华师大版数学七年级上册全册知识点
- 格式:docx
- 大小:137.30 KB
- 文档页数:10
华东师大版数学七年级上册知识点七年级上第二章有理数1. 相反意义的量 向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。
2. 正数和负数像+21,+12,1.3,258等大于0的数(“+”通常不写)叫正数。
像-5,-2.8,-43等在正数前面加“—”(读负)的数叫负数。
【注】0既不是正数也不是负数。
3. 有理数(1)整数:正整数、零和负整数统称为整数。
分数:正分数和负分数统称为分数。
有理数:整数和分数统称为有理数。
(2)有理数分类1)按有理数的定义分类 2)按正负分类正整数 正整数 整数 0 正有理数有理数 负整数 有理数 正分数 正分数 0 负整数分数 负有理数负分数 负分数 【注】有限循环小数叫做分数。
(3)数集 把一些数组合在一起,就组成了一个数的集合,简称数集。
所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的正分数负分数正整数0负整数数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。
4. 数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。
【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。
2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。
2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
5. 相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
(几何意义)(3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
(5)数a 的相反数是—a 。
(6)多重符号化简多重符号化简的结果是由“-”号的个数决定的。
初一数学知识点华师大版(精选五篇)第一篇:初一数学知识点华师大版学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。
任何科目学习方法其实都是一样的,不断的记忆与练习,使知识刻在脑海里。
下面是小编给大家整理的一些初一数学的知识点,希望对大家有所帮助。
七年级数学知识点三角形1、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。
2、判断三条线段能否组成三角形。
①a+b>c(ab为最短的两条线段)②a-b3、第三边取值范围:a-b4、对应周长取值范围若两边分别为a,b则周长的取值范围是2a如两边分别为5和7则周长的取值范围是145、三角形中三角的关系(1)、三角形内角和定理:三角形的三个内角的和等于1800。
n边行内角和公式(n-2)(2)、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。
注:直角三角形的性质:直角三角形的两个锐角互余。
(3)钝角三角形,即有一个内角是钝角的三角形。
(3)、判定一个三角形的形状主要看三角形中角的度数。
(4)、直角三角形的面积等于两直角边乘积的一半。
6、三角形的三条重要线段(1)、三角形的角平分线:1、三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
2、任意三角形都有三条角平分线,并且它们相交于三角形内一点。
(内心) (2)、三角形的中线:1、在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。
2、三角形有三条中线,它们相交于三角形内一点。
(重心)3、三角形的中线把这个三角形分成面积相等的两个三角形(3)、三角形的高线:1、从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。
七年级华师大版几何知识点几何是数学的一个重要分支,涉及到空间和形状的研究。
在七年级数学中,几何知识点是必不可少的一部分。
下面我们将详细介绍华师大版七年级几何知识点。
1.基本概念几何学中有很多基本概念,比如点、线、面等。
点是几何中最基本的概念,一般用大写字母表示。
线是由多个点组成的集合,一般用小写字母表示。
面是由多个线组成的集合,一般用带箭头的大写字母表示。
2.平面图形平面图形是几何学中最基本的研究对象之一。
主要包括:三角形、矩形、正方形、平行四边形、梯形、菱形等。
其中,三角形是最常见的图形之一,按照角度可分为:直角三角形、锐角三角形、钝角三角形。
