每小题15分,共60分) 1、产生序列0.3,16p s A dB πΩ==55n -≤≤,并绘出离散图,标注图形标题为“Sequence in Example 3.1a”。 实现程序如下:

1 伽尔顿板演示实验是展现统计规律的典型实验之一

1 伽尔顿板演示实验是展现统计规律的实验。 A 小球和金属杆的碰撞运动是确定,遵从牛顿运动定律。 B 每个小球的初速度的不确定性导致了大量小球的随机性。 C 条件:大量小球同时下落;大量单个小球依次下落。 2 葛正权实验是1934年葛正权验证分子按速率分布的实验。实验前,铋蒸汽源和旋转筒需要放置于真空度高的箱里,设蒸汽源开口和旋转滚筒缝隙之间距离为l, 给出真空容器腔P的计算方案 l λ=> 于是P< (2) 2 3/22 ()()4exp() 22 dN m m f Nd kT kT υ υπυ υπ ==- 在x方向麦克斯韦分布为 2 1/2 ()()exp() 22 x x x dN m m f Nd kT kT υ υ υπ ==- 3引入熵2 i pdV RdT dQ dS T T γ+ ==后,可以计算热力学过程中的熵。 A 计算理想气体从(p0,V0,T0)状态变到(p,V,T)状态,熵的改变 2 i pdV RdT dQ dS T T γ+ == 2 V T T V dV i dT S R R V T γγ ?=+ ?? 00 ln ln 2 V i T R R V T γγ =+ B用T-S表示卡诺循环,并求热机效率η 对两个绝热过程而言,0 dQ dS T ==,熵不变,平行T轴的直线。

两个等温过程(T 1和T 2),熵变为 ln 0b a b a V S S R S V γ-==?> 同理T 2,得到 ln d c d c V S S R V γ-= 因为 11a a d d T V T V γγ--= 11b b c c TV TV γγ--= 又1a b T T T ==,2d c T T T ==, a c b d V V V V = ln 0b c d a V S S R S V γ-=-=-?< (2)求效率 222111 111Q T S T Q T S T η?=-=-=-? 4连续性问题: 流出微元体积的电荷等于微元内电荷的减少 s V V j d S dV dV t t ρρ???=-=-?????????? (2)稳恒电流条件,0t ρ?=?,于是 0s j d S ?=?? 在节点处,得到基尔霍夫电流定律 0i i I =∑ T T

PCB板制作实验报告

PCB板制作实验报告 姓名:任晓峰 08090107 陈琛 08090103 符登辉 08090111 班级:电信0801班 指导老师:郭杰荣

一实验名称 PCB印刷版的制作 二实习目的 通过PCB板的制作,了解制板工艺流程,掌握制板的原理知识,并熟悉制板工具的使用以及维护,锻炼实践动手的能力,更好的巩固制板知识的应用,具备初步制作满足需求,美观、安全可靠的板。 三PCB板的制作流程 (1)原稿制作(喷墨【硫酸纸】、激光【硫酸纸/透明菲林】、光绘非林) 把用protel设计好的电路图用激光(喷墨)打印机用透明、半透明或70g复印纸打印出。 注意事项:打印原稿时选择镜像打印,电路图打印墨水(碳粉)面必须与绿色的感光膜面紧密接触,以获得最高的解析度。稿面需保持清洁无污物,线路部分如有透光破洞,应用油性黑笔修补。 (2)曝光: 首先将PCB板裁剪成适当大小的板,然后撕掉保护膜,将打印好的线路图的打印面(碳 粉面/墨水面)贴在感光膜面上,在用透明胶将原稿和PCB板的感光面贴紧,把PCB板放在曝光箱中进行曝光。曝光时间根据PCB板子而确定。本次制作的板子约为三分钟。 曝光注意事项:请保持感光板板面及原稿清洁和整齐,若曝光时间不足则容易在下个环节容易使线路腐蚀掉。 (3)显影:调制显像剂:显像剂:水(1:20),即1包20g显像剂配400cc水。显影:膜面朝上放 感光板在盆里。 (4)蚀刻:块状三氯化铁:热水(1:3)的比例调配。蚀刻时间在10-30分钟。 注意事项:感光膜可以直接焊接不必去除,如需要去处的可以用酒精。三氯化铁蚀刻液越浓蚀刻越慢,太稀也慢。蚀刻时间不可过长或过短。蚀刻完毕后,用清水将蚀刻后的PCB板进行清洗,等待水干后在进行下一个步骤。 (5)二次曝光:将蚀刻好的PCB板放进曝光箱中进行二次曝光。此次曝光是将已经进行蚀刻的PCB 板上的线路进行曝光。 (6)二次显影:将二次曝光的PCB板再次进行显影。将进行了二次曝光的PCB板进行显影,将PCB 板上的线路进行显影,去掉线路上的感光膜,让铜箔线显露出来。 (7)打孔:使用钻头在已经制作好的PCB板上进行打孔。在本次实践过程中不进行,因为在打孔过 程中容易造成打孔钻头断裂或者PCB板损坏,工艺有一定难度。 四制作成品展示