矩形和平行四边形的特点是对角线相等,而正方形除了对角线相等外,还有四个直角。
菱形具有对角线相等且互相垂直的特点。
3.空间图形空间图形也是几何学中重要的内容之一。
主要包括:正方体、长方体、圆锥、圆柱、球等。
正方体是六个正方形组成的图形,长方体是由六个矩形组成的图形。
圆锥的底面是一个圆,圆柱的底面和顶面都是圆形。
球体是由无数个半径相等的圆组成的。
4.线段、角度、相似与全等线段是由两个端点组成的一条线段,可以用字母表示。
角度通常用度数来表示,如60度、90度等。
相似与全等是几何学中重要的概念,相似的意思是两个形状的对应边成比例,全等的意思是两个形状的对应边和对应角度都相等。
5.圆的概念圆是平面上距离一个固定点距离相等的所有点的集合。
其中,那个固定点称为圆心,固定距离称为半径。
圆的周长公式为2πr,圆的面积公式为πr²。
总结七年级华师大版几何知识点主要包括基本概念、平面图形、空间图形、线段、角度、相似与全等以及圆的概念等内容。
这些知识点对于学好数学和应用数学都有非常重要的作用。
希望同学们在学习数学时,能够认真掌握这些知识点,从而更好地提升自己的数学水平。
七年级上册数学知识点归纳华师大版七年级上册数学主要涵盖了数的认识、数的四则运算、数与代数以及图形的认识和运算等知识点。
下面将对七年级上册数学的知识点进行归纳总结。
一、数的认识1.自然数:认识自然数的概念和性质,掌握自然数的顺序、大小比较、数的位数等基础知识。
2.整数:认识整数的概念和性质,了解正整数、负整数和零的含义及表示法,学习整数的加减法运算。
3.分数:认识分数的概念和性质,掌握分数的大小比较、分数与整数的关系、基本分数的运算。
二、数与代数1.代数式:了解代数式的定义和性质,学习代数式的化简、合并同类项等基本运算规则。
2.方程:了解方程的定义和性质,学习一元一次方程的解的概念和求解方法,引入解方程的基本思想。
三、数的四则运算1.加法与减法:学习整数的加法和减法运算法则,了解加法和减法的性质,掌握整数的加减法运算的规律。
2.乘法与除法:学习整数的乘法和除法运算法则,了解乘法和除法的性质,掌握整数的乘除法运算的规律。
3.混合运算:学习整数的混合运算,理解混合运算的优先级规则,并进行综合运用。
四、图形的认识与运算1.二维图形:认识平面图形的基本性质和分类,了解直线、射线、线段等基本概念,学习用通用方法度量线段的长度。
2.三角形与四边形:学习三角形的分类、特性和计算,认识四边形的分类和特性,掌握计算四边形周长的方法。
3.相似图形:认识相似图形的定义和判定条件,了解相似比的性质和相似图形的运算关系,学习相似图形的应用题解答方法。
以上是七年级上册数学主要的知识点归纳,每个知识点都是数学学习的基础,掌握好这些知识点对于后续学习起到了重要的作用。
在学习过程中,可以通过练习题和习题课来巩固和提升自己的理解和应用能力。
希望同学们对七年级上册数学的知识点有一个全面的了解,并在实际学习中灵活运用。
第1章 走进数学世界1.在n ·n 的正方形方格中,有1²+2²+3²+…2.幻方: 三阶幻方:四阶幻方: 第2章 有理数2.1.1正数和负数定义:像﹣2、﹣2.5、﹣237、﹣0.7这样的数是负数,像13、3.5、500、1.2这样的数是正数.(正数前面有时也可以放上一个“+”<读作“正”>号)☀注意:零既不是正数,也不是负数.2.1.2有理数分类:方法1:整、分法方法2:正、零、负法16 2 313 5 11 108 9 7 612 414 15 1 有理数整数 分数正整数 负整数 零 正分数 负分数数集的定义:把这些数(指上文提到的有理数)放在一起,就组成一个数的集合,简称数集.上文有理数组成的数集叫做有理数集.2.2.1数轴定义:规定了原点、正方向和单位长度的直线叫做数轴.2.2.2在数轴上比较数的大小方法:在数轴上表示的两个数,右边的数总比左边的数大.正数都大于零,负数都小于零,正数都大于负数.2.3相反数几何定义:1.在数轴上表示互为相反数的两个点分别位于原点的两旁,且与原点的距离相等.2.只有正负号不同的数成为互为相反数.(例:数a的相反数是﹣a,﹣a的相反数是a)☀注意:零的相反数是零.变为相反数的方法:通常在一个数的前面添上“﹣”号,表示这个数的相反数.(在一个数的前面添上“+”号,仍表示这个数本身.(例题解析)正负号组合化简方法:1.根据相反数的意义.2.数前面负号的个数。
负号的个数为偶数个时,取正;负号的个数为奇数个时,取负.2.4绝对值定义:在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.取一个数的绝对值的结果:1.一个正数的绝对值是它本身.2.零的绝对值是零.3.一个负数的绝对值是它的相反数.4.任何一个有理数的绝对值总是正数或0(通常也称非负数).即对任意有理数a,总有|a|≥0.2.5有理数的大小比较除(2.2.2)在数轴上比较数的大小的方法比较两个负数的大小的方法:两个负数,绝对值大的反而小.2.6.1有理数的加法法则法则内容:1.同号两数相加,取与加数相同的正负号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大加数的正负号,并用较大的绝对值减去较小的绝对值;3.互为相反数的两个数相加得零;4.一个数与零相加,仍得这个数.法则扩充总结:正正相加,和大于其中任意一个加数;负负相加,和小于其中任意一个加数;正负相加,和大于负数,小于正数.(正指正数,负指负数)☀注意:一个有理数由正负号和绝对值两部分组成,进行加法运算时,应注意确定和的正负号及绝对值.2.6.2有理数加法的运算律加法交换律:两个数相加,交换加数的位置,和不变.字母表示:a+b=b+a加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.字母表示:(a+b)+c=a+(b+c).2.7有理数的减法法则:减去一个数,等于加上这个数的相反数.字母表示:a-b=a+(-b)2.8有理数的加减混合运算方法:1.按照运算顺序,从左到右逐步运算.2.用有理数减法法则,统一为只有加法运算的和式.加法运算律的应用:因为有理数的加减法可以统一成加法,所以在进行有理数加减混合运算时,可以适当应用加法运算律,简化运算.补充概念:从1开始逐步增大的连续奇数的和等于奇数个数的平方;从2开始逐步增大的连续偶数的和,等于偶数个数的平方加偶数个数.2.9.1有理数的乘法法则内容:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零.(两数相乘,若把一个因数换成它的相反数,则所得的积是原来的积的相反数.)2.9.2有理数乘法的运算律乘法交换律:两个数相乘,交换因数的位置,积不变.字母表示:ab=ba乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.字母表示:(ab)c=a(bc)分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.字母表示:a(b+c)=ab+ac积的正负号与各因数的正负号之间的关系:几个不等于零的数相乘,积的正负号由负因数的个数决定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正. 几个数相乘,有一个因数为零,积就为零.2.10有理数的除法倒数的定义:乘积是1的两个数互为倒数.有理数的除法转为乘法的方法:除以一个数等于乘以这个数的倒数.☀注意:零不能作除数.有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.2.11有理数的乘方定义及相关内容:求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在aⁿ中,a叫做底数,n叫做指数,aⁿ读作a的n次方,aⁿ看作是a的n次方的结果时,也可读作a的n次幂.幂的特点:(根据有理数乘法法则)正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.2.12科学记数法定义:一个大于10的数就记成a×10ⁿ的形式,其中1≤a<10,n是正整数.像这样的记数法叫做科学记数法.☀注意:1.a的整数数位只有一位.2.n是原数的整数数位少1.2.13有理数的混合运算混合运算的运算顺序:1.先算乘方,再算乘除,最后算加减;2.同级运算,按照从左至右的顺序进行;3.如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的.补充:加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方叫做第三级运算.☀注意:进行分数的乘除运算时,一般要把带分数化为假分数,把除法转化为乘法.2.14近似数一个与实际非常接近的数,称为近似数.题型分析:科学记数法中a×10ⁿ看它精确到哪一位,就看a最右边的那个数字在原数中是哪一位.☀注意:1.题目要求精确到十位、百位等,往往采用科学记数法,而要求精确到十分位、百分位等,往往不采用科学记数法.2.对一个比较大的数,取近似值往往采用科学记数法,因为科学记数法中的精确度只看a.3.取近似值有三种方法:四舍五入法、去尾法、进一法,要根据题的要求和实际情况而定.2.15用计算器进行计算:略第二章小结第三章整式的加减3.1.1用字母表示数☀注意:1.式子中出现的乘号,通常写作“·”或忽略不写.2.数字与字母相乘时,数字通常写在字母前面.3.除法运算写成分数形式.4.括号前面的乘号也要被省略.3.1.2代数式定义:由数和字母用运算符号连接所成的式子,称为代数式.