PCB板实验报告

pcb板制作实验报告 姓名:任晓峰 08090107 陈琛 08090103 符登辉 08090111 班级:电信0801班 指导老师:郭杰荣 一实验名称 pcb印刷版的制作 二实习目的 通过pcb板的制作,了解制板工艺流程,掌握制板的原理知识,并熟悉制板工具的使用 以及维护,锻炼实践动手的能力,更好的巩固制板知识的应用,具备初步制作满足需求,美 观、安全可靠的板。 三 pcb板的制作流程 (1)原稿制作(喷墨【硫酸纸】、激光【硫酸纸/透明菲林】、光绘非林) 把用protel设计好的电路图用激光(喷墨)打印机用透明、半透明或70g复印纸打印出。 注意事项:打印原稿时选择镜像打印,电路图打印墨水(碳粉)面必须与绿色的感光膜 面紧密接触,以获得最高的解析度。稿面需保持清洁无污物,线路部分如有透光破洞,应用 油性黑笔修补。 (2)曝光: 首先将pcb板裁剪成适当大小的板,然后撕掉保护膜,将打印好的线路图的打 印面(碳粉面/墨水面)贴在感光膜面上,在用透明胶将原稿和pcb板的感光面贴紧,把pcb 板放在曝光箱中进行曝光。曝光时间根据pcb板子而确定。本次制作的板子约为三分钟。 曝光注意事项:请保持感光板板面及原稿清洁和整齐,若曝光时间不足则容易在下个环 节容易使线路腐蚀掉。 (3)显影:调制显像剂:显像剂:水(1:20),即1包20g显像剂配400cc水。显影:膜 面朝上放感光板在盆里。 (4)蚀刻:块状三氯化铁:热水(1:3)的比例调配。蚀刻时间在10-30分钟。 注意事项:感光膜可以直接焊接不必去除,如需要去处的可以用酒精。三氯化铁蚀刻液 越浓蚀刻越慢,太稀也慢。蚀刻时间不可过长或过短。蚀刻完毕后,用清水将蚀刻后的pcb 板进行清洗,等待水干后在进行下一个步骤。 (5)二次曝光:将蚀刻好的pcb板放进曝光箱中进行二次曝光。此次曝光是将已经进行蚀 刻的pcb板上的线路进行曝光。 (6)二次显影:将二次曝光的pcb板再次进行显影。将进行了二次曝光的pcb板进行显影, 将pcb板上的线路进行显影,去掉线路上的感光膜,让铜箔线显露出来。 (7)打孔:使用钻头在已经制作好的pcb板上进行打孔。在本次实践过程中不进行,因为 在打孔过程中容易造成打孔钻头断裂或者pcb板损坏,工艺有一定难度。 四制作成品展示 五对焊接实习的感受 首先,我们要感谢郭老师的教导,是老师一步一步的细致讲解,让我们成功完成了实验。 通过制板的学习,基本掌握了pcb板生产制作的原理和流程,以及电路板后期焊接,安 装和调试与其前期制作的联系,培养了我们理论联系实际的能力,提高了分析问题和解决问 题的能力,不仅锻炼了同学们之间团队合作的精神,还增强了我们独立工作的能力,收获很 大,虽然在实验制作过程中遇到不少困难和挫折,但通过分析问题,请教老师和同学,最终 顺利完成了课程设计的要求和任务。 电子制作中或在电子产品开发中,都会用到电路板,自制电路板的方法有很多,一般采

实验-伽尔顿板实验的模拟与验证

伽尔顿板实验的模拟与验证 光电0807班孔繁琦u200815321 一、实验背景 在一块竖直放置的板的上部,规则的钉有许多铁钉,下部用隔板划分为许多等宽度的狭槽,从装置顶上的漏斗中可将小球向下投放。若每次只投入一个小球,则发现小球每次落入哪个狭槽完全是偶然的。但连续重复许多次实验后发现:小球落入中间槽的次数多,落入两边槽的次数少。若把大量小球一次倒入,则可以看到,小球在各槽内的分布是不均匀的,以中间槽为最多,向两边逐渐减少,当一次倒入的小球总数足够多时,并且实验次数也足够多时,每次得到的分布曲线几乎相同。 图 (以上内容出自《大学物理(上)》(华中科技大学版)P169) 从有关书籍及概率论课上,我们得知这种分布曲线趋向于正态分布概率密度曲线。所以我们就想通过数学实验来验证这个结论。 二、实验方法及原理 因为对MA TLAB软件不熟悉,我们决定通过C语言编程来实现该过程,具体思路如下:1、小球每碰到一个铁钉,有两种结果,即向左落下和向右落下,可以用取随机数来模拟这 个随机事件。我们的想法是每次从0与1中随机取数,0表示小球向左,1表示小球向右。 2、经过一层层的选择,小球会掉入最底层的槽中。可对槽进行编号,从最左到最右,分别 为0,1,2,3…。 3、如果小球经过n层,即n次选择落入0号槽中,则该小球每次都是往左,有 0+0+0+0+…+0=0;如果落入1号槽,则小球有一次往右,有1+0+0+…0=1,由此类推。 可以将每次小球的选择加起来,得到的就是它将落入的槽的编号。 4、这样,假设有m层,即每次实验取m次随机数,将结果加起来得到一个值,根据这个 值,我们让对应的槽中小球数量加1。经过大量实验,就可以得到每个槽中小球的分布,算出小球落到每个槽中的概率。 5、得到这个离散型的概率分布,我们可以利用MA TLAB进行正态分布拟合优度测试,来 验证我们的假设(即小球的分布是正态分布)。另外通过一定的数学方法可以求出对应的概率密度曲线。 三、实验过程 1、编写C语言程序进行模拟实验 说明:①我们取槽的数量(M)为20,小球数(N)分别为5000、10000、30000做三次模

相关主题
文本预览
相关文档 最新文档