单独一个数或一个字母也是代数式.3.1.3列代数式列代数式的原因:在解决问题时,列出代数式,使问题变得简洁,更具一般性.3.2代数式的值定义:一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值.3.3.1单项式定义:由数与字母的乘积组成的代数式叫做单项式.☀注意:1.当一个单项式的系数是1或-1时,“1”通常省略不写.2.单项式的系数是带分数时,通常写成假分数.3.3.2多项式定义:几个单项式的和叫做多项式.其中,每个单项式叫做多项式的项,不含字母的项叫做常数项.一个多项式含有几项,就叫做几项式.多项式里,次数最高项的次数,就是这个多项式的次数.3.3.3升幂排列与降幂排列定义:把一个多项式各项的位置按照其中某一字母指数的大小顺序来排列.从大到小为降幂排列,从小到大为升幂排列.☀注意:1.重新排列多项式时,每一项一定要连同它的正负号一起移动.2.含有两个或两个以上字母的多项式,常常按照其中某一字母的升幂排列或降幂排列.3.4.1同类项定义:所含字母相同,并且相同字母的指数也相等的项叫做同类项.所有的常数项都是同类项.3.4.2合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.3.4.3去括号与添括号去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变正负号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变正负号.添括号法则:所添括号前面是“+”号,括到括号里的各项都不改变正负号;所添括号前面是“-”号,括到括号里的各项都改变正负号.☀注意:添括号与去括号的过程正好相反,添括号是否正确,不妨用去括号检验一下.3.4.4整式的加减运算步骤:先去括号,再合并同类项.第3章小结第4章图形的初步认识4.1生活中的立体图形立体图形展示图:柱体锥体球体多面体的定义:每一个面都是平的的立体图形叫做多面体.☀注意:圆柱、球体等含有曲面的立体图形不称为多面体.4.2.1由立体图形到视图视图的定义:视图来自于投影.中心投影的定义:从一点发出的这种投影称为中心投影.平行投影的定义:平行投影是在一束平行光线照射下形成的投影.物体的三视图及其定义:从正面得到的投影,称为主视图;从上面得到的投影,称为俯视图;从侧面得到的投影,称为侧视图,依投影方向不同,有左视图和右视图.通常将主视图、俯视图与左(或右)视图称做一个物体的三视图.因而,三视图一般画主视图、俯视图、左视图.4.2.2由视图到立体图形☀注意:1.画出来的是平面图形.2.画出能看到的轮廓.3.画出能看到的棱、尖点.4.3立体图形的表面展开图:略4.4平面图形圆的特性:由曲线围成的封闭图形.多边形的定义:由线段围成的封闭图形叫做多边形.三角形在多边形中的意义:在多边形中,三角形是最基本的图形.每个多边形都可以分割成若干个三角形.从n边形的某一顶点出发引对角线,能得到(n-3)条对角线,能分成(n-2)个三角形.4.5.1点和线点存在的意义:表示那些大小尺寸可以忽略的物体.许多点的聚集又可以表现不同的图形.线段的意义:线段是无数排成行的点的聚集.多面体各部分名称示意图:面棱顶点关于线段的基本事实:两点之间,线段最短.射线的定义:把线段向一方无限延伸所形成的图形叫做射线.直线的定义:把线段向两方无限延伸所形成的图形叫做直线.关于直线的基本事实:(三种说法)经过两点有一条直线,并且只有一条直线;两点确定一条直线;经过两点有且只有一条直线.4.5.2线段的长短比较比较方法:1.用刻度尺量,比较大小2.将其中一条线段移到另一条线段上去加以比较.中点的定义:把一条线段分成两条相等线段的点,叫做这条线段的中点.题型分析:一条直线上有n个点,线段的条数为n(n-1)/2条.☀注意:线段的和差往往用图形语言告诉我们,我们要善于挖掘图形语言.点和直线的位置关系:1.点在直线上;2.点在直线外.欧拉公式:顶点数+面数-棱数=2(应用的范围是多面体)4.6.1角角的?定义:由两条有公共端点的射线组成的图形叫做角.角的?定义:由一条射线绕着它的端点旋转而成的图形.射线的端点叫做角的顶点,起始位置的射线叫做角的始边,终止位置的射线叫做角的终边.表示角的方法:1.两个端点及一个顶点(表示时要把表示角的顶点的字母写在中间);2.一个顶点(顶点处只能有一个角时才能用此方法);3.一个阿拉伯数字或希腊字母(先标出后才能用)平角的定义:绕着端点旋转到角的终边和始边成一直线,这时所成的角叫做平角.周角的定义:绕着端点旋转到终边和始边再次重合,这时所成的角叫做周角.角度的单位换算:1°=60′ 1′=60″(1度等于60分,1分等于60秒)☀注意:描述物体运动的方向时,要以正北、正南方向为基准.4.6.2角的比较和运算题型分析:从一点引出n条射线,确定角的个数为n(n-1)/2个.角的平分线的定义:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.4.6.3余角和补角余角的定义:两个角的和等于90°(直角),就说这两个角互为余角,简称互余.补角的定义:两个角的和等于180°(平角),就说这两个角互为补角.关于余角、补角的定理:同角或等角的余角相等;同角或等角的补角相等.☀注意:互余和互补有时通过特殊的位置(即图形语言)告诉我们.第4章小结第5章相交线与平行线5.1.1对顶角对顶角的?定义:两个角具有相同的顶点,且其中一个角的两边分别与另一个角的两边互为反向延长线,我们把这样的两个角叫做对顶角.对顶角的?定义:两直线相交所成的四个角中,不相邻的一对角叫做对顶角.对顶角的性质:对顶角相等.5.1.2垂线垂直、垂足、垂线的定义:两直线相交所成的四个角中,有一个角等于90°,两线互相垂直,它们的交点叫做垂足,我们把其中的一条直线叫做另一条直线的垂线.关于垂线的基本事实:过一点有且只有一条直线与已知直线垂直.垂线段的定义:过直线外一点作已知直线的垂线,这一点与已知直线相交的点所在的线段叫做垂线段.点到直线的距离的定义:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.5.1.3同位角、内错角、同旁内角同位角的定义:内错角的定义:同旁内角的定义:5.2.1平行线平行线的定义:在同一平面内不相交的两条直线叫做平行线.互相平行的两条直线的表示的方法:例:直线a与直线b互相平行,记作“a∥b”. 两条不相交的直线的位置关系有:相交或平行.关于平行线的基本事实:1.过直线外一点有且只有一条直线与这条直线平行.2.如果两条直线都和第三条直线平行,那么这两条直线也互相平行.5.2.2平行线的判定判定方法:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.关于垂直、平行的性质:在同一平面内,垂直于同一条直线的两条直线平行.5.2.3平行线的性质性质:两直线平行,同位角相等.两直线平行,内错角相等.两直线平行,同旁内角互补.第五章小结。
华师大七年级上数学知识点总结七年级上册主要知识点复习第二章有理数一.正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a 是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。
3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2. (1)凡能写成q(p,q为整数且p?0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统p称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;?不是有理数;??正整数?正有理数?正分数??(2)有理数的分类: ①按正、负分类: 有理数?零??负整数?负有理数??负分数?- 1 -??正整数?整数?零???②按有理数的意义来分:有理数??负整数 ??正分数?分数??负分数?总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数? 0和正整数;a>0 ? a是正数;a<0 ? a是负数;a≥0 ? a是正数或0 ? a是非负数;a≤ 0 ? a是负数或0 ? a是非正数.三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
华师大版七年级上册全册知识点总结第二章有理数1. (4)近似数的精确度有两种形式:1)精确到哪一位,2)保留几个有效数字。
相反意义的量向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。
2. 正数和负数像+21,+12,1.3,258等大于0的数(“+”通常不写)叫正数。
像-5,-2.8,-43等在正数前面加“—”(读负)的数叫负数。
【注】0既不是正数也不是负数。
3. 有理数(1)整数:正整数、零和负整数统称为整数。
分数:正分数和负分数统称为分数。
有理数:整数和分数统称为有理数。
(2)有理数分类1)按有理数的定义分类2)按正负分类 正整数正整数整数 0 正有理数 有理数负整数有理数正分数正分数 0 负整数分数负有理数 负分数负分数【注】有限循环小数叫做分数。
(3)数集把一些数组合在一起,就组成了一个数的集合,简称数集。
所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。
正分数负分数正整数0负整数4. 数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。
【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。
2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。
2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
5. 相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
(几何意义)(3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
(5)数a 的相反数是—a 。
(6)多重符号化简多重符号化简的结果是由“-”号的个数决定的。
如果“-”号是奇数个,则结果为负;如果是偶数个,则结果为正。
可简写为“奇负偶正”。
6. 绝对值(1)在数轴上表示数a 的点离开原点的距离,叫做数a 的绝对值。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.⎪⎩⎪⎨⎧<-=>=0,0,00,a a a a a a(3)绝对值的主要性质一个数的绝对值是一个非负数,即a≥0,因此,在实数范围内,绝对值最小的数是零. (4)两个相反数的绝对值相等. (5)运用绝对值比较有理数的大小两个负数,绝对值大的反而小. (6)比较两个负数的方法步骤是:1)先分别求出两个负数的绝对值; 2)比较这两个绝对值的大小;3)根据“两个负数,绝对值大的反而小”作出正确的判断. 7. 有理数的加法 (1)有理数加法法则1)同号两数相加,取相同的符号,并把绝对值相加。
2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3)互为相反数的两个数相加得零。
4)一个数与0相加,仍得这个数。
(2)有理数加法的运算律 加法交换律:a +b =b +a加法结合律:(a+b)+c=a+(b+c) 8. 有理数的减法减去一个数等于加上这个数的相反数。
a-b=a+(-b)9. 有理数的加减混合运算 (1)省略加号和的形式:在一个和式里,通常把各个加数的括号和它前面的加号省略不写。
例如:把-8+(+10)+(-6)+(-4)写成省略加号和的形式为-8+10-6-4。
读作“负8,正10,负6,负4的和”也可读作“负8加10减6减4。
(2)适当的应用加法运算律。
10. 有理数的乘法(1)有理数的乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘都得零。
(2)几个不等于零的数相乘,积的正负号由负因数的个数决定,当负号的个数为奇数时,积为负;当负号的个数为偶数时,积为正。
几个数相乘,有一个因数为零,积就为零。
(3)乘法运算律 乘法交换律: ab=ba 乘法结合律:(ab)c=a(bc)乘法对加法的分配律:a(b+c)=ab+ac 11. 有理数的除法(1)倒数:乘积为1的两个数互为倒数。
【注】0没有倒数。
(2)有理数除法法则1:除以一个数等于乘以这个数的倒数。
【注】0不能做除数。
)0(1a ≠⋅=÷b ba b(3)有理数的除法法则2:两数相除,同号得正,异号得负,并把绝对值相除。
零除以任何一个不等于的数,都得零。
12. 有理数的乘方(1)求几个相同因数积的运算,叫做乘方。
=⋅⋅⋅⋅⋅⋅⋅a a a a n a n 个(2)乘方的结果叫做幂,a 叫做底数,n 叫做指数。
(3)有理数乘方法则:正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数,0的任何非0次幂都是零。
13. 科学记数法(1)一般的,10的n 次幂,在1的后面有n 的0。
(2)一个大于0的数就记成na 10⨯的形式。
其中,101<≤a n 是正整数。
像这样的记数法叫做科学记数法。
(3)用科学记数法表示一个数时,10的指数等于原数的整数位数减1。
(或等于小数点向右移动的位数。
14.有理数的混合运算(1)先算乘方,再算乘除,最后算加减。
(2)同级运算,按照从左至右的顺序进行。
(3)如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的。
15.近似数和有效数字(1)准确数:完全符合实际的数。
(2)近似数:和准确数非常接近的数。
近似数和准确数接近的程度叫做精确度。
(3)一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,这时,从左边第一个不是0的数字起到精确到的位数止,所有的数字都叫做这个数的有效数字。
第三章整式的加减1.用字母表示数2.代数式(1)由数和字母用运算符号连接起所成的式子叫做代数式,单独的一个数或一个字母也叫代数式。
【注】运算符号指加、减、乘、除、乘方、开方。
代数式中不可含有“>”、“<”、“=”、“≤”、“≥”、“≠”等表示相等或不等关系的符号。
(2)代数式书写要求1)代数式中出现的乘号,通常写作“∙”或省略不写。
但数字与数字相乘时,要用“⨯”。
2)数字与字母相乘时,数字写在字母的前面。
3)除法运算写成分数形式。
4)带分数与字母相乘时,要把带分数写成假分数。
5)在一些实际问题中,有时表示数量的代数式有单位名称,若代数式是积或商的形式,则单位直接写在后面,若代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在后面。
(3)解释简单代数式表示的实际背景(4)列代数式在解决实际问题时,常常先把问题中与数量有关的词语用代数式表示出来,即列代数式。
【注】抓住题中表示运算关系的关键词:如和、差、积、商、比、倍、大、小、增加了、增加到、减少、几分之几等。
(5)代数式的值一般的,用数值代替代数式里的字母,按照代数式中运算计算得出的结果叫做代数式的值。
【注】1)代数式中的值随着代数式中字母取值的变化而变化。
所以求代数式值时,在代入前必须写出“当……时”。
2)代数式里字母的取值必须确保代数式有意义。
3.单项式(1)如100t、6a2、2.5x、vt、-n,它们都是数或字母的积,像这样的式子叫做单项式,单独的一个数或一个字母也是单项式。
(2)单项式的系数:单项式中的数字因数叫做这个单项式的系数。
(3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
【注】1)当一个单项式的系数是1或-1时,“1”通常省略不写。
2)单项式的系数是带分数时,通常写成假分数。
4.多项式(1)几个单项式的和,叫做多项式。
其中每个单项式叫做多项式的项,不含字母的项叫做常数项。
(2)多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数。
(3)一个多项式含有几项,就叫几项式;例如:x2+2x+18是一个二次三项式。
【注】1)多项式的次数不是所有项的次数和。
2)多项式的每一项都包括它前面的正负号。
5.整式单项式与多项式统称为整式。
6.升幂排列与降幂排列为便于多项式的运算,可以用加法交换律将多项式各项的位置按某个字母的指数的大小顺序重新排列。
若按某个字母的指数从大到小的顺序排列,叫做这个多项式按这个字母降幂排列。
若按某个字母的指数从小到大的顺序排列,叫做这个多项式按这个字母升幂排列。
【注】重新排列的多项式,每一项一定要连同它的正负号一起移动。
含有两个或两个以上字母的多项式,常常按照其中某一个字母升幂排列或降幂排列。
7.整式的加减(1)同类项:所含字母相同,并且相同字母指数也相同的项叫做同类项,所有的常数项都是同类项。
(2)合并同类项:根据乘法对加法的分配律把多项式中同类项合并成一项叫做合并同类项。
合并同类项法则:在合并同类项时,把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变。
(3)去括号与添括号1)去括号法则:括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不改变正负号;括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变正负号。
a+(b+c)=a+b+c a-(b+c)=a-b-c2)添括号法则:所添括号前面是“十”号,括到括号里的各项都不改变正负号;所添括h 号前是“一”号,括到括号里的各项都改变正负号。
a+b+c= a+(b+c)a-b-c= a-(b+c)(4)整式的加减先去括号,再合并同类项。
第四章图形的初步认识1.生活中常见的立体图形(1)球体(2)柱体:包括圆柱和棱柱。
1)圆柱:有两个底面是圆,侧面是曲面。
2)棱柱:上下两个底面是两个平行且相同的多边形,侧面是平行四边形。
棱柱可按底面多边形边数分为三棱柱、四棱柱、五棱柱等。
(3)椎体:包括圆锥和棱锥。
1)圆锥:有一个底面是圆,侧面是曲面。
2)棱锥:底面是多边形,侧面是三角形。
棱锥可按底面多边形边数分为三棱锥、四棱锥、五棱锥等。
(4)多面体:由平的面围成的立体图形。
2.画立体图形(1)视图:就是从正面、上面、和侧面(左面或右面)三个不同的方向看一个物体,然后描绘三张所看到的图,即视图。
正视图:从正面看到的图形。
俯视图:从上面看到的图形。
侧视图:从侧面看到的图形。
依观看方向不同,有左视图、右视图。
三视图:通常把正视图、俯视图、与左(或右)视图称作一个物体的三视图。
(2)球体的三视图都是圆。
正方体的三视图都是正方形圆柱体的正视图和左视图都是长方体,俯视图是圆。
圆锥体的正视图和左视图都是三角形,俯视图是圆,中心有一个点。
3.由视图到立体图形主视图:可分清物体的长与高。
俯视图:可分清物体的长与宽。
左视图:可分清物体的宽与高。
口诀:主俯长对正,主左高齐平,俯左宽相等。
4.立体图形的表面展开图多面体是由平面图形围成的的立体图形,沿着多面体的一些棱将它剪开,可以把多面体的表面展开成一个平面图形,这个平面图形叫做多面体的表面展开图。